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PACS. 42.50.Dv – Nonclassical states of the electromagnetic field, including entangled photon
states; quantum state engineering and measurements.

PACS. 74.50.+r – Tunneling phenomena; point contacts, weak links, Josephson effects.

PACS. 42.50.Ct – Quantum description of interaction of light and matter; related experi-
ments.

Abstract. – Based on the interaction between the radiation field and a superconductor, we
propose a way to engineer quantum states using a SQUID charge qubit inside a microcavity.
This device can act as a deterministic single-photon source as well as generate any Fock states
and an arbitrary superposition of Fock states for the cavity field. The controllable interaction
between the cavity field and the qubit can be realized by the tunable gate voltage and classical
magnetic field applied to the SQUID.

The generation of quantum states of the radiation field has been a topic of growing inter-
est in recent years. This is because of possible applications in quantum communication and
information processing, such as quantum networks, secure quantum communications, and
quantum cryptography [1]. Based on the interaction between the radiation field and atoms,
many theoretical schemes have been proposed for the generation of Fock states [2,3] and their
arbitrary superpositions [4, 5]. Experiments have generated single-photon states in quantum
dots [6], atoms inside a microcavity [7], and other systems [8]. A superposition of the vacuum
and one-photon states can also be experimentally created by truncating an input coherent
state or using cavity quantum electrodynamics [9]. However, how to generate an arbitrary
photon state by virtue of the interaction between the radiation field and solid-state quantum
devices seems to be unknown both theoretically and experimentally. Recent progress in super-
conducting quantum devices (e.g., [10,11]) makes it possible to do quantum state engineering
experiments in these systems, and also there have been proposals on superconducting qubits
interacting with the nonclassical electromagnetic field [12–17].

Here, we present an experimentally feasible scheme to generate quantum states of a single-
mode cavity field in the microwave regime by using the photon transition between the ground
and first excited states of a macroscopic two-level system formed by a superconducting quan-
tum interference device (SQUID). This artificial two-level “atom” can be easily controlled by
c© EDP Sciences
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Fig. 1 – (a) A charge qubit formed by a SQUID device, equivalent to a controllable macroscopic
two-level system, is placed into a superconducting microwave cavity in (b). The coupling between
the quantized cavity field and qubit system is realized via the magnetic flux ΦX through the SQUID.

an applied gate voltage Vg and the flux Φc generated by the classical magnetic field through
the SQUID (e.g., [14, 18]). The process of generating photon states in this device includes
three main steps: i) The artificial atom operates at the degeneracy point by choosing appro-
priate values for Vg and Φc. There is no interaction between the quantized cavity field and
“atom” at this stage. ii) Afterwards, new Vg and Φc are selected such that the cavity field
interacts resonantly with the “atom” and evolves during a designated time. iii) The above two
steps can be repeated until a desired state is obtained. Finally, the flux Φc can be adjusted
to a special value, then the interaction is switched off, and the desired photon state appears
in the cavity. This process is similar to that of a micromaser [2] and is described below.

Model. – The macroscopic two-level system studied here is shown in fig. 1(a). A SQUID-
type superconducting box with nc excess Cooper-pair charges is connected to a superconduct-
ing loop via two identical Josephson junctions with capacitors CJ and coupling energies EJ. A
controllable gate voltage Vg is coupled to the box via a gate capacitor Cg. We assume that the
superconducting energy gap ∆ is the largest energy. Then, at low temperatures, the quasi-
particle tunneling is suppressed and no quasi-particle excitation can be found on the island.
Only Cooper pairs coherently tunnel in the superconducting junctions. The above assumptions
are consistent with most experiments on charge qubits. Then the standard Hamiltonian [18] is

Hqb = 4Ech(nc − ng)2 − 2EJ cos
(
πΦX

Φ0

)
cos Θ, (1)

where ΦX is the total flux through the SQUID loop and Φ0 the flux quantum. Thus, the
superconducting loop is used to control the Josephson coupling energy by adjusting the flux
through this loop. Below, we show that it can also switch on and off the qubit-field interaction.
The dimensionless gate charge, ng = CgVg/2e, is controlled by Vg. The single-electron charging
energy is Ech = e2/2(Cg +2CJ). Θ = (φ1 +φ2)/2 is the quantum-mechanical conjugate of the
number operator nc of the Cooper pairs on the box, where φi (i = 1, 2) is the phase difference
for each junction. The superconducting box is assumed to work in the charging regime with
condition kBT � EJ � Ech � ∆, where T and kB are temperature and Boltzmann constant,
respectively. If the gate voltages is near a degeneracy point ng = 1/2, the superconducting
box is a charge qubit [18], which is a controllable two-level system characterized by the two
lowest charge states |g〉 (for nc = 0) and |e〉 (for nc = 1). However, if the quasi-particle
excitation cannot be completely suppressed, a continuum of low-lying quasi-particle states
will be present, and the Hamiltonian (1) cannot be reduced to a system with two energy levels
even when the gate voltage is near the degeneracy point [19].

Now we further consider that the qubit is placed in a single-mode microwave superconduct-
ing cavity, depicted in fig. 1(b), the flux ΦX through the SQUID can be expressed as [12–14]
ΦX = Φc + Φq where the flux Φc and Φq = η a + η∗ a† are generated by a classical applied
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magnetic field and the quantized cavity field, respectively. Here η =
∫

S
u(r) · ds and u(r) is

the mode function of the cavity field, with annihilation (creation) operators a (a†), and S is
the surface defined by the contour of the SQUID. Considering the above, we obtain

H = h̄ωa†a + Ezσz − EJ(σ+ + σ−) cos
[
π

Φ0

(
ΦcI + η a + η∗ a†

)]
, (2)

where the first two terms represent the free Hamiltonians of the cavity field with frequency ω =
4Ech/h̄ and the qubit with the energy Ez = −2Ech(1 − 2ng), I is the identity operator. The
third term is the nonlinear photon-qubit interaction which is switchable by the flux Φc. The
charge excited state |e〉 and ground state |g〉 correspond to the eigenstates |↓〉 and |↑〉 of the
spin operator σz, respectively. The cosine in eq. (2) can be further decomposed into classical
and quantized parts, and the quantized parts sin[π(η a + H.c.)/Φ0] and cos[π(η a + H.c.)/Φ0]
can be further expanded as a power series in a (a†). Here, the single-photon transition between
the states |e, n〉 and |g, n + 1〉 satisfies the condition (π|η|/Φ0)

√
n + 1 � 1, where n is the

number of photons; therefore all higher orders of π|η|/Φ0 can be neglected and only a single-
photon transition is kept in the expansion of eq. (2). Using the notation for trapped ion
systems (e.g., [20]), the first red (blue) sideband excitations βaσ+ + H.c. (βaσ− + H.c.) for
interactions of the cavity field and the qubit [13], with photon-qubit coupling constant β =
(πηEJ/Φ0) sin(πΦc/Φ0), can be obtained by adjusting the gate voltages Vg and the flux Φc.
They correspond to 2Ez = h̄ω (2Ez = −h̄ω) and dimensionless gate charge ng = 1 (ng = 0).
Also ξ(σ+ + σ−) with ξ = EJ cos(πΦc/Φ0) is called the carrier [13], which corresponds to
ng = 1/2. The Hamiltonian (2), with the above assumptions, is our model.

Preparation process. – We choose |0, g〉 as our initial state, where the cavity field is in the
vacuum state |0〉 and the qubit is in the ground state |g〉. The goal is to prepare an arbitrary
pure state of the cavity field,

|ψ〉 =
N∑

n=0

cn|n, g〉 = |g〉 ⊗
N∑

n=0

cn|n〉, (3)

where |n〉 denotes the Fock states of the cavity field with excitation number n = 0, 1, 2, · · ·.
A Fock state |m〉 with m photons is a special case of eq. (3) with conditions cn = 0 for all
n 
= m with 0 < m ≤ N .

Thermal photons in the cavity have to be suppressed in order to obtain the vacuum state
|0〉. In the microwave region 0.1 ∼ 15 cm, the mean number of thermal photons 〈nth〉 satisfies
3.0 × 10−208 ≤ 〈nth〉 ≤ 0.043 at T = 30 mK, and 1.7 × 10−104 ≤ 〈nth〉 ≤ 0.26 at T = 60 mK.
These temperatures can be obtained experimentally (e.g., in [11,21]).

After the system is initialized, two different processes are required to engineer the state
of the cavity field. The first process involves rotating the qubit state, but keeping the cavity
field state unchanged. This stage can be experimentally realized by tuning the gate voltage
and classical magnetic field such that ng = 1/2 and Φc = 0; then the time evolution operator
UC(t) of the qubit in the interaction picture is

UC(t) = cos(Ω1t)I + i sin(Ω1t)(|g〉〈e| + |e〉〈g|), (4)

where Ω1 = EJ/h̄. The subscript “C” in UC(t) denotes the carrier process, which can super-
pose two levels of the qubit, and it can also flip the ground state |g〉 or the excited state |e〉
to each other, after a time t = π(2p− 1)/2Ω1, with positive integer p.

The second process is the first red (blue) sideband excitation, which can be realized by
tuning the gate voltage and classical magnetic field such that ng = 1 (ng = 0) and Φc =
Φ0/2. Thus, in the interaction picture, the time evolution operators UR(t) for the red (UB(t)
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for the blue) of the cavity field and qubit can be expressed [22] as

UR(t) = Ree(t)|e〉〈e| + Rgg(t)|g〉〈g| − iRge(t)|g〉〈e| − iReg(t)|e〉〈g| (5)

or
UB(t) = Rgg(t)|e〉〈e| + Ree(t)|g〉〈g| − iRge(t)|e〉〈g| − iReg(t)|g〉〈e| (6)

with Reg(t) = [eiθ sin(|Ω2|t
√
aa†)/

√
aa†]a, Rge(t) = B†

eg(t), Ree(t) = cos(|Ω2|t
√
aa†), and

Rgg(t) = cos(|Ω2|t
√
a†a), where we have assumed that Ω2 = πηEJ/h̄Φ0 = |Ω2|eiθ, in which

the phase θ depends on the mode function of the cavity field u(r). The red sideband excitation
described by operator UR(t) can entangle |g, n + 1〉 with |e, n〉, or flip |g, n + 1〉 to |e, n〉 and
vice versa, by choosing the duration of the interaction between the cavity field and the qubit.
From eq. (5), it is easy to verify that the emission probability Pg of the upper level for the
qubit is Pg = sin2(|Ω2|t

√
n + 1). We find that Pg = 1 when |Ω2|t

√
n + 1 = π(2k − 1)/2, with

positive integer k. So when t = π(2k−1)/(2|Ω2|
√
n + 1), there are n+1 photons in the cavity

and the qubit is in its ground state. The first blue sideband excitation, denoted by UB(t), can
entangle state |e, n + 1〉 with state |g, n〉, or flip |e, n + 1〉 to |g, n〉 and vice versa. Below we
use the carrier and the first red sideband excitation, represented by UC(t) and UR(t), as an
example showing the generation of an arbitrary quantum state of the cavity field.

Using the quantum operations UC(t) and UR(t) in eqs. (4) and (5), the single photon state
|1〉 can be generated from the initial vacuum state |0〉. That is, we can first flip the ground
state of the qubit to the excited state when the condition Ω1t1 = π/2 is satisfied for the
carrier UC(t1), then we turn on the first red sideband excitation UR(t2) and let the photon-
qubit system evolve a time t2 satisfying the condition |Ω2|t2 = π/2. Finally, we adjust the
classical magnetic field such that Φc = 0; thus the interaction between the cavity field and
qubit vanishes, and a single-photon state exists in the cavity, that is

|1〉 ⊗ |g〉 = UR(t2|)UC(t1) |0〉 ⊗ |g〉. (7)

Also any Fock state |m〉 can be easily created from the vacuum state |0〉 by alternatively
turning on and off the quantum operations in eqs. (4)-(5) to excite the qubit and emit photons
during the time interval T . The latter is divided by 2m subintervals τ1, τ2, · · ·, τ2l−1, τ2l · · ·,
τ2m−1, τ2m which satisfy conditions |Ω1|τ2l−1 = π/2 and |Ω2|τ2l

√
l + 1 = π/2, where l =

1, · · · ,m. This process can be described as

|m〉 ⊗ |g〉 = UR(τ2m)UC(τ2m−1) · · ·UR(τ2)UC(τ1)|0〉 ⊗ |g〉. (8)

Finally, the classical magnetic field is changed such that Φc = Φ0, and an n-photon state is
provided in the cavity.

Our next goal is to prepare superpositions of different Fock states (e.g., α1|0〉+ α2|1〉) for
the vacuum |0〉 and single-photon |1〉 states. This very important state can be deterministically
generated by two steps, UC(t′1) and UR(t′2), with t′2 = π/2|Ω2|; that is

(α1|0〉 + α2|1〉) ⊗ |g〉 = UR

(
t′2

)
UC

(
t′1

)|0〉 ⊗ |g〉, (9)

where the operation time t′1 determines the weights of the coefficients of the superposition
α1 = cos(Ω1t

′
1) and α2 = e−iθ sin(Ω1t

′
1). If the condition t′1 = π/4Ω1 is satisfied, then we have

a superposition (|0〉+e−iθ|1〉)/√2 with equal probabilities for each component and the relative
phase between them can be further specified by the phase of the mode of the cavity field.

An arbitrary target state (3) can be generated from the initial state by alternatively
switching on and off the carrier and first red sideband excitation during the time T ′, which can
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be divided into 2n subintervals τ ′1, · · · , τ ′2n. That is, the target state can be deterministically
generated as follows:

|ψ〉 =
N∑

n=0

cn|n, g〉 = U(T ′)|0, g〉, (10)

where U(T ′) is determined by a sequence of time evolution operators associated with cho-
sen time subintervals as U(T ′) = UR(τ ′2n)UC(τ ′2n−1) · · ·UR(τ ′2)UC(τ ′1). Therefore, the coeffi-
cients cn are

cn = 〈g, n|UR

(
τ ′2n

)
UC

(
τ ′2n−1

) · · ·UR

(
τ ′2

)
UC

(
τ ′1

)|0, g〉. (11)

Reference [4] has explicitly discussed how to adjust the rescaled times to obtain the expected
state by solving the inverse evolution of eq. (10). Ideally, any state of the cavity field can be
created according to our proposal by adjusting the gate voltage, classical magnetic field, and
duration of the photon-qubit interaction. It is very easy to check that the state (3) can also
be created by the carrier and blue sideband excitation whose time evolutions UC(t) and UB(t)
are described by eqs. (4) and (6).

Environmental effects. – We now discuss the environmental effects on the prepared
states, which are actually limited by the following time scales: the relaxation time T1, the
preparation time τe of the excited state, and the dephasing time T2 of the qubit, the lifetime
τp of the photon and an effective interaction time τ

(n)
c which corresponds to the transition

from |n, e〉 and |n + 1, g〉. If T1, τp � τe, τ
(n)
c , then the Fock states can be prepared. If the

condition T1, T2, τp � τe, τ
(n)
c is satisfied, then the superposition can also be obtained.

Now let us estimate the photon number of the obtainable Fock state in a full-wave cavity.
In microwave experiments, it is possible to obtain very high-Q superconducting cavities, with
Q values around 3×108 to 5×1010 [2,23], which correspond to the lifetimes of the microwave
region from 0.001 ≤ τp ≤ 0.15 s to 0.167 ≤ τp ≤ 25 s. The parameters of the charge qubit [24]
without the cavity are 2EJ/h = 13.0 GHz (so the operation time corresponding to a completely
excited qubit is about τe ≈ 3.8 × 10−11 s). The lifetime of the excited state for the qubit
T1 = 1.3×10−6 s, i.e. τe � T1. For an estimate of the interaction coupling between the cavity
field and the qubit, we assume that the cavity mode function is taken as a standing-wave form
such as Bx = −i

√
h̄ω/ε0V c2(a− a†) cos(kz), with polarization along the normal direction of

the surface area of the SQUID, located at an antinode of the standing-wave mode; then the
interaction between the cavity field and the qubit reaches its maximum and the interaction
strength can be expressed as |β| = π|η|EJ/Φ0 = (πSEJ/cΦ0)

√
h̄ω/ε0V . For example, if the

wavelength of the cavity mode is taken as λ1 = 0.1 cm, then π|η|/Φ0 ≈ 7.38 × 10−5 � 1,
where the dimension of the SQUID is taken as 10µm and the mode function u(r) is assumed
to be independent of the integral area because the dimension of the SQUID, 10µm, is much
less than 0.1 cm, for the wavelength of the cavity mode. In this case, τ

(0)
c ≈ 5.0 × 10−7 s,

which is less than one order of magnitude of the excited lifetime T1. This means that the
qubit in its excited state can emit a photon before it relaxes to its ground state. But if we
take the dimension of the SQUID as 1µm, the coupling between the cavity field and the qubit
is two orders of magnitude smaller than for the 10µm SQUID, and then the interaction time
is 5.0 × 10−5 > T1. Therefore, in this case, the qubit relaxes to the ground state before the
photon can be emitted from the qubit, and thus it is difficult to obtain a photon state. In
fig. 2, we plot the ratio τ

(n)
p /τ

(n)
c between the lifetime [25] τ

(n)
p = τp/n (here, τ

(1)
p = τp)

of the Fock state |n〉 for the zero-temperature environment and the effective operation time
τ

(n)
p of transitions from state |n, e〉 to |n + 1, g〉 for different values of Q and for λ = 0.1 cm.

Figure 2 shows that the photon number of the prepared Fock states can reach 102 in the
above-mentioned high-Q cavity. But if the Q values are less than 107, it might be difficult to
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Fig. 2 – Ratio τ
(n)
p /τ

(n)
c , vs. photon number n ≥ 1, of the lifetime τ

(n)
p of the photon number state |n〉

and the effective operation time τ
(n)
c . The latter corresponds to the transition from |n, e〉 to |n+1, g〉

for a 10µm× 10µm SQUID in the full-wave cavity.

prepare a photon state with our estimated coupling. We also find that a longer microwave in
the full-wave cavity corresponds to a longer τ

(n)
c for a fixed Q, which means that it is easy

to create photon states for shorter microwaves. For example, if the wavelength is taken as
λ = 1 cm, then the coupling between the qubit and the photon in the full-wave cavity might
not be strong enough for generating Fock states within the currently known experimental data
for T1. So for longer microwaves, we can make a smaller cavity and place the qubit where the
qubit-photon interaction is maximum.

If we want to prepare a superposition of different Fock states of the cavity field, we need
to consider T2, which is of the order of a few ns (e.g., 5 ns in [11]). Then the survival time of
the entangled state between the cavity field and qubit, which is required for the preparation
of the superposition of the Fock states, may be very short. With the improvement of read-out
techniques, a longer dephasing time can make our proposal far more realizable.

Discussions. – We propose a scheme for deterministically generating nonclassical photon
states via the interaction of photons and a charge qubit. Indeed, the Fock state can be pre-
pared with current technology. The superposition would be easier to obtain by increasing the
dephasing time T2 and the qubit-photon coupling strength. Our discussions above are based
on experimental values for T1 and T2 without the cavity; the decoherence may become shorter
when the SQUID is placed inside the cavity. Further, in order to obtain a stronger coupling,
the following steps would help to increase the qubit-field coupling strength: i) decrease the
volume V of the cavity; ii) increase the area S of the SQUID; iii) increase the Josephson
coupling energy EJ under the condition EJ � Ech. We can also put a high permeability µ
material inside the SQUID loop [14], then the qubit-field coupling strength can increase to
µ|β|, because the relative permeability in ferromagnetic materials can be 102 to 106, and might
partly compensate some of the decoherence effects due to the µ material itself. Increasing the
SQUID dimension and decreasing the cavity volume will reduce the maximum allowed number
of SQUIDs inside the cavity making it unadvantageous for quantum computing. However, one
qubit is enough for the generation of nonclassical photon states, our goal here. We note that
Girvin et al. [17] proposed a different system in which the coupling of the photon-qubit can
reach 108 Hz, corresponding to τ

(0)
c ∼ 10−9 s. We are considering how to generate nonclas-

sical photon states by using such a system. This scheme might not be easy to generalize in
a straightforward manner to the flux qubit case. This because the interaction between the
flux-qubit and the cavity field cannot be switched on and off in the same way for the charge
qubit. However, in some modified manner, it should be possible to generalize this scheme.
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