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Abstract. – We propose a method for the tomographic reconstruction of qubit states for a
general class of solid-state systems in which the Hamiltonians are represented by spin operators,
e.g., with Heisenberg-, XXZ-, or XY -type exchange interactions. We analyze the implemen-
tation of the projective operator measurements, or spin measurements, on qubit states. All the
qubit states for the spin Hamiltonians can be reconstructed by using experimental data.

Quantum information processing requires the effective measurement of quantum states.
However, a single quantum measurement can only obtain partial information of a quantum
state. The reconstruction of a quantum state requires measuring a complete set of observables
on an ensemble of identically prepared copies of the system. This method called quantum state
tomography [1], is very important because any unknown state can be ascertained by tomo-
graphic measurements. Moreover, the full description of qubit states can increase the accuracy
of quantum operations. Tomographic measurements have been experimentally implemented
for, e.g., the nuclear spin state of an NMR system [2], the electromagnetic field and pho-
ton state [3], the vibration state of molecules [4], the motional quantum state of a trapped
atom [5], and atomic wave packets [6].

Experimental investigations on solid-state qubits are very promising, especially in super-
conducting [7,8] and quantum dot structures [9]. These recent achievements make it necessary
to experimentally determine quantum states in solid-state systems. Although there are many
theoretical studies on tomography (e.g., refs. [10] and references therein), to our knowledge,
these are not specific to solid-state systems. Here, we focus on this question for quantum
computing models using standard spin representations for solid-state qubits. Our proposal
is related to tomographic measurements using NMR. The measurements of the density ma-
trix in NMR experiments are obtained from the NMR spectrum of the linear combination
of “product operators”, i.e. products of the angular-momentum operators [11]. However,
experiments in solid-state systems usually involve the local single-qubit projective operator
c© EDP Sciences
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measurement (POM) or spin measurement. So, we study the method of tomographic re-
construction of solid-state qubits by POM or spin measurement for a number of promising
solid-state quantum computing models [12–19]. We will investigate how the multi-qubit corre-
lation measurements can be realized by virtue of an appropriate two-qubit operation combined
with single-qubit operations.

State and measurements. – Using the density matrix form, an n-qubit state ρ can be
expressed as

ρ =
1
2n

∑
l1,··· ,ln=0,x,y,z

rl1···ln σl1 ⊗ σl2 ⊗ · · · ⊗ σln , (1)

where rl1···ln are 4n real parameters, σlm=x,y,z and σlm=0 (0 ≤ m ≤ n) are the Pauli spin
and identity operators of the m-th qubit, respectively. We adopt the convention |0〉 = | ↑〉
and |1〉 = | ↓〉 to denote the computational basis states of each qubit. The normalization
condition Tr ρ = 1 makes r0,··· ,0 = 1, which means that ρ can be specified by (4n − 1) real
parameters. These parameters correspond to the expectation values of the measurements given
by the operators σj1 ⊗ · · · ⊗ σjn

; that is, Tr{ρ(σj1 ⊗ · · · ⊗ σjn
)} = rl1···lnδj1l1 · · · δjnln , where

l1, · · · , ln are not simultaneously taken as zero. If there are n −m identity operators among
σl1⊗· · ·⊗σln , the measurement is really done by the m-qubits and it can be abbreviated by the
tensor product of only the m Pauli operators, which is denoted hereafter by σ1 l1 ⊗· · ·⊗σm lm .
The (4n − 1) measurements required to reconstruct the n-qubit state can be decomposed into
a summation from the single-qubit to n-qubit measurements as

∑n
j=1 3j

(
n
j

)
, where 3j

(
n
j

)
is

the number of j-qubit measurements and
(
n
j

)
is the binomial coefficient.

To reconstruct the n-qubit state ρ, we need to determine all of its expanded coefficients
{rl1,··· ,ln}. In solid-state systems, the correlated multi-qubit measurement is not realizable
now, and the experimental readout is often done via single-qubit POM (e.g., refs. [12–15]) or
single spin measurement (e.g., refs. [16, 17]). Without loss of generality, we assume that the
POM is denoted by |1〉〈1| and the spin measurement is presented by σx or σy. Below, we will
discuss how to determine the (4n − 1) coefficients of an n-qubit state by using experimental
data of the POM and then generalize it to the spin case. Our goal is to build a correspondence
between the above measurements and actual measurements done via |1〉〈1|.

Single-qubit measurements. – The single-qubit measurements σlz (l = 1, 2, · · · , n) can be
done by the projectors (|1〉〈1|)l due to the equivalence σlz = σl0 − 2(|1〉〈1|)l, with identity op-
erators σl0. Thus, the POM experiments can directly determine n coefficients via n outcomes
of the measurements (|1〉〈1|)l. The measurements corresponding to the remaining (4n−n−1)
coefficients cannot be directly performed because of the limitations of the current experiment.
In order to obtain these coefficients, a sequence of quantum operations W is needed such that
each coefficient can be transformed to a position that is measurable by a POM experiment.
The probability p of the l-th single-qubit measurement (|1〉〈1|)l on the operated state ρ can
be expressed as

p = Tr
{
WρW †(|1〉〈1|)l

}
= Tr

{
ρW †(|1〉〈1|)lW

}
, (2)

which means that the experimental POM (|1〉〈1|)l on the state WρW † can be equivalently
described as W †(|1〉〈1|)lW = [12 − 1

2W
†σlzW ] on the original state ρ. Because the POM

experiment is equivalent to W †σlzW , we can call it an equivalent m-qubit measurement of
(|1〉〈1|)l, if the largest number of Pauli operators in the operator product expansion ofW †σlzW
is an m-qubit. Thus, the (4n−n−1) coefficients can be obtained by the single-qubit projection
(|1〉〈1|)l on the state ρ with appropriate operationsW implemented by the dynamical evolution
of the system with experimentally controllable parameters.
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For all universal quantum computing proposals, the most general Hamiltonian of the sys-
tem can be described as

H =
n∑

l=1

∑
α=x,y,z

εl α σl α +
n∑

1=l<m

∑
α,β=x,y,x

Jαβ
l m σl α ⊗ σm β , (3)

where {εl α} and {Jαβ
l m} are controllable and tunable system-specific one-qubit and exchange

coupling parameters, which are required by the universality of quantum computing [20],
σl α=x,y,z denote the Pauli operators of the l-th qubit. Without loss of generality, all pa-
rameters are assumed to be positive real numbers.

In order to obtain each coefficient corresponding to single-qubit measurements σlx or σly,
all single-qubit operations need to be performed separately by controlling the one-qubit pa-
rameters εl α while turning off all interactions in the Hamiltonian (3), that is, Jαβ

l m = 0. For
n single-qubit measurements {σly}, each σly can be equivalently obtained by (|1〉〈1|)l, after
the l-th qubit is rotated π/2 about the x-axis, the latter expressed as Xl = exp[−iπσlx/4].
This rotation can be realized within the evolution time t = h̄π/4εlx, after the one-qubit pa-
rameters εly and εlz are adjusted to zero. Other n single-qubit measurements {σlx} can also
be obtained by measuring (|1〉〈1|)l on the state, within the evolution time t = h̄π/4εly, after
εlx and εlz are set to zero. This quantum operation is equivalent to a π/2 rotation of the
l-th qubit about the y-axis, which is denoted by Yl = exp[−iπσly/4]. However, not all of
the three one-qubit parameters εlx, εly and εlz appear in the Hamiltonian of most physical
systems. For example, the parameter εly is always zero in the charge-qubit system [12]. For
this case, to obtain the rotation angle θ about the y-axis we need to alternatively turn on and
off the single-qubit quantum operations: (1) X l = exp[−iεlxσlxt1/h̄], with the operation time
t1 = 3h̄π/4εlx; (2) Zl(θ) = exp[−iθσlz/2], with θ = εlzt2/h̄; and (3) Xl = exp[−iεlxσlxt3/h̄],
with t3 = h̄π/4εlx. These can be expressed as Yl(θ) = XlZl(θ)X l = exp[−iθσ1y/2]. Espe-
cially, we denote the rotation π/2 about the z-axis by Zl = exp[−iπσlz/4]. In principle, if the
l-th qubit system has only two controllable one-qubit parameters εα and εβ , then the rotation
angle εαβγθ about the axis γ can be obtained by first doing a rotation of π/4 about the axis
α, then a rotation of θ about the axis β, and finally a rotation by −π/4 about the axis α;
that is, exp[−iεαβγθσγ/2] = e−iπσα/4e−iθσβ/2eiπσα/4, where α, β, γ can be x, y, or z and the
Levi-Civita tensor εαβγ is equal to +1 and −1 for the even and odd permutation of its indices,
respectively. To reconstruct a single-qubit state, three single-qubit measurements σα (α = x,
y, z) are sufficient to obtain rz, which determines the probabilities of finding 0 and 1, as well
as rx and ry which determine the relative phase of |0〉 and |1〉.

Two-qubit measurements. – The above discussions show that all the single-qubit mea-
surements can be experimentally implemented by POMs (|1〉〈1|)l on the given state with
or without single-qubit quantum operations. However, the implementation of multiple-qubit
measurements needs non-local two-qubit operations. The basic two-qubit operation can be
derived from the time evolution operator U12(t) of a pair of coupled qubits, labelled by 1 and
2, whose Hamiltonian H12 can be obtained from eq. (3) with n = 2. Without loss of generality,
we assume: i) ε1α = ε2α = εα; and ii) Jαβ

lm = Jα
lmδαβ in the Hamiltonian (3), because, by

applying local unitary operations, e.g., [21], the Hamiltonian (3) can always be transformed
into a diagonal form —which is actually used for a number of promising solid-state quan-
tum computing models [12–19]. Then in the basis {|01, 02〉, |01, 12〉, |11, 02〉, |11, 12〉}, the time
evolution operator U12(t) is

U12(t) = exp [−iH12t/h̄] =
4∑

g=1

e−iEgt/h̄|ψg〉〈ψg|, (4)
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where |ψg〉 (g = 1, 2, 3, 4) are four eigenvectors of the Hamiltonian H12. The corresponding
eigenvalues E1 = −Jx

12 − Jy
12 − Jz

12, E2, E3 and E4 are given [22] by the solutions of the cubic
equation of the parameter E. Here, we only focus on two typical Hamiltonians which play an
important role in the process of two-qubit operation for the most representative solid-state
quantum computing models. One is that all of the one-qubit parameters are switchable, for
example, quantum dots in cavities [23]. However, due to technical constraints and difficul-
ties, it was found [24] that not all the one-qubit parameters are switchable in the two-qubit
operation, for instance, for spin-coupled quantum dots [14], donor-atom nuclear or electron
spins [18], and quantum Hall systems [19], two one-qubit parameters such as εx and εy are
switchable, but εz is fixed. The basic two-qubit operation with fixed εz is

U12(t) =
1
2
(
eiφ cos γ + e−iφ cosβ

)
I + i

(1 − a2)c
2

e−iφ sinβ(σ1z + σ2z) +

+
1
2
(
e−iφ cosβ − eiφ cos γ

)
σ1z ⊗ σ2z − i

1
2
(
eiφ sin γ + 2ac e−iφ sinβ

)
σ1x ⊗ σ2x −

− i1
2
(
eiφ sin γ − 2ac e−iφ sinβ

)
σ1y ⊗ σ2y , (5)

where γ = t
h̄ (Jx

12 + Jy
12), β = t

h̄

√
4ε2z + (Jx

12 − Jy
12)2, φ = t

h̄J
z
12, a = 2b +

√
4b2 + 1, with

b = εz/(Jx
12 − Jy

12), and c = 1/(1 + a2). We also assume in eq. (5) that the parameters
satisfy conditions [2Jz

12 ± (Jx
12 +Jy

12)]2 �= 4ε2z + (Jx
12 −Jy

12)2 and 2Jz
12 ±

√
4ε2z + (Jx

12 − Jy
12)2 �=

(Jx
12 + Jy

12)2.

Examples of two-qubit measurements. – Using eq. (5), we can obtain the two-qubit
operations by choosing system-specific parameters. For example, the two-qubit operation
with fixed εz for the Heisenberg model, XXZ model, and the XY model can be obtained
from eq. (5) by setting parameters Jx

mn = Jy
mn = Jz

mn, Jx
mn = Jy

mn �= Jz
mn and Jx

mn = Jy
mn,

Jz
mn = 0, respectively. If all one-qubit parameters are switchable, then the two-qubit operation

can be obtained from eq. (5) by only setting εz = 0. Other effective spin quantum computing
models presented up to now can be reduced by single-qubit operations to eq. (5). For instance,
i) the two-qubit operations of the superconducting charge qubit [12] can be reduced to eq. (5)
with Jx

12 = Jz
12 = 0 by a conjugation by (π/4)(σ1y +σ2y) [25] on the Hamiltonian; ii) the two-

qubit operation for the models in refs. [17] and [26] can be reduced to eq. (5) with Jx
12 = Jy

12 = 0
and model [12] by the conjugation by (π/4)(σ1y + σ2y) and conjugation by (π/4)(σ1x + σ2x)
on the Hamiltonian of the system. Combining the basic two-qubit operations U12(t) with
the single-qubit operations, we can obtain any desired two-qubit operation by choosing the
evolution time t and the system-specific parameters {εα, J

α
12 : α = x, y, z}.

Now, let us consider the XY exchange coupling system with switchable one-qubit parame-
ters as an example to answer how to obtain the expectation values of two-qubit measurements.
If we want to obtain, for example, the expectation value rzy of σ1z ⊗ σ2y in such system, we
can first switch off all the one-qubit parameters εl α, then let the two-qubit system evolve
during the time τ = h̄π/8Jx

12 with the evolution operator U12(τ), then switch off the exchange
coupling and only make the first qubit have a π/2 rotation Y1 = exp[−iπσ1y/4] around the
y-axis, that is

ρ
U12(τ)−−−−→ U12(τ)ρU†

12(τ) Y1−→ Y1U12(τ)ρU†
12(τ)Y †

1 = ρ̃. (6)

Afterwards, we make the measurement (|1〉〈1|)1 on the rotated state ρ̃ obtaining the proba-
bility p = Tr[ρ̃ (|1〉〈1|)1] = (

√
2 + rx0 + rzx)/2

√
2, corresponding to the equivalent two-qubit

measurement −σ1x −σ1z ⊗σ2x. Because rx0 has been obtained by the equivalent single-qubit
measurement σ1x, rzx is completely determined by the above result. Eight other values of
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Table I – Quantum operation and two-qubit measurements.

XY model Heisenberg model

EM Operations Equivalent measurement (EM) Operations

σ1y + σ1xσ1x X1U1Y1 σ1z + σ2z + σ1yσ2x − σ1xσ2y U2

−σ1z + σ1xσ2y Y1U1Y1 σ1y + σ2z − σ1zσ2x − σ1xσ2y U2X1

−σ1z − σ1xσ2z Y1U1Y1X2 σ2z − σ1x + σ1yσ2x − σ1zσ2y U2Y1

−σ1z − σ1yσ2x X1U1X1 σ1z + σ2z + σ1xσ2x + σ1yσ2y U2Z1

−σ1x − σ1yσ2y Y1U1X1 σ1z − σ2x + σ1yσ2z − σ1xσ2y U2Y2

−σ1x + σ1yσ2z Y1U1X1X2 −σ1x − σ2x − σ1zσ2y + σ1yσ2z Y1U2

σ1y − σ1zσ2x X1U1 σ1y + σ2y − σ1zσ2x + σ1xσ2z X1U2

−σ1x − σ1zσ2y Y1U1 σ1y + σ2z + σ1zσ2y − σ1xσ2x U2X1Z2

−σ1x + σ1zσ2z Y1U1X2 σ1z − σ2x + σ1xσ2z + σ1yσ2y U2Z1Y2

equivalent two-qubit measurements for this pair can also be obtained by projecting (|1〉〈1|)1
on the measured state with the quantum operations summarized in table I. Each measured
value is related to the expectation values of a single-qubit and a two-qubit measurements.
For a two-qubit state in this system, the above 9 two-qubit and 6 single-qubit measurements
are enough to obtain 15 unknown parameters rl1l2 (l1, l2 = 0, x, y, z), where l1, l2 are not
simultaneously taken as zero. The 16 matrix elements of the two-qubit state are obtained by
combining the 15 parameters rl1l2 with the normalization condition and finally the two-qubit
state can be completely reconstructed.

The implementation of equivalent two-qubit measurements with a well-chosen two-qubit
operation for a pair of coupled two-qubit systems plays a significant role in the reconstruction
of a state. For the XY and Heisenberg models with switchable one-qubit parameters, the
equivalent measurements

√
2W †σ1zW and 2W †σ1zW , to obtain the expectation values of 9

two-qubit measurements, are summarized in table I, where the non-local two-qubit operation
operators U1 and U2 for the XY and Heisenberg models are chosen by eq. (5) with the
system-specific parameters and the evolution time τ = h̄π/8Jx

12 as

2
√

2U1 =
(√

2 + 1
)
I +

(√
2 − 1

)
σ1

z ⊗ σ2
z − iσ1

y ⊗ σ2
y − iσ1

x ⊗ σ2
x , (7)

2
√

2U2 = (2 − i) I − iσ1
z ⊗ σ2

z − iσ1
y ⊗ σ2

y − iσ1
x ⊗ σ2

x . (8)

The reconstructions of the qubit states in these models with fixed εz are the same with
switchable one-qubit parameters, if the ratios εz/J

x
12 = 4m/(2n − 1) (m,n = 1, 2, · · · ) are

appropriately chosen and the operation time is τ = (nh̄π)/(2εz).
We also find that the tomographic measurement steps for most systems can be reduced to

the same steps needed for the XY model. For example, i) by choosing appropriate values of
Jz

12, Jx
12 (Jz

12, Jx
12, and εz) and operation time τ for the XXZ model with the switchable one-

qubit parameters (fixed εz) such that Jz
12τ/h̄ = 2nπ, Jx

12τ/h̄ = (2m − 1)π/8 (Jz
12τ/h̄ = 2nπ,

Jx
12τ/h̄ = (2m − 1)π/8, εzτ/h̄ = lπ/2) with l,m, n = 1, 2 · · · , then we can obtain the same

two-qubit operation as for the XY model and the qubit state can be reconstructed by using
the same steps as the XY model, ii) the qubit state of the superconducting charge-qubit model
can also be reconstructed by using the same steps as the XY model when the parameters and
evolution time are appropriately chosen [27], iii) the qubit states in the systems modelled in
refs. [17] and [26] can also be reconstructed by using the same steps used for the XY model.
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It should be emphasized that the different qubit measurements on the quantum state
with fixed quantum operations produce different results and the quantum operations are not
unique to obtain each expectation value of the measurement. In table I, we only discuss the
procedure for the first-qubit POM, if we can make all single-qubit measurements, then the
operation steps to obtain some of the expectation values of the multiple-qubit measurements
can be decreased. For example, if we can experimentally perform the second-qubit projection
(|1〉〈1|)2 in the XY model, the expectation value of σ1y ⊗ σ2z can be obtained by using two
steps of operations U12(τ) and Y2, that is U†

12(τ)Y †
2 σ2z Y2U12(τ) = −(σ2x + σ1y ⊗ σ2z)/

√
2.

But four steps are needed for the first-qubit measurement. The price paid is that noise may
be increased because the system is in contact with more probes.

Multi-qubit measurements. – These measurements can also be obtained by designing
step-by-step single- and two-qubit operations. In principle, to obtain the expectation value of
an l-qubit (2 < l ≤ n) measurement, we need at least l − 1 two-qubit operations for different
pairs of the l-qubit. For example, let us obtain the expectation value rzzx corresponding to
the three-qubit measurement σ1z ⊗ σ2z ⊗ σ3x for the XY interaction system with switchable
one-qubit parameters. We can replace the first qubit by the third qubit in the two-qubit
operation U12(τ) and perform an operation U23(τ) on the second and third qubits, followed
by another operation U12(τ) on the first and second qubits, followed by a π/2 rotation Y1

about the y-axis for the first qubit, followed finally by the measurement (|1〉〈1|)1. That is, an
equivalent three-qubit measurement can be obtained as

U†
23(τ)U†

12(τ)Y †
1 σ1zY1U12(τ)U23(τ) = − 1

2
√

2
σ1x − 1

4
σ1z ⊗ σ2y +

1
4
σ1z ⊗ σ2z ⊗ σ3x , (9)

where the assumption of exchange couplings are the same for all qubit pairs used. The
probability of measuring (|1〉〈1|)1 on the above rotated three-qubit state is p′ = (2

√
2+2rx00+√

2rzy0 −
√

2rzzx)/4
√

2. Then rzzx can be determined by the p, rx00, and rzy0, the latter two
parameters have been obtained by single- and two-qubit measurements. We can also obtain
other probabilities of the equivalent three-qubit measurements related to the expectation
values of the three-qubit measurements by projecting (|1〉〈1|)l on the final operated state.
For a three-qubit state, we can solve the equations for all probabilities of equivalent one-,
two-, and three-qubit measurements to obtain expectation values of all measurements; finally
all matrix elements of a three-qubit state are obtained by these expectation values, and the
state is reconstructed. Any n-qubit measurement can be obtained in a similar way to the
three-qubit measurement, then the n-qubit state can also be reconstructed.

Discussion. – In summary, we have proposed a scheme for tomographic reconstruction
of qubit states for a class of promising solid-state quantum computing models. We find that
elemental logic gates, such as CNOT gate, control phase gate, etc., are not necessary in this
process. An appropriate non-local two-qubit operation is enough to realize this purpose. The
generalization of the above discussion to the spin measurement [16, 17] is straightforward
because of the equivalence between |1〉〈1| = 1

2 (σ0 −σz) and σx (σy) by a π/2 (−π/2) rotation
about the y (x) axes. Using the present technology, our proposal is experimentally feasible
in these solid-state qubit systems. Ideally, the reconstructed qubit state ρ should satisfy
the properties of the normalization, positivity, and hermiticity. However, we always deal
with a limited amount of experimental data, which are also affected by noise and imperfect
quantum measurements. To overcome problems due to unavoidable statistical errors, we can
use the maximum-likelihood estimation of the density matrix [28] to obtain a more accurate
reconstructed qubit.
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