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Voltage-driven quantum oscillations of conductance in graphene
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Abstract – Locally-gated single-layer graphene sheets have unusual discrete energy states inside
the potential barrier induced by a finite-width gate. These states are localized outside the Dirac
cone of continuum states and are responsible for novel quantum transport phenomena. Specifically,
the longitudinal (along the barrier) conductance exhibits oscillations as a function of barrier height
and/or width, which are both controlled by a nearby gate. The origin of these oscillations can
be traced back to singularities in the density of localized states. These graphene conductance-
oscillations resemble the Shubnikov-de Haas (SdH) magneto-oscillations, however, here these are
driven by an electric field instead of a magnetic field.

Copyright c© EPLA, 2011

Introduction. – The unusual and rather remarkable
transport properties of graphene continue to attract
considerable attention. Soon after its experimental
discovery [1], studies found: unconventional quantum Hall
effect [2]; the possibility of testing the Klein paradox [3];
specular Andreev reflection and Josephson effect [4];
new electric field effects [5,6]; intriguing electron lens-
ing [7]; and other fascinating phenomena (see, e.g.,
recent papers [8–16] and references therein). Studies of
graphene are also inspired by their potential application
in nano-electronic devices, since an applied electric field
can vary considerably the electron concentration and
have both electrons and holes as charge carriers with high
mobility.
The subject of the present study, which is a logical

continuation of recent work [6], is an unusual novel trans-
port effect, namely, voltage-driven quantum oscillations in
the conductance of a single-layer gated graphene. These
oscillations originate from a new type of electron states
in graphene. When a graphene sheet is subject to nearby
gates, these create an energy barrier for propagating elec-
trons. Here we explicitly demonstrate that, in contrast to
non-relativistic quantum mechanics, where localized states
can exist only inside quantum wells, Dirac-like relativistic

electrons in graphene allow energy states localized within
the barrier. We show that the energy ε(qy) of the localized
states (vs. the wave vector component qy along the barrier)
becomes non-monotonic if V0D>π�vF , where V0 and D
are the barrier height and width correspondingly, and vF
is the Fermi velocity. This produces singularities in the
density of localized states for energies where dε/dqy = 0.
When the magnitude and/or width of the barrier changes,
the locations of the singularities move and periodically
cross the Fermi level, generating quantum oscillations in
the longitudinal (along the barrier) conductance as well as
in the thermodynamic properties of graphene. This situ-
ation resembles the well known physical mechanism for
Shubnikov-de Haas (SdH) magneto-oscillations (see, e.g.,
refs. [17–19]). Indeed, electrons in the conduction band of
a metal subject to a strong magnetic field have equidis-
tant discrete energy levels (Landau levels) separated by
the cyclotron energy. The corresponding density of states
has singularities at the Landau levels. When the magnetic
field is changed, the positions of the Landau levels move
and pass periodically through the Fermi energy. As a result
of this, the population of electrons at the Fermi level also
changes periodically, giving rise to the quantum oscilla-
tions of both the transport and thermodynamic properties
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Fig. 1: (Color online) Schematic top view of a graphene sheet
(yellow rectangle) placed under voltage gates indicated by the
grey block rectangles. Bottom: gate-induced potential energy
barrier V (x) in graphene.

of a metal. One should notice, however, a few important
differences. First, in the context of gated graphene, oscil-
lations are induced by the electric field, while the corre-
sponding SdH oscillations are driven by a magnetic field.
Second, localized energy states in graphene are non-
equidistant and the resulting density of states has a rather
complicated energy dependence. Thus, the corresponding
oscillations in the conductance inherit all these unusual
peculiarities.

Localized energy states in a barrier. – The
tunneling of relativistic particles in graphene across
a finite-width potential barrier, and its correspond-
ing conductance, has been recently studied (see, e.g.,
refs. [3,7,20–22]). Here we consider another conduc-
tion problem, namely, electron waves that propagate
strictly along the barrier and damp away from it. More
specifically, we consider electron states in graphene with
a potential barrier located in a single-layer graphene
occupying the xy-plane (see fig. 1). For simplicity, we
assume that the barrier V (x) has sharp edges,

V (x) =

{
0, |x|>D/2,
V0, |x|<D/2. (1)

Electrons in monolayer graphene obey the Dirac-like
equation (hereafter �= 1),

i
∂ψ

∂t
= Ĥψ, Ĥ =−ivF σ̂ ·∇+V (x), (2)

where σ̂= (σ̂x, σ̂y) are the Pauli matrices. We then seek
stationary spinor solutions of the form,

ψ(x, y) =ψ(x) exp(−iεt+ iqyy), (3)

with energy ε and momentum qy along the barrier. We
focus on states with |qy|> |κ| ≡ |ε|/vF . In this case, the

electron waves satisfying eq. (2) damp away from the
barrier, and the components ψ1 and ψ2 of the Dirac
spinor can be written in the from

ψ1(x) =




a exp
[
kx(x+D/2)

]
, x <−D/2,

b exp (iqxx)

+ c exp (−iqxx), |x|�D/2,
d exp

[− kx(x−D/2)], x >D/2,

(4)

ψ2(x) =




iaκ
kx+qy

exp
[
kx(x+D/2)

]
, x <−D/2,

−b exp(iqxx+ iθ)
+ c exp(−iqxx− iθ), |x|�D/2,

− idκ
kx−qy exp

[− kx(x−D/2)], x >D/2,

(5)

with real kx = (q
2
y −κ2)1/2 and qx =

(
(κ−V/D)2− q2y

)1/2
.

Here V = V0D/vF is the effective barrier strength and
tan θ= qy/qx.
Matching the functions ψ1(x) and ψ2(x) at the points

x=±D/2, we obtain a set of four linear homogeneous
algebraic equations for the constants a, b, c, and d.
Equating the determinant of this set to zero, we obtain a
dispersion relation for the localized electron energy states,

F (ε, qy)≡ tan(qxD)+ kxqx

κ(V/D−κ)+ q2y
= 0. (6)

The spectrum of localized states in graphene (eq. (6)) is
shown by the solid black curves in fig. 2, for dimensionless
variables

Q= qyD, E = εD/vF . (7)

This spectrum consists of an infinite number of branches
En(Q). Each of these branches starts from the lines E =
±|Q| (red solid straight lines in fig. 2) at

E = V/2−π2n2/2V (8)

and tends asymptotically to the line E = V −Q with
increasing Q (dashed red line in fig. 2). Furthermore,
a particular branch of the spectrum starts at the point
(Q= 0, E = 0 ) and also tends to the line E = V −Q.
The behavior of different branches of the spectrum

depends on the barrier strength V. If V <π/2, then
all branches satisfy E < 0. Localized states with positive
energies appear only for V >π/2. When V increases,
new branches in the spectrum with positive energies
appear. When V is within the interval (n+1/2)π < V <
(n+3/2)π, the number of branches with E > 0 is n+1,
for n= 1, 2, 3, . . . . It is worth emphasizing that each of
the branches with positive energy has a maximum Emaxn

at a certain wave number Q=Qmaxn . Near these points
the group velocity of localized electron waves tends to
zero, which resembles the stop-light phenomena found
in various media [23]. The localized states can also be
observed in graphene when a voltage is applied to produce
a potential well [24].
Note that defect-induced localized electron states in

graphene and the enhancement of conductivity due to
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Fig. 2: (Color online) Electron energy spectrum in graphene
obtained for positiveQ and V = 16. The Dirac sea of delocalized
states (continuum spectrum) is marked by the grey regions.
The branches of the spectrum for localized states are shown by
solid black curves between the straight solid and dashed red
lines. There are no states in the forbidden (white) regions. The
increase or decrease (schematically indicated by the upward
and downward vertical blue arrows) of the Fermi level EF
(marked by the horizontal dashed blue line) results in a periodic
change in both the density of states at E = EF , and also in the
conductance.

an increase of the electron density of states localized
near the graphene edges were recently reported [25]. In
contrast to these examples, the electron states studied
here are localized within the barrier and also these are
tunable, i.e., the energy levels can be shifted by charging
the barrier strength (e.g., via tuning a gate voltage).
Interestingly, similar localized states can be engineered
in the strained graphene [26]. In general, depending
on the particular realization, there exist five types of
possible states [27]: i) scattering states; ii) band states
(states localized in the junction along the x-direction)
propagating along the y-direction, which we discussed
above; iii) localized states at the boundary of the junction;
iv) filtered states, that is, scattering states decaying
exponentially inside the junction for certain values of
the incoming angle and v) completely filtered states such
that the transmission occurs via evanescent waves for any
orientation of the incoming momentum. Clearly, such rich
picture provides many interesting possibilities for the gate
or strain-controlled transport in graphene.

Density of localized states. – To calculate the
density of electron states ρ(ε), we use the general formula
ρ(ε) =

∑
α δ(ε− εα), where the index α labels the quan-

tum state and δ(x) is Dirac’s delta-function. Using

∑
α

(. . .) = 4LxLy(2π)
−2
∫
dkxdky(. . .) (9)

V

V

Fig. 3: Dimensionless oscillating parts of the density of states
ρloc/ρ0 at the Fermi level (upper panel) and conductance
gloc/gcont (lower panel) vs. the strength V of the potential
barrier for D/Lx = 0.1, EF = 1 (main panels) and EF = 5
(insets). The total conductance is g= gcont+ gloc.

for a continuum spectrum one finds the already familiar
expression

ρcont(E) = ρ0|E|, ρ0 =
2LxLy
πvFD

, (10)

where Lx and Ly are the lengths of the graphene sheet in
the x- and y-directions, respectively. For localized energy
states, we obtain

ρloc(E) = 2ρ0 D
Lx

∑
n

∣∣∣∣dEn(Q)dQ

∣∣∣∣
−1

En(Q)=E
, (11)

where n runs over the positive roots of the equation
E(Q) = E . The function ρloc(E) exhibits two types of
peculiarities. First, increasing E , the jumps or steps (each
of magnitude 2D/Lx) in ρloc(E)/ρ0 occur at the points,
given by eq. (8), where new branches of the spectrum
arise or disappear. More importantly, singularities are
observed when E = Emaxn , where |dE/dQ|−1 in eq. (11)
diverges.
The locations of the singularities shift when changing

the barrier strength V. Therefore, they periodically
cross the Fermi level EF . This produces quantum oscilla-
tions in the density of states at the Fermi energy, which
are seen in the upper panel of fig. 3, showing ρloc(E)/ρ0
vs. the effective barrier strength V .
Kubo formula and conductance. – When studying

transport, within linear response theory, one usually starts
from the current-response function,

Kµν(x,x
′) =−iϑ(t− t′)Tr

{
�̂
[
ĵHµ (x), ĵ

H
ν (x

′)
]}
, (12)
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where x= (r, t), ϑ(t) is the Heaviside step-function,
�̂ is the equilibrium density matrix, and ĵHµ (r, t) =

exp (iĤt)ĵµ(r) exp (−iĤt) is the current operator in
the Heisenberg representation with the Hamiltonian
taken from eq. (2), and where [. . . , . . .] stands for the
commutator. For electrons with a linear Dirac spectrum,
one finds ĵµ(r) = evF ψ̂

†(r)σ̂µψ̂(r). Equation (12) is used
to define the frequency-dependent linear conductance as

gµν(ω) =� i

ωLµLν

∫
drdr′Kµν(r, r′;ω). (13)

Here � stands for the real part of a complex number.
We expand the fermionic field operator ψ̂(r, t) in
terms of exact eigenfunctions (eq. (3)), namely,

ψ̂(r, t) =
∑
α ψα(r) exp (−iεαt)âα, and then perform

quantum averaging in eq. (12) with the help of Wick’s
theorem and the relation Tr

{
�̂ â†αâβ

}
= δαβf(εα), where

f(ε) = 1/[exp[(ε− εF )/T ] + 1] is the Fermi occupation
function. Performing a Fourier transform and using
�[i/(ε− ε′+ω+ i0)] = πδ(ε− ε′+ω) eq. (13), reduces to

gµν(ω) =
π(evF )

2

LµLν

∫ +∞
−∞

dε
f(ε+)− f(ε−)

ω

×Tr
{
σ̂µδ(ε+− Ĥ)rr′ σ̂νδ(ε−− Ĥ)r′r

}
, (14)

where ε± = ε±ω/2 and the trace incorporates spatial
integrations. The operator delta-functions can be
directly related to the single-particle Green’s functions
Ĝε(r, r

′) = 〈r|(ε− Ĥ)−1|r′〉 according to δ(ε− Ĥ)rr′ =
1
2πi

[
Ĝaε(r, r

′)− Ĝrε(r, r′)
]
, where the superscript a/r

stands for the advanced/retarded component, respec-
tively. As a result, one finds for the conductance

gµν(ω) =
(evF )

2

4πLµLν

∫ +∞
−∞

dε
f(ε+)− f(ε−)

ω
(15)

×Tr
{̂
σµ
[
Ĝaε+(r, r

′)−Ĝrε+(r, r′)
]
σ̂ν
[
Ĝrε−(r

′, r)−Ĝaε−(r′, r)
]}
.

Next we incorporate disorder by introducing the one-
particle scattering time τ , for Dirac fermions, into the
Green’s function,

〈Ĝr/aε 〉dis ≈ (ε− Ĥ ± i/τ)−1, (16)

which enters through the imaginary-part of the corre-
sponding self-energy. The subindex “dis” refers to disor-
der. Furthermore, we factorize the average of the product
of two Green’s functions by the product of their averages,
〈Ĝrε+Ĝaε−〉dis ≈ 〈Ĝrε+〉dis〈Ĝaε−〉dis. This assumption should
be valid for weak disorder and together with eq. (16) is
equivalent to the self-consistent Born approximation.
We now focus on the along-the-barrier (µ= ν = y)

conductance for the geometry shown in fig. 1. At zero
temperature, T → 0, when f(ε) = ϑ(εF − ε) and the ε
integration is bounded by the frequency ω, for the average
dc-conductance g≡ 〈gyy(ω→ 0)〉dis we find (per spin and
per valley):

g= gcont+ gloc. (17)

The first contribution gcont here comes from the
extended electron energy states with corresponding
density of states taken from eq. (10), and reads explicitly
(now keeping �) as

gcont =
πe2

16�

Lx

Ly

[
εF τ +

1

π

(
1− εF τ arctan 1

εF τ

)]
. (18)

At the neutrality point, εF = 0, from eq. (18) one recovers
a universal (i.e., scattering time τ -independent) result
gcont = σmin(Lx/Ly), where σmin = (π/8)(e

2/h) is the
minimal conductivity, which received considerable atten-
tion in a number of recent studies (e.g., refs. [21,28]).
Away from the neutrality point, the conductance growths
linearly with the Fermi energy,

gcont = (πe
2/16�)(Lx/Ly)εF τ. (19)

The novel result of the present study is the oscillatory
part gloc, which originates from the electron states local-
ized within the barrier. It can be expressed, with the help
of eq. (11), as follows:

gloc =
2e2

�

D

Ly

∑
n

∫ ∞
0

dE
∣∣∣∣ dQdEn

∣∣∣∣
En=E

M(E)η2[
(E −EF )2+ η2

]2 ,
(20)

whereM(E) = ∣∣∫ dxψ∗α(x)σ̂yψα(x)∣∣2 is the matrix element
constructed from the wave functions of localized states,
eqs. (4), (5), and η=D/vF τ . The remaining integration
in eq. (20) is simplified realizing that everywhere away
from the integrable square-root singularities of |dQ/dEn|,
the η-dependent function is peaked at the Fermi energy,
whereas M(E) is smooth. Thus, one finally finds,

gloc(V, EF )
gcont

=
16

EF
D

Lx
M(EF )

∑
n

∣∣∣∣ dQdEn
∣∣∣∣
En=EF

, (21)

where the conductance gloc is normalized to its continuous
part taken away from the neutrality point, namely, where
gcont ∝ τεF , see eq. (19). Note that EF = εF DvF . The
derivative entering equation (21) can be calculated with
the help of the dispersion equation (6) as dQ/dE =
−(dF/dE)/(dF/dQ), and reads

dQ

dE =Q
V − 2E +(V −E)√Q2−E2
(V −E)E −Q2−Q2√Q2−E2 . (22)

The oscillatory nature of gloc(V, EF ) is illustrated in the
lower panel of fig. 3. The essential observation, which
follows from eq. (21), is that the longitudinal conductance
traces the peculiarities in the density of localized states
and opens a direct way for their experimental observation.
It is also worth mentioning that close to the singularity of
dQ/dE , meaning |En−EF |� η, the conductance correction
is regularized by the finite width of the η-Lorentzian under
the integral of eq. (20).
Varying the concentration of free particles with constant

barrier strength, one can again observe oscillations in the
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Fig. 4: Dimensionless oscillating parts of the density of states
ρloc/ρ0 at the Fermi level (inset) and conductance gloc/gcont
(main panel) vs. the Fermi energy EF , for D/Lx = 0.1, and
V = 16.

density of states (see the inset of fig. 4). Thus, the part of
the conductance originated from the localized states, also
oscillates with the change of the Fermi energy (see main
panel of fig. 4).

Conclusions. – In summary, we predict a novel type
of conductance oscillations in locally gated single-layer
graphene, which are related to the unusual electron
states localized within a potential barrier. When the
barrier height and/or width is varied, localized levels
periodically cross the Fermi energy, inducing modula-
tions in the density of states. The latter translates into
unusual quantum oscillations of the conductance. These
electric-field–driven quantum oscillations are similar to
the Shubnikov-de Haas oscillations which are produced in
metals and semiconductors when changing the external
magnetic field.
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