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Imagine that you have several sets of two coupled qubits, but you do not know the parameters of their
Hamitonians. How to determine these without resorting to the usual spectroscopy approach to the prob-
lem? Based on numerical modeling, we show that all the parameters of a system of two coupled qubits
can be determined by applying to it an external classical noise and analyzing the Fourier spectrum of the
elements of the system’s density matrix. In particular, the interlevel spacings as well as the strength and
sign of the qubit–qubit coupling can be determined this way.
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1. Introduction

Despite steady successes in fabrication and measurement tech-
niques, the experimental characterization of multiqubit systems
[1,2] remains a challenge due to their complicated level structure.
Our goal here is to determine the system’s parameters, as distinct
from the more difficult problem of determining its state, which
has to be tackled using quantum state tomography [3,4]. For exam-
ple, neither the strength nor the sign of the qubit–qubit coupling
are known a priori. One of several standard approaches studies
the resonant response of quantum macroscopic systems to an
external coherent signal (see, e.g., [5–7]), allowing to determine
the qubit parameters by scanning the frequency range of the exter-
nal signal. The difficulty in the straightforward application of this
approach, due to the fact that only few qubits can be actually ac-
cessed, and the relation of this problem to the general field of in-
verse problems, were addressed in [8,9].

An alternative approach to the standard spectroscopic methods
of characterization would use a drive as a broad-band noise. We
call it active noise spectroscopy, as distinct from the ‘‘passive” noise
spectroscopy of Ref. [5], where the response of the noise spectrum
to a coherent monochromatic drive was measured.

Recently, we have shown [10] that classical noise applied to a
qubit produces persistent oscillations of the off-diagonal density
matrix elements (‘‘coherences”) despite finite dephasing and relax-
ation times. In other words, a moderate amount of external noise
010 Published by Elsevier B.V. All
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enhances quantum coherence, which manifests in oscillations with
a frequency corresponding to quantum transitions between the
ground and first excited states. There exists an optimal noise
amplitude: at lower noise level, oscillations are suppressed, while
as the noise is increased, the oscillations become random and the
corresponding spectroscopic peak is eventually smeared away. In-
deed, for zero noise, the oscillations of the off-diagonal elements of
the density matrix decay on the time scale of s, where 1/s is the
dephasing rate. Moderate phase-insensitive noise excites the sys-
tem from time to time, allowing the qubit to evolve with its own
frequency between the relatively rare noise spikes, thus, uncover-
ing quantum dynamics. Strong noise produces strong spikes very
often, thus leaving no time for the coherent evolution. This phe-
nomenon is related to both classical and quantum stochastic reso-
nances, which manifest in various physical systems (see, e.g., [11–
16]).

In this paper we investigate how these effects of classical noise
can help determine the parameters of a multiqubit system. Specifi-
cally, we consider two coupled qubits and analyze the spectrum of
the density matrix excited by white Gaussian classical noise. We
numerically show that the resulting noise spectra contain four peaks,
which correspond to the interlevel transitions in the system. From
these, the energy spectrum and all the model parameters of the qu-
bits are readily obtained. In addition, the correlations in the matrix
elements corresponding to different qubits can be used to conclude
whether the qubits are coupled ferro- or antiferromagnetically.
2. Model

Two coupled qubits can be described by the Hamiltonian [17]
rights reserved.
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Fig. 1. Schematic diagram of two coupled flux qubits, each one with four Josephson
junctions. These qubits can be coupled [24] via the central coupler loop allowing to
change the magnitude and sign of the coupling constant g.
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H ¼ �1
2

X
j¼1;2

Djrj
z þ �jðtÞrj
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þ gr1
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2
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where rj
z and rj

x are Pauli matrices corresponding to either the first
(j = 1) or the second (j = 2) qubits, and the eigenstates of rj

z are the
basis states in the localized representation of the jth qubit at zero
coupling. Note that the results obtained below do not qualitatively
depend on the type of coupling (e.g., r1

xr2
x versus r1

yr2
y ): in any case

the noise will allow to determine the parameters of the two-qubit
Hamiltonian. For this reason, and for demonstrating the physical
principles of noise-induced spectroscopy, we consider two identical
qubits. The tunneling splitting energies D1,2 (in the case of the
identical qubits we will be investigating here: D1 = D2 = D) are
determined by the design and fabrication details of the device,
while the bias energies �j(t) can be controlled externally and, in
our case, are only driven by the noise,

�jðtÞ ¼ dnjðtÞ ð2Þ

The Gaussian white noise considered here is zero-averaged and del-
ta-correlated:

hdnjðtÞi ¼ 0; hdnjðtÞdnj0 ðtÞi ¼ 2Ddj;j0dðt � t0Þ ð3Þ

where D is the noise intensity, which should be defined for each
particular system (see, e.g., the example of two flux qubits de-
scribed below). The uncorrelated noise sources affecting the qubits
(‘‘local” noise) tend to be more detrimental to their quantum coher-
ence than the correlated ones [18–22], which makes Eq. (3) the
‘‘worst case scenario”.

2.1. Master equation

By writing the qubit density matrix q̂ as

q̂ ¼ 1
4

X
a;b¼0;x;y;z

Pabr1
a � r2

b ð4Þ

we can rewrite the master equation

dq̂
dt
¼ �i bHðtÞ; q̂h i

þ bCq̂

in the form
_P0x ¼ D2P0y � C/2P0x

_P0y ¼ �D2P0x þ �2ðtÞP0z � 2gPxz � C/2P0y

_P0z ¼ ��2ðtÞP0y þ 2gPxy � C2ðP0z � ZT2Þ
_Px0 ¼ D1Py0 � C/1Px0

_Py0 ¼ �D1Px0 þ �1ðtÞPz0 � 2gPzx � C/1Py0

_Pz0 ¼ ��1ðtÞPy0 þ 2gPyx � C1ðPz0 � ZT1Þ
_Pxx ¼ D2Pxy þ D1Pyx � ðC/1 þ C/2ÞPxx

_Pxy ¼ �2gP0z � D2Pxx þ D1Pyy þ �2ðtÞPxz � ðC/1 þ C/2ÞPxy

_Pyx ¼ �2gPz0 � D1Pxx þ D2Pyy þ �1ðtÞPxz � ðC/1 þ C/2ÞPyx

_Pxz ¼ 2gP0y � �2ðtÞPxy þ D1Pyz � ðC/1 þ C2ÞPxz

_Pzx ¼ 2gPy0 � �1ðtÞPyx þ D2Pzy � ðC/2 þ C1ÞPzx

_Pyy ¼ �D1Pxy � D2Pyx þ �2ðtÞPyz þ �1ðtÞPzy � ðC/1 þ C/2ÞPyy

_Pyz ¼ �D1Pxz � �2ðtÞPyy þ �1ðtÞPzz � ðC/1 þ C2ÞPyz

_Pzy ¼ �D2Pzx � �1ðtÞPyy þ �2ðtÞPzz � ðC1 þ C/2ÞPzy

_Pzz ¼ ��1ðtÞPyz � �2ðtÞPzy � ðC1 þ C2ÞðPzz � ZT1ZT2Þ
ð5Þ

Here we used the standard approximation for the dissipation oper-
ator bC via the dephasing and relaxation rates to characterize the
intrinsic noise in the system. Also, hereafter we assume for simplic-
ity that relaxation rates are the same for both identical qubits, i.e.,
C/1 = C/2 = C/ and Cr1 = Cr2 = Cr, and that the temperature is low
enough, resulting in the equilibrium values of the diagonal ele-
ments of the qubit density matrices being ZT2 = ZT1 = 1. All the sim-
plifying assumptions (e.g., D1 = D2,Cr1 = Cr2,C/1 = C/2, etc.) do not
qualitatively affect our results reported below. For instance, if
D1 – D2, the spectrum in Fig. 2 will have more peaks, corresponding
to larger numbers of levels due to the lifting of the artificial
degeneracy.

In the limit of zero coupling (g = 0), there exists a solution of Eq.
(5) with no entanglement between qubits. This solution can be
written as a direct product of two single-qubit density matrices
written through the corresponding Bloch vectors: q̂j ¼ 1

2 1þð
Xjŝx þ Yjŝy þ ZjŝzÞ. The components of what can be called the Bloch
tensor Pab are then all zero except for (Pox,Poy,Poz) = (X1,Y1,Z1)
and (Pxo,Pyo,Pzo) = (X2,Y2,Z2). If the interaction is not zero, the
entanglement between these qubits generates all the components
of the Bloch tensor to be non-zero [22,23] and such an entangled
state persists on the time scale 1/C after the interaction is later
switched off [g(t > t0) = 0].

This reflects the fact that, in the presence of interactions, the
eigenstates of the system are entangled [22,23], and the noise
terms in the eigenbasis will thus maintain the off-diagonal terms
in the density matrix of the two-qubit system.

2.2. Two flux qubits

As a specific example of our approach, which can be experimen-
tally implemented, we propose to measure two (almost) identical
superconducting flux qubits consisting of a superconducting loop
interrupted by four Josephson junctions and coupled via a coupler
loop [24] (see Fig. 1). The state of each qubit is controlled by the ap-
plied magnetic flux UðjÞe ¼ f ðjÞe U0 through the loop, where U0 is the
flux quantum. In the vicinity of f ð1Þe ¼ f ð2Þe ¼ 1=2, the ground state
of the system is a symmetric superposition of the states jLi and
jRi, with a clock- and counterclockwise circulating superconducting
current Ip, respectively. In the basis {jLi, jRi} the two-qubit system
can be described by the Hamiltonian (1) with �j ¼ IpU0df ðjÞe with
classical flux bias fluctuations dfe in the qubit loops around 1/2,
while the tunneling amplitude D is determined by the fabrication
of the loop and the junctions. Note that the components of the den-
sity matrix can be measured directly, e.g., by monitoring the current
fluctuations in the flux qubits: Ij(t) = IpX(t). The direct relation of
this spectrum to the current/voltage noise spectrum in the resonant
tank (LC) circuit coupled to the qubit was used in Ref. [5].
3. Simulation results

Using the dimensionless time �t ¼ tD, we numerically solved the
system (5) by the Ito method for two coupled qubits driven only by
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white classical noise, choosing parameters for damping C//D = Cr/
D = 0.1 close to the ones experimentally found in flux qubits. The
spectra of X1 = Pox and Z1 = Poz, for g = 0.5, are shown in Fig. 2.
Since this two-qubit system is only driven by noise, the spectrum
of both X1 and Z1 is enhanced by increasing the noise, and peaks
become more distinguished if noise is not too high. These spectra
exhibit four maxima, whose positions nicely agree with the fre-
quencies of the interlevel transitions (in units of D):

2pm1 ¼ x1 ¼ 2g; 2pm2;3 ¼ x2;3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
� g;

2pm4 ¼ x4 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
ð6Þ

which have values m1 � 0.16, m2 � 0.1, m3 � 0.26, and m4 � 0.36. Two
peaks out of these four frequencies are clearly seen on the SX spectra
in Fig. 2, while the other two peaks are better seen on the SZ spectra.
Either of these two spectra is sufficient to measure both the coupling
constant g and the tunneling splitting energy D, while the remaining
spectrum can be used for control. Note here that, unlike the single-
qubit case [10], there are peaks on both SX and SZ even for small val-
ues of the coupling strength g, which illustrates our earlier remark
Fig. 2. Spectral density SX(x) (top panel) and SZ(x) for two values of the noise (D/
D = 0.04 and D/D = 0.013) and normalized coupling g/D = 0.5. Four peaks, two per
panel, can be easily distinguished, and these correspond to the four interlevel
frequencies m1, m2, m3, and m4. The insets show their corresponding time sequences
X(t) and Z(t).
on the entangled nature of the eigenstates revealed by classical
noise.

To determine whether the coupling is ‘‘ferro-” or ‘‘antiferromag-
netic”, that is, the sign of the coupling constant g, we study the
time correlations in the density matrix elements Pox(t) = X1(t)
and Pxo(t) = X2(t), for g = ±0.7 and g = 0. Numerically solving Eq.
(5) we obtained the time sequences Xj(ti) shown in Fig. 3, where
ti is the discretized time of the simulation. Correlations and anti-
correlations are clearly seen for ferromagnetic and antiferromag-
netic coupled qubits, while almost no correlations are seen for
the decoupled ones. A qualitative physical picture of these correla-
tions in the time domain is readily understood. For instance, for
ferromagnetic coupling, the Bloch vectors of the two qubits tend
to align for weak enough noise. A stronger noise excites par-
tially-coherent oscillations in the intervals between two sequential
noise spikes, but the qubit–qubit oscillations still tend to preserve
the ferromagnetic ordering (which results in the correlations seen
in Fig. 3) even for the dynamically evolving qubits. Similarly, the
Fig. 3. Time sequences for X1(t) = Pox(t) (continuous red curve) and X2(t) = Pxo(t)
(dot-dashed black curve) for values of the coupling constant g = ±0.7 (top two
panels) and 0 (third panel). The anti-correlations (top panel, g > 0) and correlations
(second panel, g < 0) are clearly seen for non-zero coupling (jgj = 0.7), while there
are no correlations for g = 0. The bottom panel shows the dependence of the
correlation coefficient r on the coupling constant g, when D/D = 0.013. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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antiferromagnetic coupling tends to produce anti-correlations in
the qubit dynamics, as seen in Fig. 3.

To quantitatively describe these correlations we plot the sample
Pearson correlation coefficient

r ¼ n
P

iPoxðtiÞPxoðtiÞ �
P

iPoxðtiÞ
P

iPxoðtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

iP
2
xoðtiÞ �

P
iPxoðtiÞ

� �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

iP
2
oxðtiÞ �

P
iPoxðtiÞ

� �2
q ð7Þ

as a function of the coupling constant g (bottom panel of Fig. 3).
Here n is the total number of simulation time steps. The module
of the correlation coefficient r exhibits a maximum at jgj � 0.7. At
larger jgj the oscillations become weaker, since the uncorrelated
external noises in two qubits suppress each other via their coupling,
so that the noise-induced oscillations weaken. The sign of r coin-
cides with the sign of the coupling g, which allows to easily distin-
guish between ferro- and antiferromagnetic couplings.

4. Conclusions

We have demonstrated that quantum correlations in a two-qu-
bit system can be highlighted by the presence of classical noise. As
an application of this effect, we suggest the use of noise spectros-
copy. Namely, the measurement of the fluctuation spectra of the
system, as a means to determine the relevant parameters of the
multiqubit system.
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