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1. Introduction

Every quantum system encountered in the real world is an open
quantum system [1]. For although much care is taken experimen-
tally to eliminate the unwanted influence of external interactions,
there remains, if ever so slight, a coupling between the system of
interest and the external world. In addition, any measurement per-
formed on the system necessarily involves coupling to the measur-
ing device, therefore introducing an additional source of external
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influence. Consequently, developing the necessary tools, both the-
oretical and numerical, to account for the interactions between a
system and its environment is an essential step in understanding
the dynamics of quantum systems.

By definition, an open quantum system is coupled to an en-
vironment, also called a reservoir or bath, where the complexity
of the environmental dynamics renders the combined evolution of
system plus reservoir intractable. However, for a system weakly
coupled to its surroundings, there is a clear distinction between
the system and its environment, allowing for the dynamics of
the environment to be traced over, resulting in a reduced density
matrix describing the system alone. The most general dynamical
equation governing this reduced system density matrix is given by
the Lindblad master equation [2] describing the evolution of an
ensemble average of a large (formally infinite) number of identical
system realizations. Although the density operator formalism suf-
ficed for the first half-century of quantum mechanics, the advent
of single-ion traps in the 1980’s [3] motivated the study of the
quantum trajectories, or Monte Carlo, description for the evolution
of a single realization of a dissipative quantum system [4].

In general, for all but the most basic of Hamiltonians, an ana-
lytical description of the system dynamics is not possible, and one
must resort to numerical simulations of the equations of motion.
In absence of a quantum computer [5], these simulations must be
carried out using classical computing techniques, where the expo-
nentially increasing dimensionality of the underlying Hilbert space
severely limits the size of system that can be efficiently simu-
lated [6,7]. However, in many fields such as quantum optics [8,9],
trapped ions [3,10], superconducting circuit devices [11–13], and
most recently nanomechanical systems [14–17], it is possible to
design systems using a small number of effective oscillator and
spin components, excited by a small number of quanta, that are
amenable to classical simulation in a truncated Hilbert space.

Of the freely available quantum evolution software packages
[18–20], the Quantum Optics Toolbox (qotoolbox) [19] has by far
been the most successful. Although originally geared toward quan-
tum optics, the qotoolbox has gained popularity in a variety of
disciplines, driven in part by its rapid modeling capabilities and
easy to read code syntax. Yet, at the same time, the qotoolbox has
not been updated in nearly a decade, leaving researchers to rely on
an outdated numerical platform. Moreover, while the code under-
lying the qotoolbox is open-sourced, it does rely on the proprietary
Matlab [21] computing environment making it an impractical solu-
tion for many research groups, as well as for use as an educational
tool inside the classroom.

In this paper, we describe a fully open-source implementation
of a framework designed for simulating open quantum dynamics
written in the Python programming language [22] called the Quan-
tum Toolbox in Python or QuTiP [23]. This framework distinguishes
itself from the other available software solutions by providing the
following advantages:

• Based entirely on open-source software.
• Easy to read, rapid code development using the Python pro-

gramming language.
• Support for arbitrary, time-dependent Hamiltonians.
• Makes use of the multiple processing cores found in modern

computers.
• Community based infrastructure, allowing for user contribu-

tions to the code base.

Although Python is an interpreted programming language, it
is well suited for scientific computations as a result of its large
collection of high-performance low-level numerical libraries [24],
mathematical functions [25], and data visualization capabilities
[26], that largely are implemented in efficient compiled code. In

particular, QuTiP relies heavily on the sparse matrix and dense
array functionality provided by the SciPy [25] and NumPy [24]
packages, respectively. Since the bulk of a typical calculation is
spent in these libraries, a QuTiP simulation can achieve nearly the
same performance as compiled code. The advantage of using the
Python programming language over a compiled programming lan-
guage is a greatly simplified development process, and more trans-
parent, less bug-prone code. For data visualization QuTiP uses the
matplotlib package [26], which is capable of producing publication-
quality 2D and 3D figures in a wide range of styles and formats.

Given the success of the qotoolbox, the development of QuTiP
has in part been directed toward providing a replacement for this
excellent, yet aging software. In the spirit of open-source devel-
opment, we have striven to use the best parts of the qotoolbox
in QuTiP, while improving, replacing, or complementing the parts
that were in need of modernization. The result is a framework for
simulating quantum system dynamics that is in many ways more
efficient and better suited for modern computers, as well as better
positioned for further development and adoption to new computer
architecture advances. Given the size of the QuTiP framework, we
do not hope to cover all of its functionality here. Instead, we will
focus on the key data structures, and numerical routines under-
lying the majority of calculations. In addition, we will highlight a
variety of example calculations that we hope will give the reader
a flavor of the capabilities of QuTiP, and highlight what is possible
using this framework. A complete overview of QuTiP is given on
its website [23].

This paper is organized as follows. In Section 2 we introduce
the main QuTiP class, representing a quantum operator or state
vector, and its associated data structures and methods. In Section 3
we give a brief overview of the density matrix formalism before
discussing the master equation and Monte Carlo methods used in
QuTiP. Section 4 presents a selection of examples meant to illus-
trate how calculations are performed using the QuTiP framework.
Section 5 compares the performance of the QuTiP master equation
and Monte Carlo solvers to those in the qotoolbox. Finally, Sec-
tion 6 briefly concludes, while a list of user-accessible functions
built into QuTiP, as well as example codes, are relegated to Appen-
dices A and B.

2. The QuTiP framework

QuTiP provides an object-oriented framework for represent-
ing generic quantum systems, and for performing calculations and
simulations on such systems. In order to simulate a quantum sys-
tem, one must first construct an object that encapsulates the prop-
erties of an arbitrary state vector or operator. A unified represen-
tation of quantum operators and state vectors is implemented in
QuTiP by means of the quantum object class (Qobj), that uses a
sparse matrix representation of a quantum object in a finite di-
mensional Hilbert space. The Qobj class internally maintains a
record of the principal attributes of the quantum object it rep-
resents. These include, the objects type (i.e. ket, bra, operator, or
super-operator), whether the underlying object is Hermitian, the
dimensionality of a composite object formed via the tensor prod-
uct, and the size of the sparse data matrix. A schematic illustration
of the key components underlying the Qobj class is shown in
Fig. 1.

In addition to serving as a book-keeper for the properties of
a quantum object, the Qobj class is also a computational object,
implementing the usual binary arithmetic operations, and a variety
of class methods for performing common object manipulations as
presented in Table 1. Therefore, with just a few lines of QuTiP code,
it is straightforward to construct Hamiltonians from arbitrary com-
binations of operators, and to construct density matrices and state
vectors that represent complicated superpositions of basis states.
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Fig. 1. (Color online.) A quantum object, operator or state vector, is represented by a
quantum object class (Qobj) instance. The Qobj class may be thought of as a con-
tainer, holding the data structures required to fully characterize a generic quantum
object, as well as a list of instructions on how to manipulate these items. The pri-
mary data structures are the data, in sparse matrix form, that represents a quantum
object in a given Hilbert space, the type of the object (ket, bra, operator, super-
operator), whether it is Hermitian or not, and the objects dimension and shape.
Here, the dimension describes the structure of the Hilbert space, i.e., whether it is
a composite system and how it is composed. The Qobj class also defines a variety
of methods that implement common functions operating on quantum objects. See
Table 1 for a list of the Qobj class methods.

Table 1
List of methods built into the Qobj class.

Method Description

dag() Adjoint of the quantum object
diag() Diagonal elements of object
eigenstates() Eigenstates and eigenvectors
expm() Exponentiated quantum object
full() Dense array representation
norm() L2 norm (states), trace norm (oper)
sqrtm() Matrix square root
tr() Trace of quantum object
unit() Normalizes the quantum object

To further simplify this important step, QuTiP provides a library of
commonly occurring operators and states which are given in Ap-
pendix A.

For example, to create an instance of the Qobj class that rep-
resents the ubiquitous two-level Hamiltonian (h̄ = 1)

H = 1
2
εσz + 1

2
#σx, (1)

with energy splitting ε and transition energy #, one can use the
following QuTiP code:

H = 0.5 * epsilon * sigmaz() + 0.5 * delta * sigmax()

where epsilon and delta represent user-defined constants. The
result is a single Qobj instance H that represents the Hamiltonian
operator, Eq. (1).

Composite quantum systems are nearly as easy to create. Con-
sider the Jaynes–Cummings Hamiltonian

H = ω0a†a + 1
2
εσz + g

(
a†σ+ + aσ−

)
, (2)

with cavity frequency ω0 and coupling strength g , describing a
cavity field coupled to a two-level atom (qubit). A Qobj instance
representing this composite Hamiltonian can be created with the
following code:

a = tensor(destroy(N), qeye(2))
sm = tensor(qeye(N), destroy(2))
sz = tensor(qeye(N), sigmaz())
H = omega0 * a.dag() * a + 0.5 * epsilon * sz

+ g * (a.dag() * sm + a * sm.dag())

where the tensor function is used to construct composite opera-
tors for the combined Hilbert space of the cavity (truncated to the
N lowest Fock states) and the atom.

Since the Qobj class provides a unified representation for op-
erators and states, we can use exactly the same technique to gen-
erate quantum states (either as state vectors or density matrices).
A possible initial state for the system described by Eq. (2), is gen-
erated with the QuTiP code:

psi0 = tensor(fock(N,0),(fock(2,0)+fock(2,1)).unit())

creating the Qobj representation of a cavity in its ground state,
coupled to a qubit in a balanced superposition of its ground and
excited state |Ψ (0)〉 = (|0〉c |0〉q +|0〉c |1〉q)/

√
2. Here, the subscripts

c and q denote the cavity and qubit states, respectively. The nor-
malization factor (

√
2) is applied automatically using the unit()

method.
In the previous example, we have used built-in QuTiP library

functions to generate Qobj instances of commonly occurring op-
erators and states, and the associated arithmetic operations in the
Qobj class2 to combine these quantum operators into more com-
plicated systems. The close correspondence between the mathe-
matical formulation and the programming code makes it easy and
transparent to define quantum objects. This is especially important
when working with quantum systems of more complex structure.
Note that the Qobj instances in the previous examples are all
self-contained descriptions of the quantum object they represent.
From the Qobj instance alone, a number of properties pertaining
to the quantum object may be calculated, and various operations
be applied (see Table 1). This includes, for example, operations
such as the Hermitian adjoint, normalization, and trace, as well
as computation of the eigenstates and eigenenergies and operator
exponentiation.

In addition, QuTiP includes several important functions op-
erating on multiple states and/or operators (see Table 2 in
Appendix A). We have already seen one such example in the ten-
sor function used to generate tensor product states. These states
may also be decomposed into their constituent parts by perform-
ing a partial trace over selected degrees of freedom using the
function ptrace. For example, from the composite wave func-
tion psi0 for the oscillator–qubit system, the state of the qubit
can be extracted by tracing out the oscillator degrees of freedom
using the QuTiP code:

rho0_qubit = ptrace(psi0, 1)

where the second argument is the index of the system that we
wish to keep. In general, it can be a list of indices. The properties
of the resulting Qobj instance (shown in Fig. 1) may be inspected
by displaying the string representation of the object returned by its
str method. This method is implicitly invoked when the object is
printed to the standard output

print rho0_qubit
Quantum object: dims = [[2], [2]], shape = [2, 2],
type = oper, isHerm = True
Qobj data =
[[ 0.5 0.5]
[ 0.5 0.5]]

which, in this case, shows that the Qobj instance rho0_qubit
is a 2 × 2, Hermitian quantum operator representing a balanced

2 The binary arithmetic operators +, −, and ∗ are defined for two Qobj objects,
and +, −, ∗ as well as / are defined between a Qobj object and a real or complex
number.
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Fig. 2. (Color online.) Expectation value for the number of excitations in the cav-
ity (blue) and qubit (dashed-red) modes of the non-RWA Jaynes–Cummings model,
Eq. (3), as the coupling strength g is increased into the ultra-strong coupling regime
g/ω0 & 1. The inset figure displays the Wigner function for the cavity mode at the
largest coupling strength, g = 2.5ω0, where ω0 is the bare cavity frequency. At this
coupling value, the state of the system is well approximated by Eq. (4).

coherent superposition of its two basis states. From a Qobj in-
stance one may also calculate items such as the expectation value
(expect) for an arbitrary operator with the QuTiP function, find
the fidelity (fidelity) between two density matrices [27], or
calculate the Wigner function (wigner) of a quantum state. Us-
ing these, and other functions (Table 2), in the exploration of open
quantum dynamics will be the focus of Section 4.

Even though the emphasis of QuTiP is on dynamical modeling,
it is possible to obtain nontrivial results directly from a quantum
object. As an example, let us consider the Jaynes–Cummings model
in the ultra-strong coupling regime g > ω0,ε where the rotating
wave approximation (RWA) is no longer valid

H = ω0a†a + 1
2
εσz + g

(
a† + a

)
(σ+ + σ−). (3)

Recently, this regime has become of interest [28–30] due to the
experimental realization of the required large coupling strengths in
superconducting circuit devices [31]. When the coupling strength
g is a significant fraction of the cavity and qubit frequencies, the
ground state of the cavity mode, after tracing out the qubit, is no
longer the vacuum state. Instead, the anti-resonant terms propor-
tional to a†σ+ and aσ− give rise to an anomalous ground state
which, in the large coupling limit g/ω0 & 1, may be approximated
as [32,29]

|ψg〉 ' 1√
2

[
|α〉c|+〉q − |−α〉c|−〉q

]
, (4)

where the cavity mode is in a Schrödinger cat-state with |α| ' g .
This ground state can be evaluated by finding the eigenstates and
eigenvalues of the Hamiltonian, and can therefore be extracted di-
rectly from the Qobj representation of Eq. (3). In Fig. 2 we plot
the cavity and qubit occupation numbers for the groundstate of
Eq. (3) as a function of the coupling strength. Here, the cavity is
on resonance with the qubit transition frequency, ω0 = ε = 2π .
In addition, Fig. 2 shows the Wigner function for the cavity mode
at the largest coupling strength g = 2.5ω0, which is well approx-
imated by Eq. (4). The 20 lines of QuTiP code used in calculating
Fig. 2 are given in Appendix B.1.

3. Evolution of open quantum systems

The main focus of QuTiP is the time evolution of open quan-
tum systems. Before we describe how this problem is approached
in QuTiP, we give a brief review of the theory of quantum evo-
lution, and the available methods for numerically integrating the
equations of motion.

The dynamics of a closed (pure) quantum system is governed
by the Schrödinger equation

ih̄
∂

∂t
Ψ = ĤΨ, (5)

where Ψ is the wave function, Ĥ is the Hamiltonian, and h̄ is
Planck’s constant. In general, the Schrödinger equation is a partial
differential equation (PDE) where both Ψ and Ĥ are functions of
space and time. For computational purposes it is useful to expand
the PDE in a set of basis functions that span the Hilbert space of
the Hamiltonian, and to write the equation in matrix and vector
form

ih̄
d
dt

|ψ〉 = H|ψ〉, (6)

where |ψ〉 is the state vector and H is the matrix representation of
the Hamiltonian. This matrix equation can, in principle, be solved
by diagonalizing the Hamiltonian matrix H . In practice, however,
it is difficult to perform this diagonalization unless the size of
the Hilbert space (dimension of the matrix H) is small. Analyti-
cally, it is a formidable task to calculate the dynamics for systems
with more than two states. If, in addition, we consider dissipation
due to the inevitable interaction with a surrounding environment,
the computational complexity grows even larger, and we have to
resort to numerical calculations in all realistic situations. This illus-
trates the importance of numerical calculations in describing the
dynamics of open quantum systems, and the need for efficient and
accessible tools for this task.

While the evolution of the state vector in a closed quantum
system is deterministic, open quantum systems are stochastic in
nature. The effect of an environment on the system of interest
is to induce stochastic transitions between energy levels, and to
introduce uncertainty in the phase difference between states of
the system. The state of an open quantum system is therefore
described in terms of ensemble averaged states using the den-
sity matrix formalism. A density matrix ρ describes a probability
distribution of quantum states |ψn〉, in a matrix representation
ρ = ∑

n pn|ψn〉〈ψn|, where pn is the classical probability that the
system is in the quantum state |ψn〉. The time evolution of a den-
sity matrix ρ is the topic of the remaining portions of this section.

3.1. Master equation

The standard approach for deriving the equations of motion for
a system interacting with its environment is to expand the scope
of the system to include the environment. The combined quan-
tum system is then closed, and its evolution is governed by the
von Neumann equation

ρ̇tot(t) = − i
h̄

[
Htot,ρtot(t)

]
, (7)

the equivalent of the Schrödinger equation (5) in the density ma-
trix formalism. Here, the total Hamiltonian

Htot = Hsys + Henv + H int (8)

includes the original system Hamiltonian Hsys, the Hamiltonian for
the environment Henv, and a term representing the interaction be-
tween the system and its environment H int. Since we are only
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interested in the dynamics of the system, we can at this point per-
form a partial trace over the environmental degrees of freedom in
Eq. (7), and thereby obtain a master equation for the motion of the
original system density matrix. The most general trace-preserving
and completely positive form of this evolution is the Lindblad mas-
ter equation for the reduced density matrix ρ = Trenv[ρtot]

ρ̇(t) = − i
h̄

[
H(t),ρ(t)

]

+
∑

n

1
2

[
2Cnρ(t)C †

n − ρ(t)C †
nCn − C †

nCnρ(t)
]
, (9)

where the Cn = √
γn An are collapse operators, and An are the op-

erators through which the environment couples to the system in
H int, and γn are the corresponding rates. The derivation of Eq. (9)
may be found in several sources [2,33,34], and will not be repro-
duced here. Instead, we emphasize the approximations that are
required to arrive at the master equation in the form of Eq. (9),
and hence perform a calculation in QuTiP:

Separability: At t = 0 there are no correlations between the sys-
tem and its environment such that the total density matrix can
be written as a tensor product ρ I

tot(0) = ρ I (0) ⊗ ρ I
env(0).

Born approximation: Requires: (1) that the state of the environ-
ment does not significantly change as a result of the inter-
action with the system; (2) the system and the environment
remain separable throughout the evolution. These assumptions
are justified if the interaction is weak, and if the environ-
ment is much larger than the system. In summary, ρtot(t) ≈
ρ(t) ⊗ ρenv.

Markov approximation: The time-scale of decay for the environ-
ment τenv is much shorter than the smallest time-scale of
the system dynamics τsys & τenv. This approximation is often
deemed a “short-memory environment” as it requires that en-
vironmental correlation functions decay on a time-scale fast
compared to those of the system.

Secular approximation: Stipulates that elements in the master
equation corresponding to transition frequencies satisfy |ωab −
ωcd| + 1/τsys, i.e., all fast rotating terms in the interaction pic-
ture can be neglected. It also ignores terms that lead to a
small renormalization of the system energy levels. This ap-
proximation is not strictly necessary for all master equation
formalisms (e.g., the Block–Redfield master equation), but it is
required for arriving at the Lindblad form (9) which is used in
QuTiP.

For systems with environments satisfying the conditions out-
lined above, the Lindblad master equation (9) governs the time
evolution of the system density matrix, giving an ensemble average
of the system dynamics. In order to ensure that these approxima-
tions are not violated, it is important that the decay rates γn be
smaller than the minimum energy splitting in the system Hamil-
tonian. Situations that demand special attention therefore include,
for example, systems strongly coupled to their environment, and
systems with degenerate or nearly degenerate energy levels.

In QuTiP there are two solvers that calculate the time evolu-
tion according to Eq. (9): odesolve numerically integrates the set
of coupled ordinary differential equations (ODEs), and essolve
which employs full diagonalization. The odesolve and essolve
solvers both take the same set of input parameters (as exempli-
fied in Section 4) and can easily be substituted for each other in a
QuTiP program. For a quantum system with N states, the number
of elements in the density matrix is N2, and solving the master
equation by numerical integration or diagonalization involves of
use of super-operators of size N2 × N2. In the sparse matrix for-
mat, not all of the N4 elements need to be stored in the memory.

Fig. 3. (Color online.) The time required to evolve the Heisenberg spin-chain,
Eq. (10), as a function of the system size 2M where M is the number of spins, using
the master equation ODE solver odesolve (blue), diagonalization via essolve
(green), and the Monte Carlo solver mcsolve with 250 (red) and 500 (cyan) tra-
jectories, respectively. The dashed lines give the estimated calculation times extrap-
olated from the data when the simulation could no longer fit in the computers
memory (odesolve), or the calculation became intractable (essolve). Here, the spin
parameters are assumed to be identical with h = 2π and J x = J y = J z = 0.1 × 2π .
Likewise, each spin has a dephasing rate given by γ = 0.01. The initial state is given
by |ψ(0)〉 = |1〉1|0〉2 · · · |0〉M . Calculations were performed on a 2.8 GHz quad-core
computer with 24 GB of memory.

However, the time required to evolve a quantum system according
to the master equation still increases rapidly as a function of the
system size. Consequently, the master equation solvers are practi-
cal only for relatively small systems: N . 1000, depending on the
details of the problem. In Fig. 3 we show the scaling of the elapsed
time for a typical simulation, here chosen to be the Heisenberg
spin-chain

H = −1
2

M∑

n

hnσ n
z − 1

2

M−1∑

n

[
Jn

xσ
n
x σ n+1

x

+ Jn
yσ

n
y σ n+1

y + Jn
z σ

n
z σ n+1

z
]
, (10)

as a function of the size of the Hilbert space, for the two master
equation solvers, as well as for two realizations of the Monte Carlo
solver mcsolve described the following section. In general, the
exact time required to evolve a system depends on the details of
the problem, but the scaling with system size is rather generic. The
Monte Carlo solver has superior scaling properties compared to the
master equation solvers, but due to the overhead from stochastic
averaging, it is only for systems with a Hilbert space dimension
around ∼ 1000 that the Monte Carlo solvers outperform the mas-
ter equation.

3.2. Monte Carlo trajectories

Where as the density matrix formalism describes the ensemble
average over many identical realizations of a quantum system, the
Monte Carlo (MC), or quantum-jump approach [4] to wave func-
tion evolution, allows for simulating an individual realization of
the system dynamics. Here, the environment is continuously mon-
itored, resulting in a series of quantum jumps in the system wave
function, conditioned on the increase in information gained about
the state of the system via the environmental measurements [8].
In general, this evolution is governed by the Schrödinger equation
(5) with a non-Hermitian effective Hamiltonian
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Heff = Hsys − ih̄
2

∑

i

C †
nCn, (11)

where again, the Cn are collapse operators, each corresponding to
a separate irreversible process with rate γn . Here, the strictly neg-
ative non-Hermitian portion of Eq. (11) gives rise to a reduction
in the norm of the wave function, that to first-order in a small
time δt , is given by 〈ψ(t + δt)|ψ(t + δt)〉 = 1 − δp where

δp = δt
∑

n

〈
ψ(t)

∣∣C †
nCn

∣∣ψ(t)
〉
, (12)

and δt is such that δp + 1. With a probability of remaining in the
state |ψ(t + δt)〉 given by 1− δp, the corresponding quantum-jump
probability is thus Eq. (12). If the environmental measurements
register a quantum jump, say via the emission of a photon into
the environment [35], or a change in the spin of a quantum dot
[36], the wave function undergoes a jump into a state defined by
projecting |ψ(t)〉 using the collapse operator Cn corresponding to
the measurement
∣∣ψ(t + δt)

〉
= Cn

∣∣ψ(t)
〉
/
〈
ψ(t)

∣∣C †
nCn

∣∣ψ(t)
〉1/2

. (13)

If more than a single collapse operator is present in Eq. (11), the
probability of collapse due to the ith operator Ci is given by

Pi(t) =
〈
ψ(t)

∣∣C †
i Ci

∣∣ψ(t)
〉
/δp. (14)

Evaluating the MC evolution to first-order in time is quite te-
dious. Instead, QuTiP uses the following algorithm to simulate a
single realization of a quantum system [37–39]. Starting from a
pure state |ψ(0)〉:

I: Choose a random number r between zero and one, represent-
ing the probability that a quantum jump occurs.

II: Integrate the Schrödinger equation (5), using the effective
Hamiltonian (11) until a time τ such that the norm of the
wave function satisfies 〈ψ(τ )|ψ(τ )〉 = r, at which point a jump
occurs.

III: The resultant jump projects the system at time τ into one of
the renormalized states given by Eq. (13). The corresponding
collapse operator Cn is chosen such that n is the smallest in-
teger satisfying

n∑

i=1

Pn(τ ) > r (15)

where the individual Pn are given by Eq. (14). Note that the
left-hand side of Eq. (15) is, by definition, normalized to unity.

IV: Using the renormalized state from step III as the new initial
condition at time τ , draw a new random number, and repeat
the above procedure until the final simulation time is reached.

3.2.1. Example: Single-photon cavity decay
As an illustrative example, let us consider the evolution of a

single-photon cavity Fock state in a non-zero thermal environment
[40]. The evolution of the wave function |ψ(0)〉 = |1〉 is governed
by the effective Hamiltonian (h̄ = 1)

Heff = ωca†a − 1 + 〈n〉th

2
iκa†a − 〈n〉th

2
iκaa†, (16)

with cavity frequency ωc , cavity decay rate κ , and where 〈n〉th is
the steady-state thermal occupation number. While the first term
in Eq. (11) is responsible for the standard unitary evolution of
the cavity mode, the second and third terms give rise to random
quantum jumps to lower and higher cavity photon numbers, re-
spectively. When a jump occurs, the wave function of the system
is projected into a state corresponding to the collapse operator

Fig. 4. (Color online.) (a) Monte Carlo simulation showing the number operator ex-
pectation value for a single trajectory (blue) in the decay of a single-photon Fock
state from a cavity coupled to a thermal environment, as demonstrated experimen-
tally in Ref. [40]. Here, the average photon number for the thermal environment is
n = 0.063 (black), while the decay rate κ = 1/Tc is given by the cavity ring-down
time Tc = 0.129. (b)–(d) Averages of 5, 15, and 904 trajectories showing ensemble
averaging toward the master equation solution (dashed-red).

C1 = √
(1 + 〈n〉th)κa, yielding a decrease in the cavity occupation

number, or C2 = √〈n〉thκa†, which results in an increase. Here, the
relative ratio of jumps corresponding to an increase in the cavity
occupation number to those for decay is determined by the magni-
tude of 〈n〉th. A single realization of this evolution, showing a lone
quantum jump, is presented in Fig. 4(a).

In addition to single quantum systems, when averaged over a
sufficiently large number of identical system realizations, the MC
method leads to the same evolution equation as the Lindblad mas-
ter equation (9) for a pure state density matrix [4,8]. Therefore,
the MC method may be used in any situation where the Lindblad
master equation is valid, as discussed in Section 3.1. However, for
large quantum systems with Hilbert space dimension N & 1, the
MC method is vastly more efficient than simulating the full den-
sity matrix given that only N elements are required to simulate a
wave function, as opposed to the N2 elements necessary in the ME
approach. Although multiple trajectories are required, convergence
to the ME result scales as m−1 [34], where m is the number of
trajectories simulated. In typical situations, between 250 and 500
trajectories are sufficient for errors smaller than a few percent, see
Fig. 5. In Fig. 4 we show the convergence of the MC simulation to
the ME solution for the single-photon cavity example as the num-
ber of trajectories averaged over is increased.

4. Numerical calculations

In this section we illustrate, via a number of examples, how
quantum dynamical calculations are carried out using the QuTiP
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Fig. 5. (Color online.) Scaling of the sum of the absolute deviation per time step, av-
eraged over 10 simulations, for expectation values calculated with the Monte Carlo
solver and compared to the ME solution, as a function of the number of trajec-
tories. The error measure is calculated by integrating the absolute errors over the
entire evolution time, and normalized by the number of time steps. The accept-
able level of error varies from case to case, but in general the error measure should
be much smaller than unity. A 1/m fit to the data (dashed) showing the predicted
convergence rate is also presented.

framework. The typical workflow for performing a simulation with
QuTip is:

I: Define the parameters that characterize the system and envi-
ronment (if applicable).

II: Create Qobj class instances representing the Hamiltonian and
initial state of the system.

III: For dissipative systems, define the collapse operators as Qobj
objects.

IV: Evolve the system with a choice of evolution algorithm and
output (e.g., operator expectation values).

V: Post-process and visualize the data.

Using the quantum object described in Section 2, and the solvers
for the time evolution of quantum systems described in Section 3,
we can explore a diverse set of problems. The examples presented
here are selected because they illustrate different features of QuTiP
with a minimum of complexity.

4.1. Fidelity of a two-qubit gate subject to noise

To introduce how the evolution of a dynamical quantum system
is calculated using QuTiP, let us consider a simple system com-
prised of two qubits that, during a time T = π/4g , are subject to
the coupling Hamiltonian

H = g(σx ⊗ σx + σy ⊗ σy), (17)

where g is the coupling strength. Under ideal conditions this cou-
pling realizes the i-SWAP gate between the two qubit states [41,
42]. This can readily be seen by evolving any initial state for
the time T , and comparing the final state with the correspond-
ing i-SWAP transformed initial state. We shall assume that the
qubits are coupled with their surrounding environments, resulting
in qubit energy relaxation and dephasing.

Following the workflow outlined in the previous section, the
QuTiP code for this problem can be organized in the following
manner. First, define the numerical constants in the problem. For
brevity, the code for this step has been omitted. Next, the Qobj

instances for the Hamiltonian and the initial state may be defined
as

H = g * (tensor(sigmax(), sigmax()) +
tensor(sigmay(), sigmay()))

psi0 = tensor(basis(2,1), basis(2,0))

To model qubit relaxation and dephasing, we define a list of col-
lapse operators that later will be passed on to the ODE solver. For
each qubit we append its associated collapse operator to this list
(here called c_ops)

sm1 = tensor(sigmam(), qeye(2))
sz1 = tensor(sigmaz(), qeye(2))
c_ops.append(sqrt(g1 * (1+nth)) * sm1)
c_ops.append(sqrt(g1 * nth) * sm1.dag())
c_ops.append(sqrt(g2) * sz1)

where the parameter nth is the number of environmental thermal
excitations in the steady state. The collapse operators containing
σ− and σ †

− describe the qubit relaxation and excitation with the
rates g1 * (1+nth) and g1 * nth, respectively, and the col-
lapse operator σz models qubit dephasing. These lines of codes
are repeated for the second qubit, with the appropriate change in
the definition of the operators (i.e., the arguments in the tensor
function are switched).

At this point we are ready to let QuTiP calculate the time evo-
lution of the system. In the following example we use the master
equation ODE solver odesolve. In addition to the Hamiltonian,
initial state, and the list of collapse operator, we pass a list tlist
to the solver that contains the times at which we wish to evaluate
the density matrix,

tlist = linspace(0, T, 100)
rho_list = odesolve(H, psi0, tlist, c_ops, [])
rho_final = rho_list[-1]

If the last parameter is empty, as in this example, all QuTiP time-
evolution solvers return the full density matrix (or state vector)
corresponding to the times in tlist. Alternatively, a list of oper-
ators may be passed as last argument to the solver, in which case
it will return the corresponding expectation values.

Given the output of density matrices, we may now calculate
the corresponding expectation values for selected quantum oper-
ators. For example, to calculate the excitation probability of the
two qubits as a function of time, we may use the QuTiP function
expect

n1 = expect(sm1.dag() * sm1, rho_list)
n2 = expect(sm2.dag() * sm2, rho_list)

Here, n1 and n2 are now real NumPy arrays of expectation values,
suitable for plotting or saving to file.

Finally, to quantify the difference between the lossy i-SWAP
gate and its ideal counterpart, we calculate the fidelity

U = (-1j * H * pi / (4*g)).expm()
psi_ideal = U * psi0
rho_ideal = psi_ideal * psi_ideal.dag()
f = fidelity(rho_ideal, rho_final)

The results are shown in Fig. 6, where the expectation values
for the two qubits, as a function of time, are plotted both with
and without dissipation. The full code for this example is listed in
Appendix B.3.
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Fig. 6. (Color online.) The time evolution of a two-qubit system described by the
Hamiltonian, Eq. (17), which at time t/T = 1 and ideal conditions (dashed lines)
transforms the qubit states in accordance with the i-SWAP gate. With qubit relax-
ation and dephasing (solid lines), the end-result deviates from the ideal i-SWAP
gate. For these particular parameters (g = 2π , Γ1 = 0.75, Γ2 = 0.5), the fidelity of
the dissipative gate is 91%.

4.2. Jaynes–Cummings model

The same method used in the previous section can calculate the
dynamics of the Jaynes–Cummings model, Eq. (2). Only the defini-
tions of the Hamiltonian, initial state, and collapse operators need
to be changed to solve this problem. For the Jaynes–Cummings
model, the Hamiltonian and a possible initial state were given in
Section 2, and we need only to define collapse operators before the
system can be evolved using one of the QuTiP solvers. The cavity
and the atom relaxation rates are κ and Γ , respectively. In this
example, only the cavity is coupled to an environment with Boltz-
mann occupation number nth. We can write the collapse operators
for the cavity

a = tensor(destroy(N), qeye(2))
c_ops.append(sqrt(kappa * (1+n_th)) * a)
c_ops.append(sqrt(kappa * n_th) * a.dag())

and for the atom

sm = tensor(qeye(N), destroy(2))
c_ops.append(sqrt(gamma)* sm)

Instead of having the solver return the state, as in Section 4.1,
we can request that the expectation values for a list of operators
be directly calculated at each time step. In this Jaynes–Cummings
problem we are interested in the excitation number of the cavity
and the atom, and as such can then define a list of expectation
value operators

expt_ops = [a.dag() * a, sm.dag() * sm]

which may be passed as last argument to, for example, the
odesolve solver,

tlist = linspace(0, 10, 100)
expt_list = odesolve(H, psi0, tlist, c_ops, expt_ops)

The solver then returns a NumPy array expt_list of expectation
values. The result of this calculation is shown in Fig. 7, and the
complete code is listed in Appendix B.4.

Fig. 7. (Color online.) Evolution of the Jaynes–Cummings Hamiltonian (2) in a ther-
mal environment characterized by 〈n〉th = 0.75. Initially, only the atom is excited,
but the atom–cavity coupling results in a coherent energy transfer between the two
systems, a phenomenon known as vacuum Rabi oscillations. Here, the atom and the
cavity are resonant, ω0 = ε = 2π , the coupling strength g/ω0 = 0.05, and the atom
and cavity relaxation rates are γ /(ω0/2π) = 0.05 and κ/(ω0/2π) = 0.005, respec-
tively.

4.3. Trilinear Hamiltonian

To demonstrate the QuTiP Monte Carlo (MC) solver, we consider
the trilinear Hamiltonian that, in the interaction frame, may be
written as

H = ih̄K
(
ab†c† − a†bc

)
(18)

consisting of three harmonic oscillator modes conventionally la-
beled pump (a), signal (b) and idler (c) respectively, with the
frequency relation, ωa = ωb + ωc and coupling constant K . This
Hamiltonian is the full quantum generalization of the parametric
amplifier [43] describing several quantum optics processes, includ-
ing frequency conversion [44], the interaction of two-level atoms
with a single mode resonant EM field [45], and the modeling of
Hawking radiation from a quantized black hole [46]. Here we sup-
pose the pump mode is initially in a coherent state, while the
signal and idler modes are in the ground state

∣∣ψ(0)
〉
= |α〉a|0〉b|0〉c. (19)

As a system comprised of three harmonic modes, this model read-
ily lends itself to MC simulation since the Hilbert space dimen-
sionality increases exponentially with the number of initial exci-
tations in the system 〈N(0)〉a = |α|2. For example, to accurately
model an initial pump mode coherent state with |α|2 = 10 requires
∼ 17 states, suggesting a minimum Hilbert space dimensionality of
173 = 4913 for simulating Eq. (18); a value five times larger than
what can typically be efficiently calculated using the odesolve
or eseries solvers (see Fig. 3).

In QuTiP, the Hamiltonian (18) may be expressed as (K = 1)

H=1j*(a*b.dag()*c.dag()-a.dag()*b*c)

with the destruction operators for the pump, signal, and idler
modes, a, b and c respectively, created via the tensor product

a=tensor(destroy(N),qeye(N),qeye(N))
b=tensor(qeye(N),destroy(N),qeye(N))
c=tensor(qeye(N),qeye(N),destroy(N))
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Fig. 8. (Color online.) Occupation numbers for the three modes of the trilinear
Hamiltonian (18), averaged over 1000 trajectories, for an initial state equation (19)
with α =

√
10. In this simulation, the environment is assumed to be at zero tem-

perature. The pump (blue), signal (green), and idler (red) mode damping rates are
γa = 0.2, γb = 0.8, and γc = 0.2, respectively. The closed system evolution (dashed-
colors) is also presented, where the idler mode is omitted as its evolution is identi-
cal to that of the signal.

In addition, we may define number operator expectation values
and collapse operators in the same manner as previous examples

num0,num1,num2=[a0.dag()*a0,a1.dag()*a1,a2.dag()*a2]
C0,C1,C2=[sqrt(2.0*g0)*a0,sqrt(2.0*g1)*a1,sqrt(2.0*g2)*a2]

mcsolve takes the same input arguments as odesolve, save for
an additional argument necessary to specify the number of MC
trajectories to simulate

ntraj=500

In Fig. 8 we plot the expectation values for the three modes of
the trilinear Hamiltonian (18), with corresponding damping rates,
γa = 0.2, γb = 0.8, γc = 0.2, for the initial state given by Eq. (19)
with α =

√
10

psi0=tensor(coherent(N,sqrt(10)),basis(N,0),basis(N,0))
avgs=mcsolve(H,psi0,tlist,ntraj,[C0,C1,C2],[num0,num1,num2])

Had we not defined any collapse operators, the evolution cal-
culated by mcsolve reduces to the Schrödinger equation (5). This
evolution is also presented in Fig. 8. The underlying QuTiP code
may be found in Appendix B.5.

4.4. Landau–Zener transitions

Landau–Zener transitions [47] are an interesting problem that
involves a quantum two-level system with a time-dependent en-
ergy splitting. The Hamiltonian is

H(t) = #

2
σx + vt

2
σz, (20)

where # is the tunneling rate, and v is the rate of change in
the bare qubit energy splitting. The Landau–Zener transition the-
ory analytically describes how the final state at t → ∞ is related
to the initial state at t → −∞. In particular, the probability of an
adiabatic transition from |1〉 to |0〉 is given by the Landau–Zener
formula

Fig. 9. (Color online.) The occupation probability of the |1〉 (red curve) and |0〉 (blue
curve) states of a quantum two-level system throughout a Landau–Zener transi-
tion. The solid black line is the final state according to the Landau–Zener formula,
Eq. (21). The parameters used in this calculation are # = 0.5×2π and v = 2.0×2π .

P = 1 − exp
(

−π#2

2v

)
. (21)

Using QuTiP, we can easily integrate the system dynamics numeri-
cally, and obtain the state of the system for any intermediate value
of t .

The Landau–Zener problem differs from the previous examples
in that the Hamiltonian is explicitly time-dependent. The QuTiP
solvers odesolve and mcsolve both support time-dependent
Hamiltonians. In order to specify an arbitrary time-dependent
Hamiltonian, a callback function may be passed as the first argu-
ment to the time-evolution solvers (in place of the Qobj instance
that normally represents the Hamiltonian). The callback function is
expected to return the value of the Hamiltonian at the given point
in time t, which is the first argument to the callback function,

def hamiltonian_t(t, args):
H0 = args[0]
H1 = args[1]
return H0 + t * H1

In addition, a second argument passed to the callback function is
a user-defined list of parameters. For performance reasons, it is
appropriate to let this list contain pre-calculated Qobj instances
for the constant parts of the Hamiltonian. For the Landau–Zener
problem this corresponds to

H0 = delta/2.0 * sigmax()
H1 = v/2.0 * sigmaz()
H_args = (H0, H1)

The list of arguments for the Hamiltonian callback function is then
passed on to the time-evolution solver (as the very last argument),
along with the callback function itself (as first argument),

expt_list = odesolve(hamiltonian_t, psi0, tlist,
c_ops, expt_ops, H_args)

The result of this calculation is shown in Fig. 9, which shows the
intermediate dynamics of the system in terms of the occupation
probabilities of the |0〉 and |1〉 states. The full code is shown in Ap-
pendix B.6. Adding the operators sigmax, sigmay and sigmaz
to expt_ops, this evolution can also be visualized on the Bloch
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Fig. 10. (Color online.) Bloch sphere representation of the Landau–Zener transition
presented in Fig. 9. Here, the color of the data points corresponds to the evolution
time.

sphere using QuTiP’s built in Bloch class, as demonstrated in
Fig. 10. The QuTiP code for this figure is given in Appendix B.7.

Although simple, this example illustrates the support for time-
dependent Hamiltonians in QuTiP. It is a straightforward exercise
to implement an arbitrary time dependence by changing the def-
inition of the Hamiltonian callback function, or by modifying the
time-independent part of the Hamiltonian to correspond to a more
complicated quantum system.

5. Performance

As with any scientific simulation, the performance of the un-
derlying numerical routines in QuTiP is an important factor to
consider when choosing which software to implement in the anal-
ysis of the problem at hand. In simulating quantum dynamics on a
classical computer, this is especially important given that creating
composite systems using the tensor product leads to an exponen-
tial increase in the total Hilbert space dimensionality. Thus, it is
beneficial to compare the performance of QuTiP to the other cur-
rently available quantum simulation packages. In this section we
compare the simulation times of the master equation and Monte
Carlo solvers in QuTiP, to those of the qotoolbox, as a function of
Hilbert space size.

To compare the QuTiP master equation solver, odesolve, to
the qotoolbox equivalent (also called odesolve), we evaluate the
coupled oscillator equation (h̄ = 1)

H = ωaa†a + ωbb†b + ωab
(
a†b + ab†), (22)

with ωa = ωb = 2π and ωab = 0.1 × 2π . In addition, we consider
the situation in which one resonator is damped with a corre-
sponding dissipation rate g = 0.05. Here, the initial state of the
system is the tensor product of Fock states |ψ(0)〉 = |N〉a|N − 1〉b ,
where N is the number of states in the truncated Hilbert space
for each oscillator. The total time needed to simulate the dynam-
ics over the time range t ∈ [0,10] is shown in Fig. 11. We see that
the QuTiP solver easily outperforms the qotoolbox as the Hilbert
space dimensionality D = N2 increases. For the largest dimension-
ality considered in Fig. 11 D = 200, QuTiP is ∼ 4 times faster
than the qotoolbox single-precision C-code implementation, even
though QuTiP is performing double-precision calculations with a
small Python overhead.

Fig. 11. (Color online.) Comparison of computation times, averaged over three trials,
for solving Eq. (22) in both QuTiP (blue) and the qotoolbox (red) as a function of
Hilbert space dimension. The shaded region highlights the increasing performance
benefit from using the QuTiP solver as the dimensionality increases. Simulations
were performed on a quad-core 2.8 GHz processor.

Fig. 12. (Color online.) Comparison of computation times, averaged over three runs,
between QuTiP and the qotoolbox (dashed) in simulating the trilinear Hamilto-
nian from Eq. (18) for an initial pump mode coherent state with expectation value
〈N〉a = 3√D/4 as a function of the Hilbert space dimensionality D . The average per-
formance enhancement from using multiple processors, as compared to the single-
processor performance, is given in the legend. Ideally, this value should be equal to
the number of processors. Computations were performed on a quad-core 2.8 GHz
processor.

The trilinear Hamiltonian model from Section 4.3 provides a
useful demonstration of the multiprocessing routines used by the
QuTiP mcsolve function. Here, the independent MC trajectories
are run in parallel, with the number of simultaneous trajecto-
ries determined by the number of processing cores. For the large
Hilbert spaces associated with the trilinear Hamiltonian, the in-
creased overhead generated from multiprocessing is overcome by
the gains in running Monte Carlo trajectories in parallel. In Fig. 12,
we highlight these performance gains in simulating Eq. (18) by
plotting the computation time over a range of Hilbert space di-
mensions. For comparison, we also plot the times required for
identical simulations using the qotoolbox, which is limited to a
single processor. For this simulation, the qotoolbox outperforms
our QuTiP implementation for system sizes D . 500, even when
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multiple processors are utilized. This is due to the Python overhead
needed to implement the Monte Carlo algorithm discussed in Sec-
tion 3.2. However, as shown in Fig. 3, using the master equation is
more appropriate for systems of this size. As with the master equa-
tion solver, Fig. 11, the benefits of using the QuTiP Monte Carlo
solver become appreciable as the system size increases. Even for a
single processor, the QuTiP mcsolve routine outperforms the qo-
toolbox after D ≈ 1500, where the Python overhead is no longer a
limiting factor. When using multiple processing cores, the Monte
Carlo solver performance gain nearly equals the number of proces-
sors available, the ideal situation.

6. Conclusion

We have presented a new, open-source framework for the nu-
merical simulation of open quantum systems implemented in the
Python programming language. This framework is suitable for a
wide range of computational problems in quantum systems, in-
cluding unitary and dissipative time evolution, spectral and steady-
state properties, as well as advanced visualization techniques. In
this work we have described the basic structure of the framework,
the Qobj class, and the primary evolution solvers, odesolve and
mcsolve. In addition, we have highlighted a number of exam-
ples intended to give the reader a flavor of the types of problems
for which QuTiP is suitable. For more in-depth documentation, and
more elaborate examples using the functions listed in Table 2, we
refer the reader to the QuTiP website [23]. There, one may down-
load the latest version of this framework, as well as find instal-
lation instructions for the most common computer platforms. The
version of the framework described in this paper is QuTiP 1.1.3.

As with any initial software release, the performance of QuTiP
can likely be improved in the future, with additional portions of
the code being optimized with Cython [48] or implemented in
PyOpenCL [49].
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Appendix A. QuTiP function list

Table 2
List of user-accessible functions in QuTiP. Additional information about each func-
tion may be obtained by calling ‘function_name?’ from the Python command-line, or
by going to the QuTiP website [23].

States
basis / fock Creates single basis (Fock) state in Hilbert

space
coherent Single-mode coherent state with complex

amplitude α
coherent_dm Coherent state density matrix with

complex amplitude α
fock_dm Density matrix representation of a single

basis (Fock) state
qstate Tensor product state for any number of

qubits in either the ground or excited
states

thermal_dm Thermal state density matrix

Operators
qeye Identity operator
create Bosonic creation operator
destroy Bosonic annihilation operator

displace Single-mode displacement operator
squeez Single-mode squeezing operator
num Number operator
sigmax Pauli spin-1/2 σx operator
sigmay Pauli spin-1/2 σy operator
sigmaz Pauli spin-1/2 σz operator
sigmap σ+ operator

Functions on states
entropy_vn von Neumann entropy of a density matrix
expect Calculates the expectation value of an

operator
fidelity Calculates the fidelity between two density

matrices
ket2dm Converts a ket vector to a density matrix
liouvillian Assembles the Liouvillian super-operator

from a Hamiltonian and a list of collapse
operators

orbital Calculates an angular wave function on a
sphere

ptrace Partial trace of composite quantum object
qfunc Husimi-Q function of a given state vector

or density matrix
simdiag Simultaneous diagonalization of

commuting Hermitian operators
tensor Calculates tensor product from list of input

operators or states
tidyup Removes small elements from a quantum

object
tracedist Trace distance between two density

matrices
wigner Wigner function of a given state vector or

density matrix

Evolution
correlation_es Two-time correlation function using

exponential series
correlation_mc Two-time correlation function using Monte

Carlo method
correlation_ode Two-time correlation function using ODE

solver
correlation_ss_es Two-time correlation function using

quantum regression theorem
essolve State or density matrix evolution using

exponential series expansion of ODE
mcsolve Stochastic Monte Carlo wave function

solver
Odeoptions Options class for ODE integrators used by

mcsolve and odesolve
odesolve ODE solver for density matrix evolution
propagator Calculates the propagator U (t) for a density

matrix or wave function
propagator_steadystate Steady state for successive applications of

the propagator U (t)
steadystate Calculates the steady state for the supplied

Hamiltonian

Utilities
about Information on installed version of QuTiP

and its dependencies
Bloch Class for plotting vectors and data points

on the Bloch sphere
clebsch Calculates a Clebsch–Gordon coefficient
demos Runs built-in demos scripts
eseries Exponential series representation of a

time-dependent quantum object
ode2es Exponential series describing the time

evolution of an initial state
parfor Parallel execution of a for-loop over a

single variable
Qobj Class for creating user-defined quantum

objects
sphereplot Plots an array of values on a sphere

Appendix B. QuTiP codes

In this section we display the QuTiP codes underlying the cal-
culations performed in generating Figs. 2, 4, 6, 7, 8, 9, and 10.
For brevity, the code segments associated with plotting have been
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omitted. The codes, in their entirety, may be viewed at the QuTiP
website [23].

B.1. Fig. 2: Non-RWA Jaynes–Cummings model

from qutip import *
## set up the calculation ##
wc = 1.0 * 2 * pi # cavity frequency
wa = 1.0 * 2 * pi # atom frequency
N = 20 # number of cavity states
g = linspace(0, 2.5, 50)*2*pi # coupling strength vector
## create operators ##
a = tensor(destroy(N), qeye(2))
sm = tensor(qeye(N), destroy(2))
nc = a.dag() * a
na = sm.dag() * sm
## initialize output arrays ##
na_expt = zeros(len(g))
nc_expt = zeros(len(g))
## run calculation ##
for k in range(len(g)):

## recalculate the hamiltonian for each value of g ##
H = wc*nc+wa*na+g[k]*(a.dag()+a)*(sm+sm.dag())
## find the groundstate ##
ekets, evals = H.eigenstates()
psi_gnd = ekets[0]
## expectation values ##
na_expt[k] = expect(na, psi_gnd) # qubit occupation
nc_expt[k] = expect(nc, psi_gnd) # cavity occupation

## Calculate Wigner function for coupling g=2.5 ##
rho_cavity = ptrace(psi_gnd,0) # trace out qubit
xvec = linspace(-7.5,7.5,200)
## Wigner function ##
W = wigner(rho_cavity, xvec, xvec)

B.2. Fig. 4: Monte Carlo relaxation in a thermal environment

from qutip import *
N=5 # number of basis states to consider
a=destroy(N) # cavity destruction operator
H=a.dag()*a # harmonic oscillator Hamiltonian
psi0=basis(N,1) # initial Fock state with one photon
kappa=1.0/0.129 # coupling to heat bath
nth= 0.063 # temperature with <n>=0.063
## collapse operators ##
c_ops = []
## decay operator ##
c_ops.append(sqrt(kappa * (1 + nth)) * a)
## excitation operator ##
c_ops.append(sqrt(kappa * nth) * a.dag())
## run simulation ##
ntraj=904 # number of MC trajectories
tlist=linspace(0,0.6,100)
mc = mcsolve(H,psi0,tlist,ntraj,c_ops, [])
me = odesolve(H,psi0,tlist,c_ops, [a.dag()*a])
## expectation values ##
ex1=expect(num(N),mc[0])
ex5=sum([expect(num(N),mc[k]) for k in range(5)],0)/5
ex15=sum([expect(num(N),mc[k]) for k in range(15)],0)/15
ex904=sum([expect(num(N),mc[k]) for k in range(904)],0)/904

B.3. Fig. 6: Dissipative i-SWAP gate

from qutip import *
g = 1.0 * 2 * pi # coupling strength
g1 = 0.75 # relaxation rate
g2 = 0.05 # dephasing rate
n_th = 0.75 # bath temperature
T = pi/(4*g)
H = g * (tensor(sigmax(), sigmax()) +

tensor(sigmay(), sigmay()))
psi0 = tensor(basis(2,1), basis(2,0))
c_ops = []
## qubit 1 collapse operators ##
sm1 = tensor(sigmam(), qeye(2))
sz1 = tensor(sigmaz(), qeye(2))
c_ops.append(sqrt(g1 * (1+n_th)) * sm1)
c_ops.append(sqrt(g1 * n_th) * sm1.dag())

c_ops.append(sqrt(g2) * sz1)
## qubit 2 collapse operators ##
sm2 = tensor(qeye(2), sigmam())
sz2 = tensor(qeye(2), sigmaz())
c_ops.append(sqrt(g1 * (1+n_th)) * sm2)
c_ops.append(sqrt(g1 * n_th) * sm2.dag())
c_ops.append(sqrt(g2) * sz2)
## evolve the system ##
tlist = linspace(0, T, 100)
rho_list = odesolve(H, psi0, tlist, c_ops, [])
rho_final = rho_list[-1]
## calculate expectation values ##
n1 = expect(sm1.dag() * sm1, rho_list)
n2 = expect(sm2.dag() * sm2, rho_list)
## calculate the fidelity ##
U = (-1j * H * pi / (4*g)).expm()
psi_ideal = U * psi0
rho_ideal = psi_ideal * psi_ideal.dag()
f = fidelity(rho_ideal, rho_final)

B.4. Fig. 7: Dissipative Jaynes–Cummings model

from qutip import *
N = 5 # number of cavity states
omega0 = epsilon = 2 * pi # frequencies
g = 0.05 * 2 * pi # coupling strength
kappa = 0.005 # cavity relaxation rate
gamma = 0.05 # atom relaxation rate
n_th = 0.75 # bath temperature
## Hamiltonian and initial state ##
a = tensor(destroy(N), qeye(2))
sm = tensor(qeye(N), destroy(2))
sz = tensor(qeye(N), sigmaz())
H = omega0 * a.dag() * a + 0.5 * epsilon * sz

+ g * (a.dag() * sm + a * sm.dag())
psi0 = tensor(fock(N,0), fock(2,1)) # excited atom
## Collapse operators ##
c_ops = []
c_ops.append(sqrt(kappa * (1+n_th)) * a)
c_ops.append(sqrt(kappa * n_th) * a.dag())
c_ops.append(sqrt(gamma) * sm)
## Operator list for expectation values ##
expt_ops = [a.dag() * a, sm.dag() * sm]
## Evolution of the system ##
tlist = linspace(0, 10, 100)
expt_data = odesolve(H, psi0, tlist, c_ops, expt_ops)

B.5. Fig. 8: Trilinear Hamiltonian

from qutip import *
N=17 # number of states for each mode
## damping rates ##
g0=g2=0.1
g1=0.4
alpha=sqrt(10) # initial coherent state alpha
tlist=linspace(0,4,201) # list of times
ntraj=1000#number of trajectories
## lowering operators ##
a0=tensor(destroy(N),qeye(N),qeye(N))
a1=tensor(qeye(N),destroy(N),qeye(N))
a2=tensor(qeye(N),qeye(N),destroy(N))
## number operators ##
n0,n1,n2=[a0.dag()*a0,a1.dag()*a1,a2.dag()*a2]
## dissipative operators ##
C0,C1,C2=[sqrt(2.0*g0)*a0,sqrt(2.0*g1)*a1,sqrt(2.0*g2)*a2]
## initial state ##
psi0=tensor(coherent(N,alpha),basis(N,0),basis(N,0))
## trilinear Hamiltonian ##
H=1j*(a0*a1.dag()*a2.dag()-a0.dag()*a1*a2)
## run \xch{Monte Carlo}{Monte-Carlo} ##
avgs=mcsolve(H,psi0,tlist,ntraj,[C0,C1,C2],[n0,n1,n2])
## run Schrodinger ##
reals=mcsolve(H,psi0,tlist,1,[],[n0,n1,n2])

B.6. Fig. 9: Landau–Zener transitions

from qutip import *
## callback function for time-dependence ##
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def hamiltonian_t(t, args):
H0 = args[0]
H1 = args[1]
return H0 + t * H1

delta = 0.5 * 2 * pi
v = 2.0 * 2 * pi # sweep rate
## arguments for Hamiltonian ##
H0 = delta/2.0 * sigmax()
H1 = v/2.0 * sigmaz()
H_args = (H0, H1)
psi0 = basis(2,0)
## expectation operators ##
sm = destroy(2)
sx=sigmax();sy=sigmay();sz=sigmaz()
expt_ops = [sm.dag() * sm,sx,sy,sz]
## evolve the system ##
tlist = linspace(-10.0, 10.0, 1500)
expt_list = odesolve(hamiltonian_t, psi0, tlist,

[], expt_ops, H_args)

B.7. Fig. 10: Bloch sphere representation of Landau–Zener transition

Following the code from Appendix B.6:

import matplotlib as mpl
from matplotlib import cm
## create Bloch sphere instance ##
b=Bloch()
## normalize colors to times in tlist ##
nrm=mpl.colors.Normalize(-2,10)
colors=cm.jet(nrm(tlist))
## add data points from expectation values ##
b.add_points([p_ex[1],p_ex[2],-p_ex[3]],’m’)
## customize sphere properties ##
b.point_color=list(colors)
b.point_marker=[’o’]
b.point_size=[8]
b.view=[-9,11]
b.zlpos=[1.1,-1.2]
b.zlabel=[’$\left|0\\right>_{f}$’,’$\left|1\\right>_{f}$’]
## plot sphere ##
b.show()
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