
Computer Physics Communications 184 (2013) 1234–1240
Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

QuTiP 2: A Python framework for the dynamics of open quantum
systems✩

J.R. Johansson a,∗,1, P.D. Nation b,∗,1, Franco Nori a,c
a Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan
b Department of Physics, Korea University, Seoul 136-713, Republic of Korea
c Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA

a r t i c l e i n f o

Article history:
Received 24 October 2012
Received in revised form
28 November 2012
Accepted 29 November 2012
Available online 13 December 2012

Keywords:
Open quantum systems
Lindblad
Bloch–Redfield
Floquet–Markov
Master equation
QuantumMonte Carlo
Python

a b s t r a c t

We present version 2 of QuTiP, the Quantum Toolbox in Python. Compared to the preceding version
[J.R. Johansson, P.D. Nation, F. Nori, Comput. Phys. Commun. 183 (2012) 1760.], we have introduced
numerous new features, enhanced performance, and made changes in the Application Programming
Interface (API) for improved functionality and consistency within the package, as well as increased
compatibility with existing conventions used in other scientific software packages for Python. The most
significant new features include efficient solvers for arbitrary time-dependent Hamiltonians and collapse
operators, support for the Floquet formalism, and new solvers for Bloch–Redfield and Floquet–Markov
master equations. Here we introduce these new features, demonstrate their use, and give a summary of
the important backward-incompatible API changes introduced in this version.
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1. Introduction

The QuantumToolbox in Python (QuTiP) is a generic framework
for numerical simulation and computation of the dynamics of both
open and closed quantum systems. This framework follows an
object-oriented design that makes the programming of a quantum
mechanical problem an intuitive process that closely follows the
corresponding mathematical formulation. Although implemented
in the interpreted programming language Python, the use of the
NumPy and SciPy scientific libraries, and selective optimization
using Cython, allows QuTiP to achieve performance that matches,
or, in many cases, exceeds that of natively compiled alternatives.
At the same time, QuTiP provides a significantly more convenient
and flexible programming environment that is easy to learn, and is
well suited for use in the classroom.

Since the firstmajor-version release of QuTiP [1] (the 1.x series),
active development of the framework has resulted in a significant
number of new features andperformance enhancements, that have
culminated in the second major-version release. Here, we briefly
describe the most significant changes and additional functionality
introduced in this most recent release.

This paper is organized as follows. In Section 2, we highlight
the important API changes introduced in going from QuTiP 1.x to
versions 2.x and higher. Section 3 details the primary new features
included in this latest version. To illustrate the new functionality
in QuTiP, Section 4 contains a selection of examples that highlight
how these functions are used in numerical quantum simulations.
Finally, a list of all new user-accessible functions, including a brief
description, is given in the Appendix.

2. API changes

Here, we list the backward-incompatible changes in the API of
QuTiP 2 as compared to the previous version (1.1.4) described in
Ref. [1]. These changes are important when porting applications
and simulations that are developed for QuTiP 1.1.4 to QuTiP 2.0
and higher. For newly developed simulations, we recommend
following the documentation and examples for QuTiP 2.1 [2],
in which case the following API changes are not relevant. Note
that this article covers version 2.1.0 of the QuTiP framework, and
incorporates several features added since the initial 2.0 release.

1. All quantum dynamics solvers (mcsolve, mesolve, essolve,
brmesolve, and fmmesolve) now return an Odedata
instance, that contains all information about the solution (as
opposed to data lists or Qobjs lists as in QuTiP version 1.1.4).
A typical call to a time-evolution solver using the new API is
sol = solver(H, psi0, tlist, c_ops, e_ops)

where the return object sol has the attribute sol.expect
or sol.states containing the lists of expectation values or
Qobj instances, respectively, that would be returned by the
same solver in QuTiP 1.1.4. With this new API, each solver can
optionally store additional information in the return object such
as, for example, the collapse times calculated in theMonte Carlo
solver.

2. The name of the function for the Lindblad master equation
solver has been changed from odesolve to mesolve. The
odesolve function can still be called; however, it is officially
deprecated, and will be removed in a future release. Being
a QuTiP version 1.x function, odesolve does not return an
Odedata object.

3. The order of the return values of the method Qobj.
eigenstates have been swapped, so that the eigenenergies
and eigenstates of a Qobj instance op are now returned in the
following order:
eigvals, eigkets = op.eigenstates()
4. Functions for calculating correlations using different solvers
have now been consolidated under the functions correla-
tion and correlation_ss, for transient and steady-state
correlations, respectively. Here, the selection of the underlying
dynamics solver now is specified using the optional keyword
argument solver that defaults to the Lindblad master
equation (mesolve) if it is not explicitly specified. For example,
corr_mat = correlation(H, rho0, tlist, taulist,

c_op, A, B, solver="me")

where solver can be "me" or "es".

3. New features

QuTiP 2 includes a wide variety of new computational func-
tions, as well as utility functions for better handling of data. Here,
we give a brief description the new major features in QuTiP 2.1.
For full documentation of these new features, as well as the rest of
the QuTiP package, see the QuTiP 2.1 Documentation [2]. Examples
illustrating the usage of these functions can be found in Section 4.

• Support for time-dependent collapse operators: We have
created a new system for representing time-dependent quan-
tum operators used in defining system Hamiltonians and col-
lapse operators for the Lindbladmaster equation and theMonte
Carlo solvers. This allows support for arbitrary time-dependent
collapse operators (the new method is still backwards com-
patible with the Python function callback method used for
time-dependent Hamiltonians in QuTiP version 1.1.4). This new
method of defining arbitrary time dependencies is both more
efficient andmore flexible, allowing for high-performance sim-
ulations of arbitrary time-dependent quantum systems. In par-
ticular, many problems of interest may be compiled at runtime
into C code via Cython [3]. This particular feature, and its imple-
mentation, will be discussed elsewhere [4].

• Floquet formalism, Floquet–Markov master equation: For
periodic time-dependent systems, the Floquet formalism can be
a useful technique where the original time-dependent problem
is transformed into a time-independent problem using the
time-dependent Floquet modes as the basis set. In QuTiP 2.0
we added a newmodule for the Floquet-related decomposition
of time-dependent problems, and the evolution of unitary and
dissipative dynamics using equations of motion and master
equations in the Floquet formalism.

• Bloch–Redfield master equation solver: A new quantum
dynamics solver for the time evolution according to the
Bloch–Redfield master equation is now included in QuTiP.
While not as efficient as the Lindblad master equation solver,
in situations where the environment is expressed in terms
of its noise power spectrum, rather than phenomenological
decay and dephasing rates used in the Lindblad formalism, the
Bloch–Redfield master equation has significant advantages.

• Quantumprocess tomography:Quantumprocess tomography
(QPT) [5] is a useful technique for characterizing experimental
implementations of quantum gates involving a small number
of qubits. It can also be a useful theoretical tool that gives
insight into how a given process transforms density matrices,
and it can be used, for example, to study how noise or other
imperfections deteriorate quantum gate operations. Unlike the
fidelity or trace distance, that give a single number indicating
how far from ideal a gate is, quantumprocess tomography gives
detailed information as to exactly what kinds of error various
imperfections and losses introduce.

• Functions for generating random states and matrices: It
is now possible to generate random kets, density matrices,
Hamiltonians, and Unitary operators. This includes the ability
to set the sparsity (density) of the resultant quantum object.
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• Support for sparse eigensolvers: The quantum object (Qobj)
methods eigenstates, eigenenergies, and ground-
state can now use sparse eigensolvers for systems with large
Hilbert spaces. This option is not enabled by default, and must
be set with the keyword argument sparse.

• New entropy and entanglement functions: Functions for cal-
culating the concurrence, mutual information, and conditional
entropy have been added.

• New operator norms: When calculating operator norms, one
can now select between the following norms: trace, Frobius,
one, and max. The trace norm is chosen by default. For ket and
bra vectors, only the L2-norm is available.

• Saving and loading data: Saving and loading of quantum
objects and array data is now internally supportedbyQuTiP. The
storage and retrieval of all quantumobjects andOdedata objects
can be accomplished via the qsave and qload functions,
respectively. In order to facilitate the export of QuTiP data to
other programs, file_data_store and file_data_read
allow the user to read and write array data, both real and
complex, into text files with a wide variety of formatting
options.

• Performance improvements: In QuTiP 2.1, numerous perfor-
mance optimizations have been implemented, including more
efficient quantum object creation, significantly faster ptrace
implementation, and an improved steadystate solver.

• Unit tests for verification of installation: The installation of
QuTiP 2.1 comeswith a set of unit tests that can be used to verify
that the installation was successful, and that the underlying
routines are functioning as expected.

4. Example scripts featuring new functionality

In this section, we highlight, via examples, several of the
main features added in QuTiP 2.1 and listed in Section 3.
Although we will demonstrate the use of the new time-dependent
evolution framework, a full discussion of this feature is presented
elsewhere [4]. The examples listed below, as well as a growing
collection of additional demonstrations, can be found on the QuTiP
website [2], or run after installing QuTiP using the demos function.
For brevity, we do not include the portions of code related to figure
generation using the matplotlib framework [6].

4.1. API changes to dynamics solvers

Here we demonstrate using the new Odedata class that is re-
turned by the mcsolve, mesolve, brmesolve, and fmmesolve
evolution solvers in QuTiP version 2.1. To better illustrate the API
changes,wehave recoded the two-qubit gate example fromRef. [1]
Sec. (4.1) that is written using the older QuTiP 1.x API. The sections
of the script featuring the new API are indicated below.

from qutip import *

g = 1.0 * 2 * pi # coupling strength
g1 = 0.75 # relaxation rate
g2 = 0.05 # dephasing rate
n_th = 0.75 # bath avg. thermal excitations
T = pi/(4*g) # gate period

# construct Hamiltonian
H = g * (tensor(sigmax(), sigmax()) +

tensor(sigmay(), sigmay()))
# construct inital state
psi0 = tensor(basis(2,1), basis(2,0))

# construct collapse operators
c_ops = []
## qubit 1 collapse operators
sm1 = tensor(sigmam(), qeye(2))
sz1 = tensor(sigmaz(), qeye(2))
c_ops.append(sqrt(g1 * (1+n_th)) * sm1)
c_ops.append(sqrt(g1 * n_th) * sm1.dag())
c_ops.append(sqrt(g2) * sz1)
## qubit 2 collapse operators
sm2 = tensor(qeye(2), sigmam())
sz2 = tensor(qeye(2), sigmaz())
c_ops.append(sqrt(g1 * (1+n_th)) * sm2)
c_ops.append(sqrt(g1 * n_th) * sm2.dag())
c_ops.append(sqrt(g2) * sz2)

# evolve the dissipative system
tlist = linspace(0, T, 100)
medata = mesolve(H, psi0, tlist, c_ops, [])

## NEW API CALL ##
# extract density matrices from Odedata object
rho_list = medata.states

# get final density matrix for fidelity comparison
rho_final = rho_list[-1]
# calculate expectation values
n1 = expect(sm1.dag() * sm1, rho_list)
n2 = expect(sm2.dag() * sm2, rho_list)
# calculate the ideal evolution
medata_ideal = mesolve(H, psi0, tlist, [], [])

## NEW API CALL ##
# extract states from Odedata object
psi_list = medata_ideal.states

# calculate expectation values
n1_ideal = expect(sm1.dag() * sm1, psi_list)
n2_ideal = expect(sm2.dag() * sm2, psi_list)
# get last ket vector for comparison
psi_ideal = psi_list[-1]
# output is ket since no collapse operators.
rho_ideal = ket2dm(psi_ideal)

# calculate the fidelity of final states
F = fidelity(rho_ideal, rho_final)

4.2. Floquet modes of a driven two-level system

Following the example in Ref. [7], here we calculate the quasi-
energies for the time-dependent Floquet basis vectors of a
sinusoidally driven two-level system [8] with Hamiltonian

H =
∆

2
σz +

E
2
cos (ωt) σx, (1)

where ∆ is the qubit energy splitting and ω is the driving
frequency, for different values of the driving amplitude E. The
results of the simulation are presented in Fig. 1.
from qutip import *

delta = 1.0 * 2 * pi # bare qubit sigma_z coefficient
omega = 8.0 * 2 * pi # driving frequency
T = (2*pi)/omega # driving period

# vector of driving amplitudes
E_vec = linspace(0.0, 12.0, 100) * omega

# generate spin operators
sx = sigmax()
sz = sigmaz()

# create array for storing energy values
q_energies = zeros((len(E_vec), 2))

# define time-independent Hamiltonian term
H0 = delta/2.0 * sz
args = {’w’: omega}

# loop over driving amplitudes
for idx, E in enumerate(E_vec):

# amplitude-dependent Hamiltonian term
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Fig. 1. (Color) Quasienergies corresponding to the two Floquet basis states of a
driven two-level system as the driving strength is increased. Here, the quasienergy
and driving amplitude are expressed in units of the qubit energy splitting and
driving frequency (h̄ = 1), respectively. In this simulation, ∆ = 1 × 2π and
ω = 8 × 2π .

H1 = E/2.0 * sx

# H = H0 + H1 * cos(w * t) in ’list-string’ format
H = [H0, [H1, ’cos(w * t)’]]

# find the Floquet modes
f_modes, f_energies = floquet_modes(H, T, args)
# record quasi-energies
q_energies[idx,:] = f_energies

4.3. Floquet evolution

A driven system that is interacting with its environment is
not necessarily well described by the standard Lindblad master
equation as its dissipation process could be time dependent
due to the driving. In such cases, a rigorous approach would
be to take the driving into account when deriving the master
equation. This can be done in many different ways, but one
common approach is to derive the master equation in the
Floquet basis, the Floquet–Markov master equation [9]. In
QuTiP, this Floquet–Markov master equation is implemented
in the fmmesolve function. As this approach is for time-
dependent systems, here we model a sinusoidally driven qubit
with Hamiltonian

H = −
∆

2
σx −

ϵ

2
σz − Aσx sinωt, (2)

where ∆ and ϵ are the coupling and energy splitting constants,
while A andω are the driving strength and frequency, respectively.
In addition, we define the spectral density of the environmental
noise to be Ohmic. In Fig. 2, we plot the occupation probability
of the qubit for both the Lindblad and Floquet–Markov master
equations as a function of time.
from qutip import *

gamma1 = 0.05 # relaxation rate
gamma2 = 0.0 # dephasing rate
delta = 0.0 * 2 * pi # qubit sigma_x coefficient
eps0 = 1.0 * 2 * pi # qubit sigma_z coefficient
A = 0.1 * 2 * pi # driving amplitude
w = 1.0 * 2 * pi # driving frequency
T = 2*pi / w # driving period
psi0 = basis(2,0) # initial state
tlist = linspace(0, 25.0, 250)

def J_cb(omega):
Fig. 2. (Color) Occupation probability of a sinusoidally driven qubit, initially in its
ground state, under both Lindblad and Floquet–Markov master equation evolution,
where the qubit parameters are ∆ = 0, ϵ = 1.0 × 2π , and the relaxation and
dephasing rates are given by γ1 = 0.05, γ2 = 0. The driving term has amplitude
A = 0.1 × 2π and frequency ω = 1.0 × 2π . Here, the spectral noise density of the
environment is assumed to be Ohmic.

""" Noise spectral density """
return 0.5 * gamma1 * omega/(2*pi)

# Hamiltonian in list-string format
args = {’w’: w}
H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = - A * sigmax()
H = [H0, [H1, ’sin(w * t)’]]

# -----------------------------------------------------
# Lindblad equation with time-dependent Hamiltonian
#
c_ops = [sqrt(gamma1) * sigmax(),

sqrt(gamma2) * sigmaz()]
p_ex_me = mesolve(H, psi0, tlist, c_ops,

[num(2)], args=args).expect[0]

# -----------------------------------------------------
# Floquet-Markov master equation dynamics
#
rhs_clear() # clears previous time-dependent Hamiltonian

# find initial Floquet modes and quasienergies
f_modes_0, f_energies = floquet_modes(H, T, args, False)

# precalculate Floquet modes for the first driving period
f_modes_table = floquet_modes_table(f_modes_0, f_energies,

linspace(0, T, 500+1), H, T, args)

# solve the Floquet-Markov master equation
rho_list = fmmesolve(H, psi0, tlist, [sigmax()]

[], [J_cb], T, args).states

# calculate expectation values in the computational basis
p_ex_fmme = zeros(shape(p_ex_me))
for idx, t in enumerate(tlist):

f_modes_t = floquet_modes_t_lookup(f_modes_table, t, T)
p_ex_fmme[idx] = expect(num(2),

rho_list[idx].transform(f_modes_t, False))

4.4. Bloch–Redfield master equation

The Lindbladmaster equation is constructed so that it describes
a physical evolution of the density matrix (i.e., trace and positivity
preserving), but it does not provide a connection to any underlying
microscopic physical model. However, a microscopic model can
in some cases be advantageous, as for example in systems
with varying energy biases and eigenstates that couple to an
environment in some well-defined manner, through a physically
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motivated system–environment interaction operator that can be
related to a noise–power spectrum. The Bloch–Redfield formalism
is one such approach to derive a master equation from the
underlying microscopic physics of the system–bath coupling. To
highlight the differences inherent in these two approaches, in Fig. 3
we plot the expectation values for the spin operators of the first
qubit in a coupled qubit system given by the Hamiltonian

H = ω1

cos θ1σ (1)z + sin θ1σ (1)x


+ω2


cos θ2σ (2)z + sin θ2σ (2)x


+ gσ (1)x σ (2)x (3)

with the initial state |φ⟩ = |ψ1⟩ |ψ2⟩ with

|ψ1⟩ =
5

√
17


0.8|0⟩(1) + (1 − 0.8)|1⟩(1)


|ψ2⟩ =

5
√
17


(1 − 0.8)|0⟩(2) + 0.8|1⟩(2)


,

where the subscripts indicate which qubit the state belongs to. In
Eq. (3), g is the qubit coupling,ω1 andω2 are the qubit frequencies,
and finally θ1 and θ2 represent the angles of each qubit with
respect to the σz direction. In this example, the qubit environments
in the Bloch–Redfield simulation are assumed to have an Ohmic
spectrum. The code for the corresponding simulation is given
below.
from qutip import *

w = array([1.0,1.0])*2*pi # qubit angular frequency
theta = array([0.025,0.0])*2*pi # angle from sigma_z axis
gamma1 = [0.25, 0.35] # qubit relaxation rate
gamma2 = [0.0, 0.0] # qubit dephasing rate
g = 0.1 * 2 * pi # coupling strength
# initial state
a = 0.8
psi1 = (a*basis(2,0)+(1-a)*basis(2,1)).unit()
psi2 = ((1-a)*basis(2,0)+a*basis(2,1)).unit()
psi0 = tensor(psi1, psi2)
# times at which to evaluate expectation values
tlist = linspace(0, 15, 500)

# operators for qubit 1
sx1 = tensor(sigmax(), qeye(2))
sy1 = tensor(sigmay(), qeye(2))
sz1 = tensor(sigmaz(), qeye(2))
sm1 = tensor(sigmam(), qeye(2))
# operators for qubit 2
sx2 = tensor(qeye(2), sigmax())
sy2 = tensor(qeye(2), sigmay())
sz2 = tensor(qeye(2), sigmaz())
sm2 = tensor(qeye(2), sigmam())
# Hamiltonian
# qubit 1
H = w[0] * (cos(theta[0]) * sz1 + sin(theta[0]) * sx1)
# qubit 2
H += w[1] * (cos(theta[1]) * sz2 + sin(theta[1]) * sx2)
# interaction term
H += g * sx1 * sx2

# -----------------------------------------------------
# Lindblad master equation
#
c_ops = []
c_ops.append(sqrt(gamma1[0]) * sm1)
c_ops.append(sqrt(gamma1[1]) * sm2)

lme_results = mesolve(H, psi0, tlist, c_ops,
[sx1, sy1, sz1])

# -----------------------------------------------------
# Bloch-Redfield master equation
#
def ohmic_spectrum1(w):

if w == 0.0:
# dephasing inducing noise
return 0.5 * gamma2[0]
Fig. 3. (Color) Expectation values for the spin operators of qubit 1, for both the
Lindblad master equation (top) and the Bloch–Redfield master equation (bottom),
where the qubit environment in the latter case is assumed to have an Ohmic
spectrum. Here, ω1 = ω2 = 1.0 × 2π , θ1 = 0.025 × 2π , θ2 = 0, and the qubit
relaxation terms for qubit 1 and qubit 2 are give by γ (1)1 = 0.25 and γ (2)1 = 0.35,
respectively. The qubit coupling is g = 0.05×2π . In this simulation, the dephasing
terms are assumed to be zero.

else:
# relaxation inducing noise
return 0.5 * gamma1[0]*w/(2*pi)*(w > 0.0)

def ohmic_spectrum2(w):
if w == 0.0:

# dephasing inducing noise
return 0.5 * gamma2[1]

else:
# relaxation inducing noise
return 0.5 * gamma1[1]*w/(2*pi)*(w > 0.0)

brme_results = brmesolve(H, psi0, tlist, [sx1, sx2],
[sx1, sy1, sz1], [ohmic_spectrum1,
ohmic_spectrum2])

4.5. Quantum process tomography

To demonstrate quantum process tomography, here we sim-
ulate the effects of relaxation and dephasing on the two-qubit
iSWAP gate [10] when the qubits are coupled to a thermal envi-
ronment with on average ⟨n⟩ = 1.5 excitations. The χ-matrix ob-
tained from QPT contains all the information about the dynamics
of this open quantum system. In Fig. 4, we plot the χ-matrix for
both the dissipative and corresponding ideal (unitary) iSWAP gate
dynamics.

from qutip import *

g = 1.0 * 2 * pi # coupling strength
g1 = 0.75 # relaxation rate
g2 = 0.25 # dephasing rate
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n_th = 1.5 # bath avg. thermal excitations
T = pi/(4*g) # gate period

H = g*(tensor(sigmax(),sigmax())+tensor(sigmay(),sigmay()))
psi0 = tensor(basis(2,1), basis(2,0))

c_ops = []
# qubit 1 collapse operators
sm1 = tensor(sigmam(), qeye(2))
sz1 = tensor(sigmaz(), qeye(2))
c_ops.append(sqrt(g1 * (1+n_th)) * sm1)
c_ops.append(sqrt(g1 * n_th) * sm1.dag())
c_ops.append(sqrt(g2) * sz1)
# qubit 2 collapse operators
sm2 = tensor(qeye(2), sigmam())
sz2 = tensor(qeye(2), sigmaz())
c_ops.append(sqrt(g1 * (1+n_th)) * sm2)
c_ops.append(sqrt(g1 * n_th) * sm2.dag())
c_ops.append(sqrt(g2) * sz2)

# process tomography basis
op_basis = [[qeye(2), sigmax(), sigmay(), sigmaz()]] * 2
op_label = [["i", "x", "y", "z"]] * 2

# dissipative gate
U_diss = propagator(H, T, c_ops)
chi = qpt(U_diss, op_basis)
qpt_plot_combined(chi, op_label)

# ideal gate
U_psi = (-1j * H * T).expm()
U_ideal = spre(U_psi) * spost(U_psi.dag())
chi = qpt(U_ideal, op_basis)
qpt_plot_combined(chi, op_label)

4.6. Exporting QuTiP data

Finally, we demonstrate the exporting of data generated in
QuTiP to an external plotting program using file_data_store
and file_data_read to save and load the data, respectively.
To keep the example completely in Python, we have chosen to
use Mayavi [11] to plot a Wigner function in Fig. 5 generated in
QuTiP corresponding to the state |Ψ ⟩ = |α⟩ + | − α⟩ + |φ̃⟩ that
is a Schrödinger cat state consisting of two coherent states with
complex amplitude α, with an additional random ket vector |φ̃⟩

created using QuTiP’s random state generator:
from qutip import *
# Number of basis states
N = 20
# amplitude of coherent states
alpha = 2.0 + 2.0j
# define ladder operators
a = destroy(N)
# define displacement operators
D1 = displace(N, alpha)
D2 = displace(N, -alpha)
# create superposition of coherent states + random ket
psi = (D1 + D2) * basis(N,0) + 0.5 * rand_ket(N)
psi = psi.unit() # normalize
# calculate Wigner function
xvec = linspace(-5, 5, 500)
yvec = xvec
W = wigner(psi, xvec, yvec)

## new function calls ##
# store Wigner function to file
file_data_store("wigner.dat", W, numtype=’real’)
# load input data from file
input_data = file_data_read(’wigner.dat’)

# plot using mayavi
from mayavi.mlab import *
X,Y = meshgrid(xvec, yvec)
surf(xvec, yvec, input_data, warp_scale=’auto’)
view(0, 45)
show()
a

b

Fig. 4. (Color) (a) The QPT process χ-matrix for the dissipative iSWAP gate
between two qubits. Here, the color indicates the phase of each matrix element.
The qubit–qubit coupling strength is g = 1.0 × 2π , whereas the relaxation and
dephasing rates are g1 = 0.75 and g2 = 0.25, respectively. (b) The ideal iSWAP
gate χ-matrix when the qubit dissipation and dephasing are not present.

Fig. 5. (Color) Wigner function for the state |Ψ ⟩ = |α⟩ + |−α⟩ + |φ̃⟩, where
α = 2 + 2j is the coherent state amplitude, and |φ̃⟩ is a randomly generated state
vector. This plot is generated inMayavi using data from the QuTiP wigner function.
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Table A.1
List of new user-accessible functions available in QuTiP 2.1. Additional information about each function may be obtained by calling help(function_name) from the
Python command line, or at the QuTiP website [2].

Quantum object methods

conj Conjugate of quantum object.
eigenenergies Calculates the eigenvalues (eigenenergies if the operator is a Hamiltonian) for a quantum operator.
groundstate Returns the eigenvalue and eigenstate corresponding to the ground state of the quantum operator.
matrix_element Gives the matrix element Qnm = ⟨ψn|Q̂ |ψm⟩ for the given operator and states ψn and ψm .
tidyup Removes the small elements from a quantum object.
trans Transpose of a quantum object.

Bloch–Redfield functions
bloch_redfield_solve Evolve the ODEs defined by the Bloch–Redfield tensor.
bloch_redfield_tensor Bloch–Redfield tensor for a set of system-bath operators and corresponding spectral functions.

Floquet functions
floquet_modes Calculate the initial Floquet modes given a periodic time-dependent Hamiltonian.
floquet_modes_t Calculate the Floquet modes at a time t .
floquet_modes_table Calculate a table of Floquet modes for an interval of times.
floquet_modes_t_lookup Look up the Floquet modes at an arbitrary time t given a pre-computed Floquet-mode table.
floquet_states Calculate the initial Floquet states given a set of Floquet modes.
floquet_states_t Calculate the Floquet states for an arbitrary time t given a set of Floquet modes.
floquet_state_decomposition Decompose an arbitrary state vector in the basis of the given Floquet modes.
floquet_wavefunction Calculate the initial wavefunction given a Floquet-state decomposition and Floquet modes.
floquet_wavefunction_t Calculate the wavefunction for an arbitrary time t given a Floquet-state decomposition and modes.

Evolution solvers
brmesolve Bloch–Redfield master equation solver.
fmmesolve Floquet–Markov master equation solver.

Correlation functions
correlation Transient two-time correlation function.
correlation_ss Steady-state two-time correlation function.

Entropy/entanglement functions
concurrence Calculate the concurrence entanglement measure for a two-qubit state.
entropy_conditional The conditional entropy S(A|B) = S(A, B)− S(B) of a selected density matrix component.
entropy_mutual Mutual information S(A : B) between selection components of a system density matrix.

Quantum process tomography
qpt Quantum process tomography χ-matrix for a given (possibly non-unitary) transformation matrix U .
qpt_plot Visualize the quantum process tomography χ-matrix. Plot the real and imaginary parts separately.
qpt_plot_combined χ-matrix plot with height and color corresponding to the absolute value and phase, respectively.

Random state/operator generation
rand_dm Random N × N density matrix.
rand_herm Random N × N Hermitian operator.
rand_ket Random N × 1 state (ket) vector.
rand_unitary Random N × N Unitary operator.

Gates
iswap Quantum object representing the iSWAP gate.
sqrtiswap Quantum object representing the square root iSWAP gate.

Utility functions
file_data_read Retrieves an array of data from the requested file
file_data_store Stores a matrix of data to a file to be read by an external program.
qload Loads quantum object or array data contained from given file.
qsave Saves any quantum object or array data to the specified file.
rhs_generate Pre-compiles the Cython code for time-dependent mesolve problems run inside a parfor loop.
rhs_clear Clears string-format time-dependent Hamiltonian data.
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Appendix. New functions in QuTiP 2.1

See Table A.1.
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