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An electrostatic quantum dot cannot be formed in monolayer graphene because of the Klein
tunneling. However, a dot can be formed with the help of a uniform magnetic field. As shown here,
a spatial modulation of the Dirac gap leads to confined states with discrete energy levels, thus
defining a dot, without applying external electric and magnetic fields. Gap-induced dot states can
coexist and couple with states introduced by an electrostatic potential. This property allows the
region in which the resulting states are localized to be tuned with the potential. © 2010 American
Institute of Physics. �doi:10.1063/1.3525858�

The relativistic character of electrons in graphene has
attracted considerable attention.1,2 This work presents a way
of forming a graphene quantum dot as a consequence of a
spatial modulation of the Dirac gap.

In an ideal graphene sheet, the band structure has no
energy gap and the Dirac electrons are massless. The quan-
tum states of a graphene dot, formed by an external electro-
static potential, are deconfined due to the Klein tunneling
that is inherent to massless particles.3 Therefore, an electro-
static dot cannot confine electrons in graphene since these
can tunnel through any potential barrier. However, a uniform
magnetic field suppresses the Klein tunneling leading to con-
fined states.4,5

It is experimentally possible to engineer an energy gap in
graphene’s band structure, referred to as a Dirac gap, with a
value ranging from a few to hundreds of meV.6–8 The gap
leads to electrons with mass and thus an electrostatic poten-
tial results in confined states as in common semiconductors.2

Most importantly, as shown here, a spatially modulated gap
induces confined states regardless of the application of exter-
nal fields. This can be achieved provided the gap has a local
minimum in which the states become localized, thus defining
a quantum dot. The application of a potential, generated by a
gate electrode, couples the gap and potential-induced states.
The coupling strength is tunable with the potential, and
it determines the region in which the resulting states are
localized.

A spatially modulated Dirac gap has been reported.8 Pos-
sible ways of creating the required gap modulation that
forms the quantum dot include substrate engineering and the
application of strain to the graphene sheet.1,2

The physics of a graphene dot, for energies near the
Dirac points, is described by the Hamiltonian2

H = vF� · �p + eA� + VI + ���z, �1�

where the Fermi velocity vF=� /�, with �=646 meV nm, is
assumed position-independent. �= ��x ,�y� are the 2�2
Pauli operators acting on the two carbon sublattices, p=
−i�� =−i���x ,�y� is the two dimensional momentum opera-
tor, A is the vector potential that generates the magnetic field
B=��A, V is the electrostatic potential, and I is the unit
matrix. The last term in Eq. �1�, referred to as mass term,

gives rise to an energy gap 2� in the spectrum of graphene,
where �=1 ��=−1� corresponds to the K �K�� valley.

For the dot model, V and � are chosen cylindrically
symmetric and the magnetic field is uniform and perpendicu-
lar to the graphene sheet, B=Bẑ, so A= �0,A� ,0�, with A�

=Br /2. The Dirac equation H	=E	 can be written in cy-
lindrical coordinates with 	=r−1/2�f1�r�exp�i�m
−1��� , if2�r�exp�im���, where m=0, 
1, . . . is the angular
momentum quantum number. The radial functions f1 and f2
satisfy

�V − E + ���f1 + �U + �
d

dr
	 f2 = 0, �2�

�U − �
d

dr
	 f1 + �V − E − ���f2 = 0, �3�

with U=��2m−1� /2r+�eBr /2�. Equations �2� and �3� are
satisfied for both confined and deconfined states. The former
have an exponential tail asymptotically, e.g., in the limit of
large radial distance r�r→��, whereas the latter have an os-
cillatory tail. If for large r V and � are constant or have a
power-law dependence, then the confined-deconfined charac-
ter of a state is determined by the asymptotic sign of

q�r� = − � eBr

2�
	2

+ �V − E

�
	2

− � ��

�
	2

. �4�

A state with energy E is confined only if q is asymptotically
negative.4 Otherwise the state is deconfined. This criterion
indicates that confined states can be induced even for B=0
and V=0 everywhere, provided that E2−�2�0 asymptoti-
cally. This inequality cannot be satisfied when � is spatially
independent because all the energies satisfy 
E
�. But the
inequality can be satisfied when � is spatially dependent
with an asymptotic value larger than that for small r. This
happens, for example, when � is zero within a disk area and
nonzero outside that area, �=�0. Then a number of discrete
energy levels satisfy 
E
��0 and correspond to confined
states with a large amplitude within the disk area. These
states can be regarded as dot states.

In the presence of an electrostatic potential V and B=0,
Eq. �4� shows that if V and � are unequal and rise asymp-
totically, then confined states occur only if �V−���0 so that
q�0. In this case confinement is energy-independent. How-a�Electronic mail: g.giavaras@gmail.com.
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ever, this work focuses on the case where both V and � are
constant asymptotically, which is the most common experi-
mental regime. Then confinement occurs if �V−E�2−�2�0
and thus it is energy-dependent.

The properties of the gap-induced dot are analyzed by
solving numerically the two coupled equations �Eqs. �2� and
�3�� using a discretization scheme, which satisfies time-
reversal symmetry: E�m ,B�=E�1−m ,−B� for �=0 and
E�m ,B ,��=E�1−m ,−B ,−�� for ��0. The spatially depen-
dent mass term is modeled by �=0 for r�R and ��r�=
−�0 /cosh��r−R� /d�2+�0 for r�R so that asymptotically �
��0. This choice is not of particular importance; either a
smooth or sharp modulation of � results in confined states.
For brevity, all the results shown are for R=250 nm, d
=150 nm, �=1, and m=5.

Figure 1 shows the energy levels as a function of the
asymptotic value of the mass term �0 for B=0 and V=0.
Deconfined states correspond to the �quasi� continuum of
levels indicated by the black area in Fig. 1.9 Confined states
correspond to the discrete levels emerging through the con-
tinuum via anticrossing points �see below�, forming two dis-
tinct ladders of energy separated by a gap. The spacing of the
discrete levels and the gap increase with �0. Further, the
confinement becomes stronger with �0, and therefore an in-
crease in �0 leads to an increase in the number of discrete
levels.10 However, for a fixed �0, not all m values give con-
fined states since the angular momentum term U for B=0
tends to delocalize the states for large m. For this reason
there are no confined states for �0�10 meV in Fig. 1. The
physics is different if B�0 and V is constant since from Eq.
�4� q�0 asymptotically, leading to confined states indepen-
dent of energy. One such case is illustrated in Fig. 1 for B
=0.1 T. The continuum of levels has been replaced by a
discrete set for all �0, reflecting the disappearance of decon-
fined states. This is valid for all m values and �=−1.

The effect of an electrostatic potential on the gap-
induced dot is now investigated. The potential that is gener-
ated in the graphene sheet by gate electrodes can be calcu-
lated within the Thomas–Fermi model.4 A slowly varying
quantum well potential is approximated by V�r�=−V0 exp

�−r2 / l0
2�. The quantum well depth is V0, the width is l0, and

asymptotically V�0.
Figure 2 shows the energy level diagram as a function of

V0 for l0=180 nm. Confined and deconfined states are iden-
tified as in Fig. 1. For a constant gap and small V0, the
angular momentum delocalizes the states; therefore confined
states are formed after a critical value of V0. The general
trend is that with increasing V0, the number of discrete levels
increases while the lowest levels merge into the continuum.
When this happens, the corresponding states undergo a tran-
sition from confined to deconfined, which is reflected in the
energy diagram by the appearance of anticrossing points
�Fig. 2�c��. These also appear when the states undergo the
opposite transition for energies near �0. For a spatially de-
pendent gap, there exist discrete levels even for V0=0 be-
cause of the gap-induced confinement. Unlike the constant-
gap system, as V0 increases, anticrossing points are formed
between discrete levels �Fig. 2�d��, reflecting a coupling be-
tween confined states due to the potential and the spatially
dependent gap. This coupling is strong for the gap-induced
states of the upper ladder of energy and therefore the
corresponding anticrossing points are not well-defined. In
contrast, states of the lower ladder couple weakly to the
potential.

Figure 3 illustrates the effect of the potential on dot
states for the energies shown in Fig. 2�b�. For V0=0, the
states are confined owing to the gap modulation. Consider
now the states shown in the left panels. As V0 increases, the
gap-induced state with positive energy couples to the poten-
tial, e.g., for V0=30 meV, and with increasing V0 it becomes
localized in a region defined by the potential. This state then
decreases in energy and couples with gap-induced states of
the lower ladder, e.g., for V0=75 meV. For V0=120 meV
the state is deconfined with an oscillatory tail, and its energy
lies in the continuum. A coupling between gap and potential-
induced states occurs also for the states shown in the right
panels, e.g., for V0=75, 120 meV. As V0 increases the state
with the maximum energy in the lower ladder �for V0=0�

-50

-25

0

25

50

E
(m

eV
)

0 20 40 60 80
δ

0
(meV)

-50

-25

0

25

50

E
(m

eV
)

B = 0 T

B = 0.1 T

FIG. 1. Energy levels vs the asymptotic value of the mass term �0 that
generates a Dirac gap 2�0.
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FIG. 2. �a� Energy levels vs the potential depth V0 for a constant Dirac gap
2�=50 meV. �b� As �a� but for a spatially modulated Dirac gap with an
asymptotic value of 2�0=50 meV. The states of the energies marked by
circles are shown in Fig. 3. Enlarged views of �a� and �b� are shown in �c�
and �d�.
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couples with higher excited potential states. This trend is
consistent with the series of anticrossing points in the E�V0�
plot.

In Fig. 3 the coupling between potential and gap-induced
states of the lower ladder is weak �V0=75 meV�; therefore
the states peak in the region defined either by the potential
profile �left� or the gap modulation �right�.11 These two re-
gions have a small overlap when R l0 and V0 is large.
Strong coupling can be induced for small m; for instance, for
m=1 the states peak strongly in both regions. The
m-dependence of the coupling can be explained within a
semiclassical approach.2 The relative maximum amplitude of
the two components, as can be derived from Eqs. �2� and �3�,
satisfies 
f1
�
f2
 within a �=0 region, whereas 
f1
 
f2

�
f1
� 
f2
� for energies in the upper �lower� ladder. The latter
behavior is more pronounced when � is large and constant
with V0�0. Then one of the components becomes vanish-
ingly small depending on the choice of energy and valley
��= 
1�.

To probe the states of the gap-induced dot the Fermi
level has to adjusted near the middle of the gap, where only
confined states with small values of m lie, and hence the
resultant density of states is low. For the same reason the
electrostatic potential has to be small. Then, it should be
experimentally possible to resolve the quantum states using
similar measurements as in GaAs quantum dots.

In summary, a graphene dot can be formed as a result of
a spatial modulation of the Dirac gap without applying ex-
ternal fields. An electrostatic potential allows gap and
potential-induced states to coexist and become coupled as
the potential increases. The coupling strength determines the
region in which the states are localized.
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FIG. 3. Quantum states for different potential depths V0 from top to bottom:
V0=0, 30, 75, 120 meV. The Dirac gap is spatially modulated with an
asymptotic value of 2�0=50 meV. Left �right� panels show states with en-
ergies marked by ���� in Fig. 2�b�. The vertical axes of the insets range
from 0 to 2�10−3.
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