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We present exact analytical solutions to study the coherent interaction between a single photon and the
mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and
scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively.
Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations
between the spectral features and the system’s inherent parameters, such as: the optomechanical coupling
strength, the mechanical frequency, and the cavity-field decay rate. In particular, we clarify the conditions
for the phonon sidebands to be visible. We also study the photon-phonon entanglement for the long-time
emission and scattering states. The linear entropy is employed to characterize this entanglement by treating
it as a bipartite one between a single mode of phonons and a single photon.

T
he hybrid coherent coupling1 between electromagnetic and mechanical degrees of freedom is at the heart of
cavity optomechanics2–4. In general, optomechanical couplings can be classified into two categories: linear or
quadratic couplings. Namely, the coupling term is proportional to either x or x2 (x being the mechanical

displacement). For a mechanical resonator, a linear coupling corresponds to a force acting upon the mechanical
resonator and this leads to a displacement of its equilibrium position. However, for a quadratic coupling, it will
change the resonant frequency of the mechanical resonator (in the new representation, rather than in the original
representation). This is because the quadratic-coupling term can be integrated into the potential energy of the
harmonic oscillator (changing the effective stiffness of a spring), and hence the frequency of the mechanical
resonator is renormalized. This renormalized harmonic oscillator is related to the original one by a squeezing
transformation.

To better understand and exploit optomechanical couplings, it is highly desirable to realize these couplings in
the single-photon strong-coupling regime, in which the couplings involving a single photon can produce
observable effects on both mechanical and electromagnetic signals. Such a regime is important to test the
fundamentals of quantum theory5–8 and to explore possible applications of optomechanical devices to future
quantum technology9–11. In the past several years, much attention has been paid to the single-photon strong-
coupling regime of linear coupling12–25. Considerable theoretical studies, such as photon statistics16,17,21–23 and
mechanical-state engineering24, have been carried out in this regime. Two theoretical proposals26,27 have recently
been suggested to reach this regime using superconducting circuits with Josephson junctions. In addition,
experimental advances in linear optomechanics are being made towards the single-photon strong-coupling
regime12–15. However, for the quadratic coupling, though much attention has been paid to this area28–48, not
much work has been devoted to the single-photon strong-coupling regime because the currently attainable
coupling strength is weak. Recently, some methods have been proposed to increase the quadratic optomecha-
nical coupling strength or to seek other possible realization of quadratic optomechanics. For example, an
experiment42 demonstrated that the quadratic coupling strength can be increased significantly using a fiber
cavity with a smaller mode size, and a smaller and lighter membrane. A measurement-based method has also
been proposed to obtain an effective quadratic optomechanics36. In addition, some other systems, such as
trapped cold atoms or a dielectric nano- or microparticle, have been suggested to simulate an effective quadratic
optomechanical coupling44. These works provide a possibility of studying the quantum nonlinearity in quadratic
optomechanics. Motivated by these advances, it is of interest to study the quadratic optomechanical coupling in
the single-photon strong-coupling regime.

When a quadratic optomechanical cavity works in the single-photon strong-coupling regime, the frequency
change of the mechanical resonator induced by a single photon will, in turn, significantly affect the cavity field,
causing some observable features in the cavity photon spectrum. Thus, a natural question arises: how the
spectrum may characterize the single-photon strong-coupling regime? In this paper, we answer this question
by calculating analytically the spectrum of single-photon emission and scattering. In particular, we build a
connection between the spectral features and the system’s inherent parameters. We also clarify the condition
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for observing the phonon sidebands in the spectra. It should be
pointed out that below we assume that the mechanical resonator
has been pre-cooled to a low-phonon-number regime. Moreover,
in typical optomechanical systems, the optical decay rate cc is much
larger than the mechanical decay rate cM. Under these two condi-
tions, we will only consider the optical dissipation and neglect the
mechanical dissipation. This is because the emission and scattering
processes will be completed in a time interval 1=cc=t=1=cM .
During this period the mechanical dissipation is negligible. In this
issue, the emission and pulse-scattering cases are different from the
continuous-wave driving case. When the system is driven by a con-
tinuous-wave field, the mechanical dissipation should be included
for the steady-state solution46.

Accompanying the processes of single-photon absorbtion and
emission, the total system experiences transitions involving phonon
sidebands, and hence the frequency of the emitted photon will be
related to the states of the phonon sidebands due to energy conser-
vation. This relation leads to the generation of photon-phonon
entanglement. Since the emitted photon exists in the continuous
modes of the outside fields, this entangled state involves a single
mode of phonons and a set of continuous modes of a single photon.
In general, it is hard to characterize such type of entanglement.
However, from the point of view of a single photon rather than
photon modes, we could treat this entanglement as a bipartite one
between a single photon and the phonon mode. For a pure initial
state, the linear entropy can be employed to describe this
entanglement.

Results
Quadratic optomechanical system. We consider a quadratic opto-
mechanical system with a ‘‘membrane-in-the-middle’’ configuration
[see Fig. 1(a)], where a thin dielectric membrane is placed inside a
Fabry-Pérot cavity. We model the moving membrane as a harmonic
oscillator and focus on a single-mode field in the cavity. When the
membrane is placed at a node (or antinode) of the intracavity
standing wave, the cavity field will quadratically couple to the
mechanical motion of the membrane. Let us denote the position
and momentum operators of the membrane as x and p, then the
Hamiltonian of the system is (with �h 5 1)

Hopc~vc xð Þ a{az1=2
� �

z
p2

2M
z

1
2

MV2x2, ð1Þ

where a{ and a are the creation and annihilation operators of the
single-mode cavity field, respectively. In the quadratic coupling case,
the cavity-field frequency depends on the mechanical motion by

vc(x) 5 vc 1 gx2, with g~
1
2
L2vc xð Þ

Lx2 x~0j , where vc is the cavity-

field frequency when the membrane is at rest. The parameters M and
V in Eq. (1) are the mass and frequency of the mechanical mode. By
reorganizing the coupling term between the zero-point energy of the
optical mode and the mechanical motion into the mechanical
potential energy, we have

Hopc~vca{az
p2

2M
z

1
2

Mv2
Mx2zga{ax2z

1
2

vc, ð2Þ

where vM~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2zg=M

q
is the renormalized frequency of the

membrane. We note that it is justified to work in the
representation of the mechanical frequency vM, because the
coupling term gx2/2 always exists. By introducing the mechanical
creation and annihilation operators b{ and b, by

x~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2MvMð Þ

p
b{zb
� �

and p~i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MvM=2

p
b{{b
� �

, the Hamil-
tonian, up to a constant term (vc 1 vM)/2, becomes28

Hopc~vca{azvMb{bzg0a{a b{zb
� �2

, ð3Þ

where g0 5 g/(2MvM). The third term in Eq. (3) describes a
quadratic optomechanical coupling with a strength g0 between the
cavity field and the membrane. We point out that since the
reorganized frequency vM of the mechanical mode also depends

on the coupling strength g0 by vM~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2z2g0vM

q
, the ratio of

the coupling strength g0 over the mechanical frequency vM is
bounded by g0/vM , 1/2. However, below we also consider
parameters by extending the scope of the ratio beyond this bound.
This is because the bound can be exceeded in some other quadratical
optomechanical systems, such as trapped cold atoms.

When there are s photons in the cavity, the last two terms in
Hamiltonian (3) can be renormalized as a harmonic-oscillator
Hamiltonian with the resonant frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vM vMz4sg0ð Þ

p
. To

keep the stability of the membrane (i.e., the frequency should be a
positive number), the strength g0 should satisfy the condition (vM 1

4sg0) . 0. The photon number operator a{a in Hamiltonian Hopc is a
conserved quantity, and hence for a given photon number s, the
coupling actually takes a quadratic form sg0(b{ 1 b)2, which can be
diagonalized with the single-mode squeezing transformation.
Denoting the harmonic-oscillator number states of the cavity field
and the membrane as jsæa and jmæb (s, m 5 0, 1, 2, …) respectively,
then the eigensystem of the Hamiltonian Hopc can be obtained as

Hopc sj ia ~m sð Þj ib~ svczd sð Þzmv
sð Þ

M

� �
sj ia ~m sð Þj ib, ð4Þ

where we introduce the s-photon coupled membrane’s resonant fre-

quency v
sð Þ

M and energy-level shift d(s),

Figure 1 | Quadratic-optomechanical system and the energy-level
structure. (a) Schematic diagram of a quadratic optomechanical system

with a ‘‘membrane-in-the-middle’’ configuration. (b) The diagram of the

energy-level structure (unscaled) of the optomechanical system when the

cavity is in a vacuum or contains a single photon.
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v
sð Þ

M ~vM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

4sg0

vM

q
, d sð Þ~ 1

2 v
sð Þ

M {vM

� �
: ð5Þ

The s-photon squeezed phonon number state in Eq. (4) is defined by

~m sð Þj ib~Sb g sð Þ
� �

mj ib, ð6Þ

where Sb g sð Þ
� �

~exp
g sð Þ

2
b2{b{2
� �� �

is a squeezing operator with

the squeezing factor

g sð Þ~
1
4

ln 1z
4sg0

vM

	 

: ð7Þ

We note that the eigensystem of the Hamiltonian (3) has been
derived in previous studies31,45,46. In the zero-photon case, we have

~m 0ð Þj ib~ mj ib, v
0ð Þ

M ~vM , and d(0) 5 0. For following convenience,
the energy-level structure of the system in the zero- and one-photon
cases is shown in Fig. 1(b).

To include the dissipation of the cavity field, we assume that the
cavity photons can couple with the outside fields through the coup-
ling mirror. Without loss of generality, we model the environment of
the cavity field as a harmonic-oscillator bath. Then the Hamiltonian
of the whole system including the optomechanical cavity and the
environment can be written as

H~Hopcz

ð?
0

vkc{kckdkzj

ð?
0

ac{kzcka{
� �

dk, ð8Þ

where the annihilation operator ck describes the kth mode of the
outside fields with resonant frequency vk. The coupling between
the cavity field and the outside fields is described by the photon-
hopping interaction with strength j. Since the decay rate cM of the
mechanical resonator is much smaller than the decay rate cc of the
cavity, then during the emission and wave-packet scattering time
interval 1=cc=t=1=cM , the damping of the membrane is negligible.
In this work we take into account the dissipation of the cavity and
neglect the mechanical dissipation.

States in the single-photon subspace. In the rotating frame with

respect to H0~vca{azvc

ð?
0

c{kckdk, the Hamiltonian (8) becomes

HI~vMb{bzg0a{a b{zb
� �2

z

ð?
0
Dkc{kckdk

zj

ð?
0

ac{kzcka{
� �

dk,

ð9Þ

whereDk 5 vk 2 vc is the detuning of the kth mode photon from the

cavity frequency. The total photon number, N~a{az

ð?
0

c{kckdk, in

the whole system is a conserved quantity because of [N, HI] 5 0.
Denoting ~m 1ð Þj ib: ~mj ib for conciseness, a general state in the
single-photon subspace of the total system can be written as

Q tð Þj i~
X?
m~0

Am tð Þ 1j ia ~mj ibj i

z
X?
m~0

ð?
0

Bm,k tð Þ 0j ia mj ib 1kj idk,

ð10Þ

where 1j ia ~mj ibj i denotes the state with the cavity in the single-
photon state j1æa, the membrane in the single-photon squeezed
number state ~mj ib (hereafter we call it as squeezed number state
for conciseness), and the outside fields in a vacuum j i. Also
j0æajmæbj1kæ denotes the state with a vacuum cavity field j0æa, the
membrane in the number state jmæb, and one photon in the kth

mode of the outside fields j1kæ. The variables Am(t) and Bm,k(t) are
probability amplitudes.

We point out that these squeezed number states in Eq. (10) satisfy

the completeness
X?

m~0
~mj ib b ~mh j~Ib (Ib is the identity operator in

the Hilbert space of mode b) and orthogonality b ~m ~njh ib~dm,n.

Moreover, the overlap b m ~njh ib~b mh jSb g 1ð Þ
� �

nj ib between the

squeezed number state ~nj ib and the harmonic-oscillator number
state jmæb is determined by the relation

b mh jSb g 1ð Þ
� �

nj ib~
ffiffiffiffiffiffiffiffiffi
m!n!
p

coshg 1ð Þð Þnz1=2

XFloor m
2½ �

l’~0

XFloor n
2½ �

l~0

{1ð Þl’

l!l’!

|
1
2 tanhg 1ð Þ� �lzl’

n{2lð Þ! coshg 1ð Þ
� �2l

dm{2l’,n{2l,

ð11Þ

where g(1) 5 (1/4) ln(1 1 4g0/vM) and the function Floor[x] gives the
greatest integer less than or equal to x. In principle, the state of the
whole system can be obtained by solving the Schrödinger equation
under a given initial condition. Below we will consider single-photon
emission and scattering.

Single-photon emission. In the single-photon emission case, a single
photon is initially inside the cavity, and the outside fields are in a
vacuum. Without loss of generality, we assume that the initial state of
the membrane is an arbitrary number state jn0æb. Once the solution in
this case is obtained, the solution for the general initial membrane
state can be obtained accordingly by superposition. In this case, with
the Laplace transform method, we obtain the long-time solution for
these probability amplitudes as An0,m ?ð Þ~0 and

Bn0,m,k ?ð Þ~
X?
n~0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cc= 2pð Þ

p
b m ~njh ibb ~n n0jh ibe{i DkzmvMð Þt

Dk{d 1ð Þ{nv
1ð Þ

M zmvMzicc=2
, ð12Þ

where we introduce the cavity-field decay rate cc 5 2pj2 and add the
subscript n0 in An0,m tð Þ and Bn0,m,k tð Þ to mark the membrane’s initial
state jn0æb.

In the long-time limit, the single photon completely leaks out of
the cavity and hence the cavity is in a vacuum [An0,m ?ð Þ~0]. The
amplitude Bn0,m,k ?ð Þ exhibits a clear physical picture for the single-
photon emission. Specifically, the initial state j1æajn0æb can be

expanded as
X?

n~0
cn0,n 1j ia ~nj ib, with cn0,n~b ~n n0jh ib. For each

component 1j ia ~nj ib, the single-photon emission process induces
the transition 1j ia ~nj ib? 0j ia mj ib. The corresponding transition
amplitude is proportional to the numerator in Eq. (12). Due to the
quadratic terms of b and b{ in Sb(g(1)), jmæb and ~nj ib should have the
same parity, i.e., being odd or even. Consequently, the phonon num-
ber distribution in the long-time state of the membrane will have the
same parity as its initial component jn0æb. In addition, we can derive
the resonant condition in this emission process from the energy-level
structure in Fig. 1(b). For the transition 1j ia ~nj ib? 0j ia mj ib, the fre-

quency of the emitted photon is vk~vczd 1ð Þznv
1ð Þ

M {mvM ,
which is consistent with the resonance condition

Dk~d 1ð Þznv
1ð Þ

M {mvM, ð13Þ

obtained from the pole of the denominator in Eq. (12).
We know from Eqs. (10) and (12) that, corresponding to the initial

state 1j ia n0j ibj i, the long-time state of the whole system is

Qn0
?ð Þ

�� �
~
X?
m~0

ð?
0

Bn0,m,k ?ð Þ 0j ia mj ib 1kj idk: ð14Þ

Therefore, when the membrane is initially in a general density matrix
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r bð Þ 0ð Þ~
X?

m,n~0

r bð Þ
m,n 0ð Þ mj ib b nh j, ð15Þ

the long-time state of the whole system can be obtained by super-
position as

r ?ð Þ~
X?

m,n~0

r bð Þ
m,n 0ð Þ Qm ?ð Þj i Qn ?ð Þh j: ð16Þ

Here the density matrix elements are r bð Þ
m,n 0ð Þ~b mh jr bð Þ 0ð Þ nj ib.

To characterize the quadratic optomechanical coupling, a useful
quantity is the single-photon emission spectrum, i.e., the probability
distribution of the emitted photon. For the initial membrane state
(15), the emission spectrum is defined by

S Dkð Þ~Tr 1kj i 1kh jr ?ð Þ½ �

~
X?

l,m,n~0

r bð Þ
m,n 0ð ÞBm,l,k ?ð ÞB�n,l,k ?ð Þ:

ð17Þ

In Fig. 2, we plot the emission spectrum S(Dk) versus the photon
frequency Dk, for various values of g0 and cc, when the membrane is
initially in its ground state j0æb. We see from Eq. (12) that both

v
1ð Þ

M wcc and vM . cc might be the resolved-sideband condition.
For a positive g, then vM . cc could make sure that the two condi-

tions are met, because of v
1ð Þ

M wvM . We found that, in the case of

v
1ð Þ

M wccwvM , the phonon-sideband evidence is negligible. So, in
this paper, we consider vM . cc as the resolved-sideband condition.
Figures 2(a–c) are plotted in the resolved-sideband regime vM . cc

so that the phonon sideband peaks could be used to characterize the
coupling strength g0. When g0 , cc [Fig. 2(a)], the spectrum is
approximately a Lorentzian function with width cc and center
Dk 5 d(1). In this case, there are no sideband peaks in the spectrum.
However, the sideband peaks become visible when g0 . cc.
Physically, when the displacement of the membrane equals its
zero-point fluctuation, the photon frequency shift induced by the
quadratic optomechanical coupling is g0. To resolve this frequency
shift from the Lorentzian spectrum of a free cavity, the condition

g0 . cc should be satisfied. Such a condition can also be understood
by examining the height of these peaks in the spectrum. To resolve a
peak in the spectrum, the peak height should be much higher than
the tail of its neighboring Lorentzian. This requires g0?cc in the
resolved-sideband regime. As an example, we analyze the special case
of g0=vM=1. In the resolved-sideband regime vM=cc?1 and under
the initial state j0æb, we expand S(Dk) up to second-order in g0/vM.
Then, the height of the sideband peak located at Dk 5 d(1) 2 2vM can

be obtained as S d 1ð Þ{2vM

� �
< cc



8pv2

M

� �
1z8g2

0



c2

c

� �
. Since the

main peak of the spectrum is approximately a Lorentzian function

SL Dkð Þ<
cc

2p
Dk{d 1ð Þ
� �2

zc2
c



4

� �{1

, then the requirement

S d 1ð Þ{2vM

� �
SL d 1ð Þ{2vM

� �<1z
8g2

0

c2
c

?1 ð18Þ

leads to the condition g0?cc.
We remark that the positions of these sideband peaks in Fig. 2 are

determined by the resonance condition (13), and these sideband

peaks are not periodic because of the difference between v
1ð Þ

M and
vM. Also, for the initial state j0æb of the membrane, the contributing
m and n in Eq. (13) should be even numbers due to the parity
requirement. In Figs. 2(a–c), the peak located at Dk 5 d(1) is the main
peak (corresponding to the transition 1j ia ~0

�� �
b
? 0j ia 0j ib). Hence, we

can resolve the main peak from the Lorentzian spectrum for a free
cavity when d(1) . cc, which requires g0 . cc(1 1 cc/vM). The peak
located at Dk 5 d(1) 2 2vM corresponds to the transition
1j ia ~0
�� �

b? 0j ia 2j ib. Moreover, the peak located at Dk~d 1ð Þz

2v
1ð Þ

M {2vM corresponds to the transition 1j ia ~2
�� �

b? 0j ia 2j ib.
Finally, Fig. 2(d) is plotted in the unresolved-sideband regime. We
can see from Fig. 2(d) that, even though the system works in the
single-photon strong-coupling regime, there are no sideband peaks
in the spectrum. This fact indicates that the resolved-sideband
regime and the single-photon strong-coupling condition are two
combined necessary requirements for observing sideband peaks in
the emission spectrum.

To illustrate how the spectrum depends on the initial state of the
membrane, we plot in Fig. 3 the spectrum S(Dk) versus Dk when the
membrane is initially in either the Fock states j0æb and j1æb, the
coherent state jb 5 1æb, or the thermal state rth

b �n~1ð Þ. For the initial
state j0æb, the main peak (with the location Dk 5 d(1)) in Fig. 3(a) is
related to the transition 1j ia ~0

�� �
b
? 0j ia 0j ib. The two peaks located at

Dk 5 d(1) 2 2vM and Dk~d 1ð Þz2v
1ð Þ

M {2vM correspond to the
transitions 1j ia ~0

�� �
b? 0j ia 2j ib and 1j ia ~2

�� �
b? 0j ia 2j ib, respectively.

For the initial state j1æb, the main peak (located at

Dk~d 1ð Þzv
1ð Þ

M {vM) in Fig. 3(b) is related to the transition
1j ia ~1
�� �

b
? 0j ia 1j ib. The other two peaks located at

Dk~d 1ð Þzv
1ð Þ

M {3vM and Dk~d 1ð Þz3v
1ð Þ

M {3vM correspond to
the transitions 1j ia ~1

�� �
b? 0j ia 3j ib and 1j ia ~3

�� �
b? 0j ia 3j ib, respect-

ively. Here, Figs. 3(a) and (b) only show even- and odd-parity side-
band peaks, respectively. However, the coherent and thermal states
contain both odd- and even-parity number states, and hence we can
see both odd- and even-parity sideband peaks in Figs. 3(c,d). The
positions of these sideband peaks are consistent with those in
Figs. 3(a,b).

In the long-time limit, though the single photon is completely
leaked out of the cavity, its state is still entangled with the mechanical
mode. This entanglement involves a single mode of phonons (the
mechanical degree of freedom) and a set of modes of the photon
because the single photon is distributed into the continuous fields
outside the cavity. In general, it is difficult to clearly describe the

Figure 2 | Single-photon emission spectrum S(Dk) versus Dk for various
values of g0 and cc. Panels (a–c) are plotted in the resolved-sideband

regime (cc/vM 5 0.2), while (d) is plotted in the unresolved-sideband

regime (cc/vM 5 1.5). The membrane’s initial state is | 0æb.
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structure of this entanglement. However, from the viewpoint of a
single photon, we can characterize the entanglement as a bipartite
one between a single photon and a single mode of phonons. In
particular, we will consider a pure initial-state case so that the
long-time state of the total system is also pure; then we can employ
the linear entropy to quantity this bipartite entanglement.

When the membrane is initially in the general state (15), the long-
time state of the total system is given by Eq. (16). In terms of Eq. (12),
the reduced density matrix of the membrane can be obtained as

r bð Þ ?ð Þ~icc

X?
l,l’,m,n,s,s’~0

rb
m,n 0ð ÞPe{i l{l’ð ÞvM t lj ib b l’h j, ð19Þ

where

P~
b l ~sjh ib b ~s mjh ib b n ~s’jh ib b ~s’ l’jh ib

l{l’ð ÞvMz s’{sð Þv 1ð Þ
M zicc

: ð20Þ

The linear entropy49 of the density matrix (19) is

El:1{Tr r bð Þ ?ð Þ
h i2
� �

~1{c2
c

X?
l,l’~0

X?
m,n,s,s’~0

rb
m,n 0ð ÞP

�����
�����

2

:

ð21Þ

In Fig. 4, we plot El versus g0 for initial Fock states jn0æb of the
membrane, i.e., rb

m,n 0ð Þ~dm,n0 dn,n0 . Figure 4 shows that (as a general
trend) El increases with increasing g0. However, there are some res-
onance dips in the linear entropy when g0 takes some special values.
The locations of these dips can be determined from the poles of the

denominator in Eq. (20), i.e., l{l’ð ÞvMz s’{sð Þv 1ð Þ
M ~0, here the

values of (l 2 l9) and (s9 2 s) should be even numbers because of the
parity requirement in the transitions. For example, there is a dip at g0/
vM 5 0.75, which corresponds to j(l 2 l9)/(s9 2 s)j5 2. In addition,

corresponding to the membrane’s initial states j0æb, j1æb, and j2æb, the
linear entropy keeps increasing. We may roughly explain this phe-
nomenon by analyzing the magnitude distribution of these factors
b n0 ~s’jh ib and b ~s n0jh ib. When n0 changes from 0 to 2, the magnitude
distribution of these transitions elements b n0 ~s’jh ib (for different s9)
becomes increasingly smoother. This implies that the number of
contributing coefficients increases, and hence the entanglement
increases.

Single-photon scattering. In the single-photon scattering case, the
single photon is initially in a Lorentzian wave packetffiffiffi

E
p

r ð?
0

1
Dk{D0ziE

dk in the outside fields, where D0 and E are the

detuning center and spectral width of the photon. In this case, with
the Laplace transform method, the long-time solution (i.e., t?1=cc,
1=E) of these probability amplitudes is obtained as An0,m ?ð Þ~0 and

Bn0,m,k ?ð Þ~e{i DkzmvMð Þt
ffiffiffi
E
p

r
1

Dk{D0ziE
dm,n0

	

{

ffiffiffi
E
p

r
1

Dk{ D0z n0{mð ÞvM½ �ziE

|
X?
n~0

icc b m ~njh ib b ~n n0jh ib
Dk{d 1ð Þ{nv

1ð Þ
M zmvMzicc=2

!
:

ð22Þ

Here the subscript n0 in these amplitudes is used to mark the initial
state of the membrane. In the long-time limit, the single photon will
completely leak out of the cavity, and hence we have An0,m ?ð Þ~0. It
can be seen from Bn0,m,k ?ð Þ that there are two physical processes in
the single-photon scattering. (i) The single-photon direct-reflection
process: the incident photon is directly reflected by the mirror,
without entering the cavity. This process is described by the first
term of Bn0,m,k ?ð Þ. (ii) The photon-membrane interacting process:
the single photon enters the cavity to couple with the moving
membrane and eventually leaks out of the cavity via the cavity
decay channel. This process is described by the second term (i.e.,
the second and third line) in Eq. (22). In this process, the system
experiences the transitions 0j ia n0j ib? 1j ia ~nj ib? 0j ia mj ib, These
transitions are governed by the two resonance conditions

D0~d 1ð Þznv
1ð Þ

M {n0vM, ð23aÞ

Dk~d 1ð Þznv
1ð Þ

M {mvM, ð23bÞ

Figure 3 | Single-photon emission spectrum S(Dk) versus Dk for various
initial states of the membrane. The membrane is initially prepared in

either the Fock states | 0æb and | 1æb, the coherent state | b 5 1æb, or the

thermal state rth
b �n~1ð Þ. Other parameters are cc/vM 5 0.2 and g0/wM 5

0.6.

Figure 4 | The linear entropy El in the emission case. The linear entropy El

versus the optomechanical coupling strength g0, when the initial state of

the membrane is | 0æb, | 1æb, and | 2æb. Here cc/vM 5 0.2.
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which can be derived from either the energy level structure in
Fig. 1(b) or the poles of the probability amplitude (22).
Interestingly, the second line in Eq. (22) is a Lorentzian wave
packet with spectral width E and center Dk 5 D0 1 (n0 2 m)vM.
In comparison to the initial Lorentzian wave packet, the shift of the
wave packet center is equal to the energy variance of the membrane.
Moreover, the third line in Eq. (22) has a similar form as Eq. (12) for
the single-photon emission process.

The single-photon scattering spectrum can be calculated in terms
of Eqs. (17) and (22). We see from Eq. (22) that either the second line
or the third line could cause phonon sidebands, and the conditions
for resolving these sidebands due to the two lines are vMwE and vM

. cc, respectively. Here, cc is the system’s inherent parameter while E
is an externally controllable parameter. In the following, we first
consider the case of EwvMwcc so that the observed sideband peaks
are caused purely by the system inherent effect. In Fig. 5, we plot the
spectrum S(Dk) versus the photon frequency Dk for various values of
g0 and cc. When g0 , cc, there are no peaks in the spectrum
[Fig. 5(a)]. The phonon sideband effect can be observed in the scat-
tering spectrum when g0 . cc and vM . cc [Figs. 5(b,c)]. Owing to
the interference between the direct reflection process and the
photon-membrane interacting process, there exist both peaks and
dips in the spectrum. In Figs. 5(b,c), the dips represent the transition
1j ia ~0
�� �

b? 0j ia 0j ib, while the peaks correspond to the transition

1j ia ~0
�� �

b
? 0j ia 2j ib. In addition, in the unresolved-sideband regime

(cc . vM), there are no peaks even in the single-photon strong-
coupling regime [Fig. 5(d)].

We now consider the near-monochromatic case (E=cc). In
Fig. 6(a), we plot the scattering spectrum in the case of cc . vM

and E=vM . This figure exhibits phonon sideband peaks, and hence
indicates that vMwE also provides the condition for observing the
phonon sideband peaks due to the second line in Eq. (22). We point
out that this provides a way to characterize the coupling strength g0

from the scattering spectrum in the case of cc . vM. Another benefit
in the near-monochromatic case is that we can conveniently control

the exciting transition by choosing the frequency of the incident
photon. In Figs. 6(b,c), we choose the frequency of the incident

photon as D0 5 d(1) and D0~d 1ð Þz2v
1ð Þ

M to resonantly excite the
system from j0æaj0æb to 1j ia ~0

�� �
b and 1j ia ~2

�� �
b, respectively. In the

emission process, the membrane will experience the transitions from
~0
�� �

b
and ~2

�� �
b

to jnæb (n 5 0, 2, 4, …). Therefore, the maximal
frequency sideband peaks should be located at Dk 5 d(1) and

d 1ð Þz2v
1ð Þ

M , respectively. In addition, the period of these peaks is
2vM. Similar to the emission case, the scattering spectrum also
depends on the initial state of the membrane. In Fig. 6(d), we plot
the scattering spectrum when the membrane’s initial state is coherent
state ja 5 1æb. Though the initial coherent state contains both even-
and odd-parity states, the spectrum only exhibits similar peaks as
those in Fig. 6(b). This is because the incident photon (withD0 5 d(1))
only resonantly excites the membrane from j0æb to ~0

�� �
b; other transi-

tions from jnæb to ~n’j ib (n, n9 5 1, 2, 3, …, with the same parity) are
significantly suppressed due to the large detuning. A further photon
emission process induces the transitions from ~0

�� �
b

to jnæb (n 5 0, 2, 4,
…).

Similar to the emission case, the scattered photon is completely
emitted out of the cavity in the long-time limit; and the state of the
photon is entangled with the mechanical membrane. For the mem-
brane’s initial state jn0æb, the linear entropy of the long-time reduced
density matrix of the membrane was calculated exactly. This is not
shown here because the analytical solution is long. We can examine
how the linear entropy depends on the system parameters: the incid-
ent photon frequency D0 and the optomechanical coupling strength
g0. In the near-monochromatic limit E=cc, we plot, in Fig. 7(a), the
linear entropy El as a function of D0 when the quadratic optomecha-
nical coupling g0 takes various values. We can see from Fig. 7(a) that
there are resonant peaks in the entropy. For a given g0, the locations

Figure 5 | Single-photon scattering spectrum S(Dk) versus Dk for various
values of g0 and cc. Figures (a–c) are plotted in the resolved-sideband

regime (cc/vM 5 0.2), while (d) is plotted in the unresolved-sideband

regime (cc/vM 5 1.5). The membrane’s initial state is | 0æb. Other

parameter are D0 5 d(1) and E=vM~1:2.

Figure 6 | Single-photon scattering spectrum S(Dk) versus Dk for various
D0 and initial states of the membrane. The panel (a) is plotted in the

unresolved-sideband regime (g0/vM 5 2 and cc/vM 5 1.5), while panels

(b–d) are plotted in the resolved-sideband regime (g0/vM 5 0.8 and cc/vM

5 0.2). The frequency center D0 of the incident photon is d 1ð Þz2v
1ð Þ

M , and

d(1) in other panels. The membrane’s initial state is the ground state | 0æb in

panels (a–c) and the coherent state | a 5 1æb in (d). The parameter

E=vM~0:02.
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of these peaks are D0 5 d(1) and D0~d 1ð Þz2v
1ð Þ

M , which are deter-
mined by the resonance conditions in the dominant transitions in the
photon injection process: 0j ia 0j ib? 1j ia ~0

�� �
b and 0j ia 0j ib? 1j ia ~2

�� �
b.

We also investigate the dependence of the linear entropy El on the
coupling strength g0 when the incident photon is in resonance with
the transitions. In Fig. 7(b), we plot the entropy El versus g0 when the
initial state of the membrane is j0æb, j1æb, and j2æb. Here the single
photon is resonantly injected into the cavity. Corresponding to the
initial states j0æb, j1æb, and j2æb, the driving frequencies are D0 5 d(1),

D0~d 1ð Þzv
1ð Þ

M {vM , and D0~d 1ð Þz2v
1ð Þ

M {2vM , respectively.
These drivings determine the dominant photon-injection transitions:
0j ia 0j ib? 1j ia ~0

�� �
b
, 0j ia 1j ib? 1j ia ~1

�� �
b
, and 0j ia 2j ib? 1j ia ~2

�� �
b
. We

can see that, in the resonant scattering case, the linear entropy
increases when increasing g0.

Discussion
Although the currently-available quadratic couplings are too weak to
reach the single-photon strong-coupling regime, advances have
recently been made in the enhancement of this coupling strength.
In quadratic optomechanics, the coupling strength is g0~gx2

zpf ,
where xzpf is the zero-point fluctuation of the mechanical membrane,

and g~
1
2
L2vc xð Þ

Lx2 x~0j , with vc(x) being the x-dependent cavity

frequency. Recently, the value of g has been increased significantly
from about 30 MHz/nm2 (in Ref. [33]) to 20 GHz/nm2 (in Ref. [42])
using a fiber cavity with a smaller mode size. For a xzpf , 41 fm,
suggested in Ref. 28, the coupling strength is g0 , 2p 3 5.35 Hz. If

the cavity decay rate cc , MHz, the coupling strength needs to be
further increased by five orders of magnitude to reach the single-
photon strong-coupling regime. From g0~gx2

zpf , we can see that the
g0 can be increased by obtaining a larger g or xzpf. This requires the
improvement of experimental conditions. In addition, the model
under investigation is a general quadratic optomechanical
Hamiltonian36. It can also be realized in various physical systems
such as ultracold atoms and superconducting circuits. In the linear
optomechanical coupling case, the ultracold atom system has been
demonstrated to approach the single-photon strong-coupling
regime13,14, and the superconducting circuit system has been esti-
mated to be in this regime26,27. Moreover, other methods have been
recently explored to achieve effective strong quadratic optomecha-
nics. For example, a measurement-based method has been proposed
to perform this mission. Based on these achievements, it might be
possible to pursue the single-photon strong-coupling regime in
quadratic optomechanics.

In the above discussions, we did not include the mechanical dis-
sipation. Now we give a rough estimate for the influence of the
mechanical dissipation on our results. In our considerations, all
the results are determined by the probability amplitudes given in
Eqs. (12) and (22). To evaluate the influence of the mechanical dis-
sipation, we introduce an imaginary decay factor into the resonant
frequency of the mechanical mode, i.e., approximately replacing vM

with vM{icM 2�nthz1ð Þ=2, where �nth is the thermal phonon occu-
pation. In this way we can estimate the effect of the thermal mech-
anical dissipation. If cM 2�nthz1ð Þ=cc=2, then the mechanical
dissipation is negligible. This is because, in the low-temperature
regime, the imaginary part in the denominators of Eqs. (12) and
(22) can still be approximated by cc/2, and the exponential factor
e{cM 2�nthz1ð Þt is almost 1 during the time scale t , 1/cc.

We have analytically studied the single-photon emission and scat-
tering in a quadratically-coupled optomechanical system. By treating
the optomechanical cavity and its environment as a whole system, we
have obtained the emission and scattering solutions using the
Laplace transform method. Based on our solutions, we have calcu-
lated the single-photon emission and scattering spectra, and found
relations between the spectral features and the system’s inherent
parameters. In particular, we have clarified the condition under
which phonon sideband peaks can be observed in the photon spectra.
In the resolved-sideband regime vM . cc, the phonon sidebands are
visible when g0 . cc, while the condition for resolving the photon-
state energy-level shift d(1) is g0 . cc(1 1 cc/vM). We have also
investigated the creation of photon-phonon entanglement in the
emission and scattering processes. This entanglement was created
due to the energy requirement in the photon absorption and emis-
sion processes, and it was treated as a bipartite one from the view-
point of a single photon rather than photon modes. We have
considered the pure state case so that the linear entropy can be used
to characterize this entanglement between the phonon mode and a
single photon.

Finally, we want to mention several possible applications of the
single-photon emission and scattering processes. (i) Since the emis-
sion and scattering spectra are related to the eigen-energy of the
system, we can read out the system parameters, such as coupling
strength and mechanical frequency, from the spectra. (ii) We can
infer the initial state information of the mechanical resonator based
on the single-photon spectra, similar to the linear optomechanics
case50. As a special example, the initial temperature of the mechanical
membrane can also be determined from the spectra. (iii) The entan-
glement generated in the emission and scattering processes involves
phonons and one outgoing photon. So this entanglement could be
used to implement quantum information processing tasks, where
phonons and photons are used as information memory and carriers,
respectively.

Figure 7 | The linear entropy El in the scattering case. (a) The linear

entropy El versus D0 for various values of g0. The initial state of the

membrane is | 0æb. (b) The linear entropy El versus g0 when the membrane

is initially in states | 0æb, | 1æb, and | 2æb. Here the frequencies of the incident

photon are D0 5 d(1), D0~d 1ð Þzv
1ð Þ

M {vM , and D0~d 1ð Þz2v
1ð Þ

M {2vM ,

respectively. Other parameters are cc/vM 5 0.2 and E=vM~0:02.
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Methods
Solving the equations of motion for probability amplitudes. According to Eqs. (9),

(10), and the Schrödinger equation i
L
Lt

Q tð Þj i~HI Q tð Þj i, we obtain the equations of

motion for the probability amplitudes

_Am tð Þ~{i d 1ð Þzmv
1ð Þ

M

� �
Am tð Þ{ij

X?
n~0

ð?
0

b ~mjnh ibBn,k tð Þdk, ð24aÞ

_Bm,k tð Þ~{i DkzmvMð ÞBm,k tð Þ{ij
X?
n~0

b mj~nh ibAn tð Þ, ð24bÞ

where the single-photon coupled membrane’s frequency and energy-level shift are

given by v
1ð Þ

M ~vM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4g0=vM

p
and d 1ð Þ~ v

1ð Þ
M {vM

� �.
2. In addition, the

coefficients b ~mjnh ib and b mj~nh ib can be calculated using Eq. (11).
The equations of motion (24) for the probability amplitudes may be solved with the

Laplace transform method under a given initial condition. In the single-photon
emission case, a single photon is initially inside the cavity, and the outside fields are in
a vacuum. For the mechanical mode, we first assume that its initial state is an arbitrary
number state jn0æb. Based on the solution in this case, the solution for the general
initial membrane state can be obtained accordingly by superposition. For the initial
state 1j ia n0j ibj i, the corresponding initial condition for Eq. (24) is
Am 0ð Þ~b ~mjn0h ib and Bm,k(0) 5 0. In the single-photon scattering case, the single
photon is initially in a Lorentzian wave packet in the outside fields, and the cavity is in
a vacuum j0æa. We also assume that the membrane is initially in the number state
jn0æb, and then the initial condition for Eq. (24) becomes Am(0) 5 0 and

Bm,k 0ð Þ~
ffiffiffi
E
p

r
1

Dk{D0ziE
dm,n0 , where D0 and E are the detuning center and spectral

width of the photon, respectively. Based on these initial conditions and the equations
of motion, we may obtain the solution of these probability amplitudes using the
Laplace transform method. The long-time solutions corresponding to the single-
photon emission and scattering have been given in Eqs. (12) and (22), respectively.
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