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Majorana fermions are long-sought exotic particles that are their own antiparticles. Here we propose to
utilize superconducting circuits to construct two superconducting-qubit arrays where Majorana modes can
occur. A so-called Majorana qubit is encoded by using the unpaired Majorana modes, which emerge at the
left and right ends of the chain in the Majorana-fermion representation. We also show this Majorana qubit
in the spin representation and its advantage, over a single superconducting qubit, regarding quantum
coherence. Moreover, we propose to use four superconducting qubits as the smallest system to demonstrate
the braiding of Majorana modes and show how the states before and after braiding Majoranas can be
discriminated.

M
ajorana fermions are particles that are their own antiparticles. These long-sought particles have recently
received considerable interest (see, e.g., Refs. 1–11). It has been recognized12–14 that a relatively easy-to-
engineer system—one-dimensional (1D) semiconducting wires on an s-wave superconductor—can

realize a nontrivial topological state supporting Majorana fermions. This state is characteristic of 1D topological
superconductors5, in which Majorana modes can occur without requiring the presence of vortices in the system.
The recent experimental observation15 of a zero-bias peak in the differential conductance of a semiconductor
nanowire coupled to a superconductor suggested the possible existence of Majorana fermions. Moreover, it was
proposed16 to use tunable 1D semiconducting wire networks on an s-wave superconductor to demonstrate the
non-Abelian statistics of Majorana fermions, because the Majoranas in the semiconducting wires can also behave
like vortices in a p 1 ip superconductor3,4. In addition, it was also recognized17,18 that when a Jordan-Wigner
transformation is performed, a 1D quantum Ising model is equivalent to a 1D topological superconductor, and
Majorana modes can also occur therein. Nevertheless, less attention has been paid to this quantum Ising model
than to 1D topological superconductors because it was often regarded as a toy model.

In this paper, we propose to realize such a toy model by using experimentally accessible superconducting-qubit
arrays. Importantly, superconducting qubits can behave as controllable artificial atoms and tunable interqubit
couplings are also achievable (see, e.g., Ref. 19–21). For instance, the tunable coupling between flux qubits was
experimentally demonstrated in Refs. 22–24. For a finite superconducting-qubit array, when the interqubit
couplings are tuned to be nonzero and other parameters of the qubits are tuned to be zero, there are two unpaired
Majorana modes, which emerge at the left and right ends of the chain in the Majorana-fermion representation.
We use these two Majorana modes to encode a qubit which is here called the Majorana qubit. Also, we express this
Majorana qubit in the spin representation and show its advantage, over a single superconducting qubit, regarding
quantum coherence. Moreover, the advantages of superconducting qubits in controllability make it possible to
construct a tunable 1D quantum Ising model on wire networks, similar to the semiconducting wire networks in
Ref. 16, to demonstrate the non-Abelian statistics of Majorana modes. We propose to use four superconducting
qubits as the smallest circuit to demonstrate the braiding of Majorana modes, and show how the states before and
after braiding Majoranas can be discriminated. This should provide an experimentally realizable, relatively simple
setup to manipulate and probe Majorana fermions. Thus, our proposal could allow the quantum simulation25 or
emulation of Majorana fermions.

Results
Majorana modes in superconducting circuits. We construct two types of superconducting-qubit arrays (see
Figure 1), which can exhibit Majorana modes.
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(1) Charge-qubit array. For the array of charge qubits shown in
Figure 1(a), every pair of nearest-neighbor qubits are coupled by a
large Josephson junction acting as an effective inductance. The non-
nearest-neighbor qubits can also be coupled via these large Josephson
junctions, but the interactions are negligibly small. Here we assume
that all charge qubits are identical and that all large junctions are
equal to each other. When leading terms are considered, the
Hamiltonian of this charge-qubit array can be written as

H~
XN{1

n~1

t sx
nsx

nz1{
XN

n~1

m sz
nzn sx

n

� �
, ð1Þ

with m~
1
2

Ech 1{Cg Vg

�
e

� �
, n 5 EJ0 cos(pWq/W0), and the interqubit

coupling is given by26

t~LJ
pEJ0

W0

� �2

sin2 pWq

W0

� �
: ð2Þ

Here Ech <e2
�

CJ
� �

?EJ in the charging regime considered here and
LJ 5W0/2pIc, with Ic 5 2pEJc/W0 and W0 being the flux quantum. The
eigenstates of the Pauli operator sz

n are the charge states j0næ and j1næ,
corresponding to zero and one extra Cooper pair in the supercon-
ducting island of the nth qubit. The Hamiltonian (1) provides an
analog to the 1D quantum Ising model.

We now consider the case with the fluxes in all charge-qubit loops

being tuned to Wq~
1
2
W0, so that n 5 0, and the interqubit couplings

reach the maximum t 5 LJ(pEJ0/W0)2. Using the Jordan-Wigner
transformation17,18:

an~s{
n P

n{1

m~1
sz

m, a{n~s{
n P

n{1

m~1
sz

m, ð3Þ

where s+
n ~

1
2

sx
n+isy

n

� �
, one can cast equation (1), in the case of

Wq~
1
2
W0, to

H~
XN{1

n~1

t an{a{n
� �

anz1za{nz1

� �
{
XN

n~1

m 2a{nan{1
� �

, ð4Þ

where the Dirac fermions obey the anticommutation relation

an,a{n’

n o
~dnn’. Introducing Majorana fermions:

cA
n ~a{nzan, cB

n~i a{n{an
� �

, ð5Þ

one can rewrite the Hamiltonian (4) as

H~i
XN{1

n~1

tcB
ncA

nz1{i
XN

n~1

mcA
n cB

n , ð6Þ

where cX{
n ~cX

n and cX
n ,cX’

n’

	 

~2dXX’dnn’. Obviously, cX

n

� �2
~1,

which is different from the Dirac fermion.

(2) Flux-qubit array. Figure 1(b) shows an array of flux qubits. Here
the small junction in the ordinary flux qubit is replaced by a sym-
metric dc SQUID to increase the tunability of the qubit. Also, a
coupler consisting of three Josephson junctions is used to produce
a controllable interqubit coupling between nearest-neighbor flux
qubits. We assume that the parameters are the same for all qubits
and also for all couplers. Moreover, the plasma frequency of the
coupler is much higher than the related qubit energy, so as to keep
the coupler in the ground state27. When the leading terms are
included, the Hamiltonian of the flux-qubit array can be written as

H~
XN{1

n~1

t sz
nsz

nz1{
XN

n~1

n sz
nzm sx

n

� �
: ð7Þ

Here n~IpW0
1
2
{f

� �
, with Ip being the persistent current of the flux

qubit and f 5 Wq/W0 1 fs/2, where fs 5 Ws/W0, with Ws being the
magnetic flux applied in the SQUID loop [see Figure 1(d)]. The
eigenstates of the Pauli operator sz

n are the clockwise and anti-
clockwise persistent-current states of the nth qubit. The symmetric
SQUID provides an effective Josephson junction with coupling
energy aEJ, where a 5 cos(pfs). The exact expression of m in equation
(7) cannot be obtained, but it depends on a; numerical results28 and
approximate analytical calculations29 showed that m 5 0 when a 5 1.
The interqubit coupling strength reads27

t~
bEJc cos 2pfc{wcð Þ

1z2b cos 2pfc{wcð Þ , ð8Þ

where fc 5 Wc/W0 is the reduced flux applied to the coupler, and wc 5

2b sin(2pfc)/[1 1 2b cos(2pfc)], with b being the ratio of the
Josephson couplings between the smaller and larger junctions in
the coupler [see Figure 1(b)].

We study the case with f ~
1
2

for all flux qubits, so as to have n 5 0.

The Hamiltonian of the system also becomes equation (4) when
applying the Jordan-Wigner transformation:

Figure 1 | Two arrays of superconducting qubits. (a) Charge-qubit array:

Nearest-neighbor charge qubits Qn and Qn11 are coupled by a large

Josephson junction with coupling energy EJc (shown as a crossed

rectangle). (b) Flux-qubit array: Nearest-neighbor flux qubits are coupled

by a coupler consisting of a flux-biased loop that is interrupted by two large

Josephson junctions (each with coupling energy EJc) and a small Josephson

junction with coupling energy bEJc, where 0vb=1. In (a) and (b), Wq is

the flux applied to each qubit loop. (c) Main components of a charge qubit,

where a superconducting island (denoted as a solid circle) is connected to

two Josephson junctions (each with coupling energy EJ0=EJc and

capacitance CJ) and biased by a voltage Vg through a gate capacitance

Cg=CJ . (d) Main components of a flux qubit, where two Josephson

junctions, each with coupling energy EJ=EJc, connects a symmetric dc

SQUID biased by a flux Ws.
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an~sz
n P

n{1

m~1
sx

m, a{n~s{
n P

n{1

m~1
sx

m, ð9Þ

where s+
n ~

1
2

sz
n+isy

n

� �
. Finally, the Hamiltonian is described by

equation (6) when introducing Majorana fermions in equation (5).
Therefore, the resulting Hamiltonians in terms of Majorana fermions
are the same for both charge- and flux-qubit arrays.

For N R ‘, we can obtain the energy bands of the periodic chain
by performing a Fourier transform on Hamiltonian (6):

cX
n ~

ffiffiffiffi
2
N

r X
k

eikncX
k , ð10Þ

where cX
{k~cX{

k and X 5 A, B. The resulting Hamiltonian in recip-
rocal space reads

H~
X

k

cA{
k cB{

k

� � 0 {iD� kð Þ
iD kð Þ 0

� �
cA

k

cB
k

 !
, ð11Þ

with D(k) 5 teik 1 m. The energy spectrum shows the particle-hole
symmetric dispersion

E kð Þ~+ D kð Þj j~+ teikzm
�� ��, ð12Þ

which consists of two bands. As examples, we present in Figure 2 the
particle-hole symmetric dispersion for r ; m/t 5 0.5 and 1, respect-
ively. It is clear that when r 5 1, the gap of the two bands closes at
certain values of the wave vector k.

For a finite chain, when jrj , 1, there are two degenerate edge
modes with zero energy (i.e., in the middle of the energy gap). These
two edge modes can be represented by

Q~c1cA
1 zc2cB

1z � � �zc2N{1cA
Nzc2N cB

N , ð13Þ

with the coefficients determined by

mc2n{1ztc2nz1~0, tc2n{2zmc2n~0, ð14Þ

where n 5 1, 2, …, N, and the initial condition is c0 5 0 for the left-
end edge state and c2N 1 1 5 0 for the right-end edge state. It can be
derived that the left- and right-end edge modes are given, respect-
ively, by

QL~C cA
1 {rcA

2 zr2cA
3 { � � �z {rð ÞN{1cA

N

 �
,

QR~C {rð ÞN{1cB
1 z � � �zr2cB

N{2{rcB
N{1zcB

N

 �
, ð15Þ

where the normalization factor is C~
XN{1

n~0
r2n

� �{1=2
. In Ref. 30,

the left- and right-end edge modes were also studied in a flux-qubit
array, but the interqubit coupling was not tunable.

In particular, when m 5 0, the Hamiltonian is reduced to

H~{
XN{1

n~1

t 2d{
ndn{1

� �
, ð16Þ

where dn~
1
2

cA
nz1zicB

n

� �
is a Dirac fermion composed of two

Majoranas at adjoining sites. The edge modes become two unpaired
Majorana fermions: QL~cA

1 , and QR~cB
N , which emerge at the left

and right ends of the chain as local modes in the Majorana-fermion
representation. However, as shown in the following subsection, these
two Majorana modes become non-local in the spin representation.
Moreover, these two degenerate modes do not appear in the
Hamiltonian because they have zero energy5,31. Now define jF æ to
be the state in which all eigenstates of the system with E , 0 are
occupied and those with E $ 0 are empty. When the edge modes are
occupied, YLj i~cA

1 Fj i and YRj i~cB
N Fj i are two degenerate ground

states of the system. These two Majorana modes can be used to
represent the basis states of a qubit called here the Majorana qubit:

0j i:dend Fj i, 1j i:d{
end 0j i, ð17Þ

where

dend~
1
2

cA
1 zicB

N

� �
ð18Þ

is a non-local Dirac fermion, and dendj0æ 5 0. A similar Majorana
qubit was also proposed in quantum wires with spin-orbit interac-
tions (see, e.g., Ref. 16). Such a qubit had initially been thought of as
being fully topologically protected, but recent studies showed that it
could also suffer from decoherence caused by either coupling to the
solid-state environment (see, e.g., Ref. 32) or strong renormalization
by interactions (see, e.g., Ref. 33–35), which was often neglected.

The Majorana qubit in the spin representation. Below we derive
the two basis states j0æ ; dendjF æ and 1j i:d{

end 0j i in the spin

Figure 2 | The particle-hole symmetric dispersion. It is obtained from equation (12), where r ; m/t 5 (a) 0.5 and (b) 1.
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representation and discuss issues regarding the quantum coherence
of this Majorana qubit.

(1) Charge-qubit array. When t . 0 and m 5 n 5 0 in equation (1),
the state jF æ can be written, in the spin representation, as

Fj i~
ffiffiffi
2
p

?/?/ � � �/j i if N~even,ffiffiffi
2
p

?/?/ � � �?j i if N~odd,

(
ð19Þ

where N is the number of charge qubits in the array and

?j i~ 1ffiffiffi
2
p

1

1

� �
, /j i~ 1ffiffiffi

2
p

1

{1

� �
ð20Þ

are the two eigenstates of sx with eigenvalues 1 and 21, respectively.
In the spin representation, cA

1 ~sx
1 and cB

N~iPcs
x
N , where the

string operator

Pc: P
N

m~1
sz

m ð21Þ

is the parity operator associated with the Z2 symmetry of the system.
Obviously, cB

N becomes a non-local chain operator in the spin rep-
resentation. The two degenerate ground states jYLæ and jYRæ can be
written as

YLj i~cA
1 Fj i~sx

1 Fj i

~

ffiffiffi
2
p

?/?/ � � �/j i if N~even,ffiffiffi
2
p

?/?/ � � �?j i if N~odd,

(
ð22Þ

and

YRj i~cB
N Fj i~iPcs

x
N Fj i

~
{i

ffiffiffi
2
p

/?/? � � �?j i if N~even,

i
ffiffiffi
2
p

/?/? � � �/j i if N~odd:

(
ð23Þ

It is clear that ÆYLjYRæ 5 0. The two basis states j0æ ; dendjF æ and
1j i:d{

end 0j i of the Majorana qubit are given, respectively, by

0j i~ 1
2

cA
1 zicB

N

� �
Fj i

~

1ffiffiffi
2
p ?/?/ � � �/j iz /?/? � � �?j ið Þ if N~even,

1ffiffiffi
2
p ?/?/ � � �?j i{ /?/? � � �/j ið Þ if N~odd,

8>>><
>>>:

ð24Þ

and

1j i~ 1
2

cA
1 {icB

N

� �
0j i~ 1

2
sx

1zPcs
x
N

� �
0j i

~

1ffiffiffi
2
p ?/?/ � � �/j i{ /?/? � � �?j ið Þ if N~even,

1ffiffiffi
2
p ?/?/ � � �?j iz /?/? � � �/j ið Þ if N~odd:

8>>><
>>>:

ð25Þ

Note that 1j i:d{
end 0j i can also be written as 1j i~d{

enddend Fj i~
1
2

1zicA
1 cB

N

� �
Fj i, which is identical to equation (25). These two

basis states of the Majorana qubit are also two degenerate ground
states of the system. Moreover, these ground states have well-
defined parities because Pcj0æ 5 j0æ and Pcj1æ 5 2j1æ if N 5 even,
and because Pcj0æ 5 2j0æ and Pcj1æ 5 j1æ if N 5 odd. In Ref. 36,
similar Majorana modes in spin-chain networks were also used to
encode a qubit.

When the externally-tunable parameters such as gate voltages and
applied fluxes are identified at each qubit, equation (1) can be rewrit-
ten as

H~
XN{1

n~1

tn,nz1 sx
nsx

nz1{
XN

n~1

mn sz
nznn sx

n

� �
, ð26Þ

where

mn~
1
2

Ech 1{
Cg V nð Þ

g

e

 !
, nn~EJ0 cos

pW nð Þ
q

W0

 !
, ð27Þ

and the interqubit coupling is given by

tn,nz1~LJ
pEJ0

W0

� �2

sin
pW nð Þ

q

W0

 !
sin

pW nz1ð Þ
q

W0

 !
: ð28Þ

As noted in Ref. 17, if
XN

n~1
nnsx

n=0, this longitudinal term will lift
the state degeneracy of the system. However, in our designed circuits,
this can be avoided because we can have nn 5 0 for each qubit by

tuning the external flux to W nð Þ
q ~

1
2
W0. Also, we can have mn 5 0 by

tuning the gate voltage to V nð Þ
g ~e

�
Cg , so as to achieve unpaired

Majorana modes emerging at the two ends of the charge-qubit array
in the Majorana-fermion representation.

With regard to the quantum coherence of the Majorana qubit,
there are three types of local perturbations that we should consider:
(i) dmn sz

n, (ii) dnn sx
n, and (iii) dtn,nz1 sx

nsx
nz1. The charge perturba-

tion dmn sz
n can be explicitly written as

dmn~{
Ech

2e

� �
dQn, ð29Þ

where

dQn~CgdV nð Þ
g zdQ nð Þ

b , ð30Þ

with the term CgdV nð Þ
g arising from the gate-voltage fluctuations and

dQ nð Þ
b being due to the back-ground charge fluctuations (e.g., the two-

level fluctuators). As shown in equations (27) and (28), the para-
meters nn and tn,n11 contain both the Josephson coupling EJ0 and
the flux W nð Þ

q . Therefore, the local perturbations dnn sx
n and

dtn,nz1 sx
nsx

nz1 can be contributed by both the critical-current37

and flux fluctuations.
The local perturbation dmn sz

n can only tend to drive the ground
state (i.e., the Majorana-qubit state) j0æ (j1æ) to an excited state, which
has an energy level higher than the ground state. This is owing to the
protection of the Majorana-mode states jYLæ and jYRæ against the
local perturbation dmn sz

n, because this perturbation cannot produce
a state transition (relaxation) between jYLæ and jYRæ. Actually, the
local perturbation dmn sz

n tends to drive jYLæ (jYRæ) to an excited
state with an energy differenceD from the ground state, whereD5 4t
for 1 , n , N, and D5 2t for n 5 1 and N. Nevertheless, such a state
transition is not permitted for a small perturbation dmn sz

n. Thus, the
local perturbation dmn sz

n (i.e., the charge fluctuations) will not pro-
duce decoherence to the Majorana qubit. This is a distinct advantage
of the Majorana qubit over a single charge qubit in which the charge
fluctuations dominate.

The environmentally-induced decoherence in a near-critical 1D
system of N?1 coupled qubits was studied in Ref. 38, where a model
Hamiltonian analogous to equation (1) with n 5 0 was used and only
the local magnetic-field fluctuations (i.e., the local perturbation
dmn sz

n in our model) were considered. It was found that the require-
ment of preserving the qubits’ entanglement over a certain idling
time between consecutive gates can be better fulfilled away from
criticality, i.e., when r(;m/t) ? 1. In our study, we consider the case

www.nature.com/scientificreports
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with r 5 0, which is away from the criticality, and the two Majorana-
qubit states j0æ and j1æ are entangled states of multiple qubits [see
equations (24) and (25)]. Indeed, as discussed above, these multi-
qubit entangled states are robust against the local perturbation
dmn sz

n.
As for the local perturbations dnn sx

n and dtn,nz1 sx
nsx

nz1, they
should randomly shift the energy levels of the states jYLæ and
jYRæ, causing pure dephasing to these Majorana-mode states.
However, while dtn,nz1 sx

nsx
nz1 yields pure dephasing to the

Majorana-qubit states j0æ and j1æ, the local perturbation dnn sx
n pro-

duces relaxation to these Majorana-qubit states. In a circuit com-
posed of inductively-coupled charge qubits, the interqubit coupling
is usually much smaller than the Josephson coupling energy EJ0, so
the coupler perturbation dtn,nz1 sx

nsx
nz1 should be weaker than

dnn sx
n. As shown above, the Majorana qubit is robust again the

charge noise. Now, the dominant noise in the Majorana qubit is
due to the perturbation dnn sx

n involving both critical-current
and flux fluctuations. In order to have a longer decoherence time,
a single charge qubit usually works at the optimal (i.e., degeneracy)
point Ng ; eVg/2e 5 1/2. When this single charge qubit is slightly
away from the optimal charge degeneracy point, the decoherence
time becomes drastically short because of its strong sensitivity to
the charge noise. Nevertheless, the Majorana qubit consisting of a
charge-qubit array is robust against the charge noise. Then, its
quantum coherence is still preserved even if each charge qubit is
randomly shifted away from the optimal charge degeneracy point.
This is also one of the advantages of the Majorana qubit over a single
charge qubit.

In Ref. 39, an inhomogeneous spin ladder was proposed to study
the robustness of the Majorana modes. This spin model is an
inhomogeneous ladder version of the Kitaev honeycomb model40.
Similar to the 1D quantum Ising model, the zero-energy Majorana
modes of the inhomogeneous spin ladder are also localized in
the fermionic representation and emerge at either the two ends of
the ladder or the boundary between sections in different topological
phases39. As shown above, in the quantum Ising model described
by equation (1), the topological ground-state degeneracy is
robust against the local perturbation dmn sz

n, but can be lifted by
the local perturbation dnn sx

n. In the inhomogeneous spin ladder,
the topological ground-state degeneracy cannot be fully lifted
by inhomogeneous magnetic fields purely along the x, y or z dir-
ection39. This is the advantage of the inhomogeneous spin
ladder. However, as further shown in Ref. 39, the topological
ground-state degeneracy of the inhomogeneous spin ladder can be
lifted by local two-body terms. In the 1D quantum Ising model
in equation (1), the two-body (i.e., coupler) perturbation
dtn,nz1 sx

nsx
nz1 can also lift the topological ground-state degeneracy,

but compared with the local perturbation dmn sz
n, the local perturba-

tion dnn sx
n is much weaker and the coupler perturbation

dtn,nz1 sx
nsx

nz1 is even weaker in the 1D quantum Ising model rea-
lized using a charge-qubit array.

As a variation of the charge qubit, the transmon qubit was also
often used in superconducting quantum circuits41. In this qubit, the
perturbation dnn sx

n, which can be due to the fluctuations of flux,
cavity photons and critical current, is more important than the per-
turbation dmn sz

n arising from the charge noise. In the Majorana
qubit with charge qubits replaced by transmons, the perturbation
dnn sx

n becomes more important, but the advantage of the
Majorana qubit regarding the insensitivity to the charge noise will
still remain. Therefore, the quantum coherence of the Majorana
qubit is preserved even if each transmon shifts randomly away from
the optimal charge degeneracy point.

(2) Flux-qubit array. When t . 0 and m 5 n 5 0 in equation (7), the
state jF æ can be written, in the spin representation, as

Fj i~
ffiffiffi
2
p

:;:; � � � ;j i If N~even,ffiffiffi
2
p

:;:; � � � :j i If N~odd,

(
ð31Þ

where

:j i~
1

0

� �
, ;j i~

0

1

� �
ð32Þ

are the two eigenstates of sz with eigenvalues 1 and 21, respectively.
It can be derived that cA

1 ~sz
1 and cB

N~{isz
N Pf , where the parity

operator associated with the Z2 symmetry of the system is given by

Pf : P
N

m~1
sx

m: ð33Þ

In the spin representation, the two degenerate ground states jYLæ and
jYRæ can be written as

YLj i~cA
1 Fj i~sz

1 Fj i

~

ffiffiffi
2
p

:;:; � � � ;j i If N~even,ffiffiffi
2
p

:;:; � � � :j i If N~odd,

(
ð34Þ

and

YRj i~cB
N Fj i~{isz

N Pf Fj i

~
{i

ffiffiffi
2
p

;:;: � � � :j i If N~even,

i
ffiffiffi
2
p

;:;: � � � ;j i If N~odd:

(
ð35Þ

Also, it is clear that ÆYLjYRæ 5 0. The two basis states j0æ ; dendjF æ
and 1j i:d{

end 0j i of the Majorana qubit are given, respectively, by

0j i~ 1
2

cA
1 zicB

N

� �
Fj i

~

1ffiffiffi
2
p :;:; � � � ;j iz ;:;: � � � :j ið Þ If N~even,

1ffiffiffi
2
p :;:; � � � :j i{ ;:;: � � � ;j ið Þ If N~odd,

8>>><
>>>:

ð36Þ

and

1j i~ 1
2

cA
1 {icB

N

� �
0j i~ 1

2
sz

1{sz
N Pf

� �
0j i

~

1ffiffiffi
2
p :;:; � � � ;j i{ ;:;: � � � :j ið Þ If N~even,

1ffiffiffi
2
p :;:; � � � :j iz ;:;: � � � ;j ið Þ If N~odd,

8>>><
>>>:

ð37Þ

These two basis states of the Majorana qubit are also two degenerate
ground states of the system and have well-defined parities.

When the parameters are identified at each qubit, we can rewrite
equation (7) as

H~
XN{1

n~1

tn,nz1 sz
nsz

nz1{
XN

n~1

nn sz
nzmn sx

n

� �
: ð38Þ

Here nn~IpW0
1
2
{fn

� �
, and fn~W nð Þ

q

.
W0zf nð Þ

s

.
2, where

f nð Þ
s ~W nð Þ

s

.
W0. The interqubit coupling reads

tn,nz1~
bEJc cos 2p f n,nz1ð Þ

c {w n,nz1ð Þ
c

� �
1z2b cos 2p f n,nz1ð Þ

c {w n,nz1ð Þ
c

� � , ð39Þ
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where

w n,nz1ð Þ
c ~

2b sin 2p f n,nz1ð Þ
c

� �
1z2b cos 2p f n,nz1ð Þ

c

� � , ð40Þ

and f n,nz1ð Þ
c ~W n,nz1ð Þ

c

.
W0 is the reduced flux applied to the coupler

between qubits n and n 1 1.
The local perturbation dmn sx

n can only tend to drive the ground
state (i.e., the Majorana-qubit state) j0æ (j1æ) to an excited state of the
system which has an energy level higher than the ground state.
Similar to the case of the charge-qubit array, this is also owing to
the protection of the Majorana-mode states jYLæ and jYRæ against
the local perturbation dmn sx

n. Indeed, the local perturbation dmn sx
n

tends to drive jYLæ (jYRæ) to an excited state with an energy differ-
ence D from the ground state, where D 5 4t for 1 , n , N, and D 5

2t for n 5 1 and N. Nevertheless, such a state transition is not
permitted for a small perturbation dmn sx

n. Therefore, in contrast
to a single flux qubit, the local perturbation dmn sx

n will not produce
decoherence to the Majorana qubit.

The local perturbation dnn sz
n randomly shifts the energy levels of

the Majorana-mode states jYLæ and jYRæ to cause pure dephasing to
these states. Also, it produces relaxation to the Majorana-qubit states
j0æ and j1æ. However, the coupler perturbation dtn,nz1 sz

nsz
nz1 yields

pure dephasing to both the Majorana-mode states (jYLæ and jYRæ)
and the Majorana-qubit states (j0æ and j1æ). Because the interqubit
coupling is usually much smaller than IpW0, the coupler perturbation
dtn,nz1 sz

nsz
nz1 should be much weaker than dnn sz

n. Therefore, in
the case of a flux-qubit array, the dominant noise of the Majorana
qubit is due to the perturbation dnn sz

n. In order to improve the
quantum coherence of the Majorana qubit, one can suppress the
fluctuations dnn by reducing Ip. This can be achieved by reducing
the size of the Josephson junctions in each flux qubit because Ip is
proportional to the Josephson coupling energy EJ. Note that when
reducing the size of the Josephson junctions to suppress flux noise,
the charge noise can finally become important, due to the increasing
charging energy. Thus, while the flux noise is suppressed, one can
shunt a large capacitance to the Josephson junction, so as to suppress
the charge noise as well. This method was proposed to increase the
decoherence time of the flux qubit42 and has been implemented in a
recent experiment43.

Manipulating and probing Majorana modes. The superconduct-
ing-qubit arrays proposed above can be used to realize a tunable 1D
quantum Ising model on wire networks, similar to the semicon-
ducting wire networks in Ref. 16, to demonstrate the non-Abelian
statistics of Majorana fermions. In particular, braiding Majoranas
can be implemented via a T-junction formed by two perpendicular
wires16. Here we use four superconducting qubits, as the smallest size
of the system, to form such a T-junction [see Figure 3(a)], where n 5

0 for all charge (flux) qubits. When the Jordan-Wigner tranfor-
mation is performed, this T-junction of four qubits is described by

H~t a1{a{1
� �

a{2za2

� �
zt a1’{a{1’

� �
a{2za2

� �
zt a2{a{2
� �

a{3za3

� �
{m 2a{1a1{1
� �

{m 2a{1’a1’{1
� �

{m 2a{2a2{1
� �

{m 2a{3a3{1
� �

~i tcB
1 cA

2 ztcB
1’c

A
2 ztcB

2 cA
3

� �
{i mcA

1 cB
1zmcA

1’c
B
1’zmcA

2 cB
2zmcA

3 cB
3

� �
,

ð41Þ

where qubits are numbered by starting from sites 1 and 19 and ending
at site 3.

For the Hamiltonian (41), when t 5 0 for all pairs of adjoining
qubits, the nearest-neighbor Majoranas related to the same site are
coupled by m, and the nearest-neighbor Majoranas related to two
adjoining sites are decoupled. Then, Hamiltonian (41) is reduced to

H~{i mcA
1 cB

1zmcA
1’c

B
1’zmcA

2 cB
2zmcA

3 cB
3

� �
: ð42Þ

In this case, the Majoranas are all paired in the whole T-junction
region and no edge states occur. Starting from this phase, we adia-
batically vary the parameters of superconducting qubits to have the
horizontal array become an unpaired-Majarana region, i.e., adiabat-
ically turn the parameter m to zero for each qubit in the horizontal
array and simultaneously switch on the interqubit coupling t for the
horizontal array. Then, the Hamiltonian (42) becomes

H~i tcB
1 cA

2 ztcB
2 cA

3

� �
{imcA

1’c
B
1’: ð43Þ

Figure 3 | Braiding two unpaired Majorana fermions. (a) T-junction

formed by qubits 1, 2, 3 and 19, where each qubit is denoted by a

rectangular box. Two Majoranas related to the same qubit (e.g., cA
1 and cB

1 )

can be paired by the parameter m while two Majoranas related to adjoining

qubits (e.g., cB
1 and cA

2 ) can be paired by t. (b) Unpaired-Majorana region

for the whole horizontal array, where an unpaired Majorana (denoted by a

solid circle) is located at each end. (c) Adiabatically tuning m to nonzero for

qubit 1 and turning off t between qubits 1 and 2 drive the left-end Majorana

mode (shown in orange) to the middle qubit. (d) Adiabatically tuning m to

zero for qubit 19 and turning on t between qubits 2 and 19 drive the original

left-end Majorana to the bottom of the T-junction. (e) The right-end

Majorana (in black) is driven to the middle qubit by adiabatically tuning m

to nonzero for qubit 3 and turning off t between qubits 2 and 3. (f) The

original right-end Majorana is finally driven to the left end by adiabatically

tuning m to a sufficiently large value for qubit 2, tuning m to zero for qubit 1

and turning on t between qubits 1 and 2. (g) The Majorana at the bottom is

driven to the middle qubit by adiabatically tuning m to zero for qubit 2 and

tuning m to a sufficiently large value for qubit 19. (h) Adiabatically turning

off t between qubits 2 and 19, tuning m to zero for qubit 3, and turning on t

between qubits 2 and 3 finally drive the original left-end Majorana to the

right end. This accomplishes the anti-clockwise braiding of two Majorana

fermions.
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This corresponds to the configuration of Majoranas in Figure 3(b),
where a pair of isolated Majoranas emerge at the two ends of the
horizontal array. Here adiabatic changes of the parameters with
respect to the time t require that

�h dm=dtj j=E2
g , �h dt=dtj j=E2

g , ð44Þ

where Eg is the energy gap between the first excited and ground states
of the system at the time t. Generally, the system takes the super-
position state of these two degenerate Majorana modes:
Yj i~ acA

1 zbcB
3

� �
Fj i, where jF æ is the state in which all eigenstates

of the system with E , 0 are occupied. However, while reaching the
state in Figure 3(b), if m for qubits 1, 2 and 3 are all adiabatically tuned
to zero in the same manner and the interqubit coupling between
qubits 1 and 2 is adiabatically switched on in the same way as that
between qubits 2 and 3, then the left- and right-end Majoranas
should occur with equal probabilities. Using this state

Yj ii~
1
2

cA
1 zeihcB

3

� �
Fj i as the initial state, one can braid the left-

and right-end Majoranas through the steps shown in Figures 3(c)–
3(h) by adiabatically tuning the qubit parameters. For instance, by
adiabatically switching on m for qubit 1 and turning off the coupling t
between qubits 1 and 2, Hamiltonian (43) is changed to

H~{i mcA
1 cB

1 zmcA
1’c

B
1’

� �
zitcB

2 cA
3 , ð45Þ

i.e., the configuration of Majoranas in Figure 3(b) is adiabatically
converted to the configuration of Majoranas in Figure 3(c).
Similarly, other steps shown in Figures 3(d)–3(h) can be achieved.
This braiding of Majoranas following the steps from Figure 3(b) to
3(h) corresponds to a unitary operator4,16 which transforms cA

1 to cB
3

and cB
3 to {cA

1 . Therefore, the initial state jYæi of the system is

transferred to Yj if ~
1
2

cB
3{eihcA

1

� �
Fj i after braiding the left- and

right-end Majoranas.
Finally, we focus on probing Majorana fermions. The initial state

Yj ii~
1
2

cA
1 {eihcB

3

� �
Fj i given in Figure 3(b) is a ground state of the

system with qubit 19 decoupled from the horizontal array of super-
conducting qubits. When expressed in the basis states of qubits, this
initial state can be written as jYæi 5 jY123æi fl jY19æi, where

Y123j ii~li1 010203j izli2 010213j i

zli3 011203j izli4 011213j i

zli5 110203j izli6 110213j i

zli7 111203j izli8 111213j i,

ð46Þ

and jY19æi 5 ji1j019æ 1 ji2j119æ. Also, the final state

Yj if ~
1
2

cB
3 {eihcA

1

� �
Fj i is another degenerate ground state of the

same system and can be expressed as jYæf 5 jY123æf fl jY19æf, where
jY19æf 5 jf1j019æ 1 jf2j119æ, and jY123æf has the same form as jY123æi,
but the lil are replaced by lfl, with l 5 1 to 8. The states jYæi and jYæf

can be distinguished using experimentally available state-tomo-
graphy techniques for superconducting qubits (see, e.g., Refs.
44,45), which involve reconstructing an unknown quantum state
from a complete set of measurements of the system observables.
For the initial state in Figure 3(b) and the final state in Figure 3(h),
the qubit 19 is decoupled from the array consisting of the three
coupled qubits 1, 2 and 3. Thus, only one-qubit tomography for qubit
19 and three-qubit tomography for coupled qubits 1, 2 and 3 are
required for distinguishing the initial and final states.

Note that the initial and final states after braiding cA
1 and cB

3 can

be written as Yj ii~
1
2

cA
1 Fj izeihcB

3 Fj i
� �

and Yj if ~
1
2

cB
3 Fj i{

�
eihcA

1 Fj iÞ, which have different relative phases between cA
1 Fj i and

cB
3 Fj i. Because the qubit 19 is decoupled from the horizontal array

consisting of the three coupled qubits 1, 2 and 3, the states jY19æi and
jY19æf are the same, in addition to a global phase between them. Thus,
when performing quantum-state tomography, the different relative
phases between cA

1 Fj i and cB
3 Fj i will give rise to the difference

between jY123æi and jY123æf.
Experimentally, it is more complicated to use state-tomography

techniques to determine the quantum state of three qubits other than
two qubits. Therefore, we can consider the state �Y

�� �
i in Figure 3(c) as

the initial state. This state is a ground state of the system with qubits
19 and 1 decoupled from other qubits and can be decomposed as
�Y
�� �

i~ Y23j ii6 Y1’j ii6 Y1j ii, where

Y23j i~li1 0203j izli2 0213j izli3 1203j izli4 1213j i,

Y1’j ii~ji1 01’j izji2 11’j i, Y1j ii~gi1 01j izgi2 11j i:
ð47Þ

From the state in Figure 3(h), further proceeding with one step
analogous to that from Figure 3(b) to Figure 3(c), we achieve
the final state with the originally unpaired Majoranas cA

2 and cB
3

braided. This final state can also be decomposed as
�Y
�� �

f ~ Y23j if 6 Y1’j if 6 Y1j if , where jY19æf 5 jf1j019æ 1 jf2j119æ,
jY1æf 5 gf1j01æ 1 gf2j11æ, and jY23æf has the same form as jY23æi,
but the lil are replaced by lfl, with l 5 1 to 4. Similarly, the states �Y

�� �
i

and �Y
�� �

f
can also be discriminated using state-tomography tech-

niques. Here, because qubits 1 and 19 are decoupled from the two
coupled qubits 2 and 3, only two-qubit tomography for coupled
qubits 2 and 3 as well as one-qubit tomography for qubits 1 and 19

are needed for distinguishing the initial and final states.
Experimentally, in addition to one-qubit tomography, two-qubit

tomography is also implementable for superconducting qubits (see,
e.g., Refs. 44,45). Thus, it is feasible to measure �Y

�� �
i and �Y

�� �
f

because the two-qubit tomography can be used to determine jY23æi

and jY23æf. Moreover, quantum-state tomography has been per-
formed on three46 or even five47 superconducting qubits, so it also
becomes feasible to measure jYæi and jYæf by determining jY123æi

and jY123æf via quantum-state tomography. This is important here
since information might be lost by only performing two-qubit tomo-
graphy, particularly in the case of poor gate fidelity or decoherence.

Discussion
When fabricating superconducting circuits, parameter variations
unavoidably occur, as in any solid-state system. For the charge-qubit

array, n 5 0 can be achieved by having Wq~
1
2
W0, irrespective of the

parameter variations. Also, m can be tuned, via the gate voltage Vg, to
the required value, even if Ech varies for different qubits. For varying
EJ0 among qubits, the interqubit couplings also vary [see equation
(2)]. One can replace the large Josephson junction by a dc SQUID
and tune the SQUID, i.e., the effective EJc, to obtain the desired
value t for the interqubit coupling. For a symmetric SQUID with

Josephson coupling energy E 0ð Þ
Jc , the effective EJc is given by

EJc Wcð Þ~2E 0ð Þ
Jc cos pWc=W0ð Þ, where Wc is the magnetic flux in the

SQUID loop. In equation (2), EJc is now replaced by EJc(Wc); in both

equation (2) and n, Wq is replaced by W’q:Wqz
1
2
Wc. Therefore, the

tunability of t Wc,W’q
� �

with n 5 0 can be implemented by changing
both Wc and Wq.

As for the flux-qubit array, n 5 0 can be achieved by having f ~
1
2

.

Also, m can be tuned to the given value by changing the flux fs applied
to the SQUID in each qubit. Moreover, even if the parameters of
couplers vary, one can tune the flux fc in each coupler to achieve the
required value of t for the interqubit coupling [see equation (8)].
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Furthermore, note that even if n 5 0 cannot be experimentally
reached very accurately, our proposal still works for the states in the
unpaired-Majorana region of the system if n=tj j=1. Experimentally,
this can be achieved by designing a relatively strong interqubit coup-
ling for the qubit array. For instance, because Ip , 2pEJ/W0, one has

n=tj j* 2p 1z2bð ÞEJ=bEJc½ � 1
2
{f

����
����. When b 5 0.1, EJc 5 5EJ, and f g

[0.499, 0.501], n=tj j*0:015=1.
In conclusion, we propose superconducting circuits to construct

two superconducting-qubit arrays where Majorana modes can occur.
The unpaired zero-energy Majorana modes, which emerge at the left
and right ends of the chain in the Majorana-fermion representation,
can be used to encode a qubit called the Majorana qubit. Also, we
express this Majorana qubit in the spin representation and show its
advantage, over a single superconducting qubit, for quantum coher-
ence. Moreover, we suggest using four superconducting qubits as the
smallest circuit to demonstrate the braiding of Majorana modes, and
show how to distinguish the states before and after braiding
Majorana modes. These superconducting-qubit arrays can, in prin-
ciple, be extended to wire networks, similar to the semiconducting
wire networks in Ref. 16, to demonstrate the non-Abelian statistics of
Majorana modes.
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