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Abstract
In contrast to the spatial Bell’s inequalities which probe entanglement between spatially
separated systems, the Leggett–Garg inequalities test the correlations of a single system
measured at different times. Violation of a genuine Leggett–Garg test implies either the
absence of a realistic description of the system or the impossibility of measuring the system
without disturbing it. Quantum mechanics violates the inequalities on both accounts and the
original motivation for these inequalities was as a test for quantum coherence in macroscopic
systems. The last few years has seen a number of experimental tests and violations of these
inequalities in a variety of microscopic systems such as superconducting qubits, nuclear spins,
and photons. In this article, we provide an introduction to the Leggett–Garg inequalities and
review these latest experimental developments. We discuss important topics such as the
significance of the non-invasive measurability assumption, the clumsiness loophole, and the
role of weak measurements. Also covered are some recent theoretical proposals for the
application of Leggett–Garg inequalities in quantum transport, quantum biology and
nano-mechanical systems.
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1. Introduction

Extrapolating the laws of quantum mechanics up to the scale
of everyday objects, one inevitably arrives at the prospect of
macroscopic coherence, with objects composed of very many
atoms existing in quantum superpositions of macroscopically
very different states. Schrödinger’s cat [1], simultaneously
both dead and alive, is the embodiment of macroscopic
coherence. Needless to say, such a situation runs totally
counter to our intuitive understanding of how the everyday,
macroscopic world works.

In their 1985 paper [2], Leggett and Garg were interested
in whether macroscopic coherence could be realized in the
laboratory and, if so, how one might go about demonstrating
its presence. They approached this by first codifying our
intuition about the macroscopic world into two principles:
(A1) macroscopic realism (MR) and (A2) Non-invasive
measurability (NIM). MR implies that the performance of a
measurement on a macroscopic system reveals a well-defined

pre-existing value (‘Is the flux there when nobody looks?’ [2]
is thus answered in the affirmative); NIM states that, in
principle, we can measure this value without disturbing the
system. Whilst classical mechanics conforms with both of
these assumptions, quantum mechanics certainly does not—
the existence of a macroscopic superposition would violate the
first, and its quantum-mechanical collapse under measurement,
the second.

Based on these assumptions, Leggett and Garg went on to
derive a class of inequalities [2] that any system behaving in
accord with our macroscopic intuition should obey. These are
the Leggett–Garg inequalities (LGIs) and they are the subject
of this review. Should it be shown that a series of measurements
on a system violates a LGI, then one of the above assumptions
must be invalid and an intuitive macroscopic understanding of
the system must be abandoned. In this way, the LGIs provide a
method to investigate the existence of macroscopic coherence
and to test the applicability of quantum mechanics as we scale
from the micro- to the macroscopic world [3].
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The simplest LGI is constructed as follows. We assume
that it is possible to define for the system a macroscopic
dichotomic variable Q = ±1 and measure its two-time
correlation functions Cij = 〈Q(ti)Q(tj )〉. We then perform
three sets of experimental runs to measure three different
Cij with different pairs of time arguments. Postulates (A1)
and (A2) together imply the existence of a single joint
probability distribution to describe all three experimental runs.
From this it follows that

K3 ≡ C21 + C32 − C31 � 1. (1)

By considering a quantum model of a two-level system
undergoing coherent oscillations between the states with
Q = ±1, it is easy to show that quantum mechanics violates
this inequality with a maximum value of Kmax

3 = 3/2 for the
two-level system.

LGIs share the same structure with, and are intimately
related to, Bell’s inequalities [4] (compare equation (1) with
the original inequality of [5], see also [6]). But, whereas
Bell’s inequalities place bounds on correlations between
measurements on spatially separated systems, in the LGIs, the
separation between measurements is in time. LGIs are for
this reason often referred to as temporal Bell’s inequalities [7].
Both sets of inequalities are founded on realism, but to obtain
testable inequalities that are violable by quantum mechanics,
realism is cojoined with locality in the Bell’s inequalities, and
with NIM in the LGI. Formally, the assumptions of NIM and
locality play similar roles in the derivation of the respective
inequalities [7].

Leggett and Garg initially proposed an rf-SQUID flux
qubit as a promising system on which to test their inequalities
[2], a proposal which was later refined by Tesche [8] (see
also [9, 10]). Twenty-five years later, the first measured
violation of a LGI was announced by Palacios-Laloy et al [11].
This experiment differed from the Leggett–Garg proposal in a
number of respects—the superconducting qubit [12–17] was of
the transmon type [18], and the measurements were continuous
weak-, rather than instantaneous projective-, measurements
[19]—but, nevertheless, the essence of the tested inequalities
was as in Leggett and Garg. Palacios–Laloy et al [11] found
that their qubit violated a LGI, albeit with a single data point,
with the conclusion being that their system does not admit a
realistic, non-invasively measurable description. Signalling
the death of MR, one commentator wrote ‘no moon there’ [20]
in refutation of the macrorealist belief, often associated with
Einstein [21], that ‘...the moon is there, even if I don’t look
at it’.

The Palacios–Laloy experiment was followed in the
literature by a large number of further LGI tests and,
within a few years, violations had been reported in a
wide range of different physical systems such as photons
[22–25], defect centres in diamond [26, 27], nuclear magnetic
resonance [28–30], phosphorus impurities in silicon [31], and
millimetre scale Nd3+ : YVO4 crystals [32]. Tests of LGIs on
superconducting devices have also recently been revisited [33].
Table 1 gives an overview of the different experimental systems
in which LGI tests have presently been made.

Table 1. An overview of the different physical systems in which
LGI tests have been made. The abbreviations for measurement types
employed are: P: projective; CWM: continuous weak measurement;
W/SW: weak/semi-weak point measurements; INM: ideal negative
measurement; and STAT: ‘stationarity’. The references are listed in
the final column.

Physical system Measurement Reference

Superconducting qubit CWM Palacios-Laloy et al [11]
W/SW Groen et al [33]

Nitrogen-vacancy centre STAT Waldherr et al [26]
W George et al [27]

Nuclear magnetic P Athalye et al [28],
resonance Souza et al [29]

INM Katiyar et al [30]
Photons W/SW Goggin et al [22],

Dressel et al [24],
Suzuki et al [25]

P Xu et al [23]
Nd3+ : YVO4 crystal STAT Zhou et al [32]
Phosphorus impurities INM Knee et al [31]
in silicon

One would be hard pressed to call the subjects of these
studies ‘macroscopic’. Indeed, even for the qubit of [11],
which was macroscopic in size, subsequent analysis [34] has
shown that the actual states involved in the LGI violation
are not actually macroscopically distinct (see section 5).
Nevertheless, violations of the LGIs in ‘microscopic’ systems
(where really, we should speak of microscopic realism or
just realism being at test) are of interest for a number of
reasons. If we share Leggett and Garg’s goal of pursuing
genuine macroscopic coherence, then the current experiments
may be seen as a vital step towards scaling up to macroscopic
objects. As we will see, there are a number of non-trivial
aspects to the LGIs, as well as a number of pitfalls, that make
their experimental study anything but straightforward, even
for microscopic systems. For example, with the exception
of [30, 31], all of the LGI tests conducted so far suffer from the
‘clumsiness loophole’ [35] that LGI violations can be ascribed
to the unwitting invasivity of the measurements, rather that the
absence of a macroscopic-real, NIM description of the system.
Without addressing this loophole, a devout macrorealist can
safely ignore the challenge to his/her world view posed by
these experiments. Ironing out difficulties such as these in
microscopic systems will increase the chance of successful
pursuit of the genuine, macroscopic quarry.

Moreover, LGIs for microscopic systems are interesting
in their own right. One reason for this is the intimate
connection between violations of the LGIs and the behaviour
of a system under measurement. Thus, the exploration of
different measurement strategies has been a central theme
of current experiments. Furthermore, whilst the objects of
the current experimental studies have all been ‘good qubits’
[36], there a number of situations where it is not clear to
what extent the system is behaving quantum-mechanically.
If one accepts that the alternative to classical probabilities is
quantum mechanics, then the LGIs provide an indicator of the
‘quantumness’ of a system [37]. The use of LGIs as such
an indicator is coming to be appreciated across a growing
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number of areas, such as quantum transport [38–40], opto-
mechanical and nano-mechanical devices near the quantum
ground state [41, 42], and even in the light-harvesting apparatus
of biological organisms [43–45]. The connection between the
ability to perform quantum-computations and violations of the
LGI has also been studied by a number of authors [46–48].

The value of the LGIs lies in providing quantitative criteria
to adjudge the line between classical and quantum physics. In
particular, Kofler and Brukner [49, 50] have used LGIs as a tool
to study the emergence of the classical world from the quantum
under coarse-grained measurements. LGIs, independent of
questions of macroscopicity, are also at the centre of discussion
on the similarities and differences between spatial and temporal
correlations in quantum mechanics [46, 51, 52].

The aim of this review is to provide an introduction to
the LGIs and to discuss recent developments in the field. In
section 2 we discuss formal aspects of the LGIs, including their
derivation, their underlying assumptions, and extensions. We
discuss the quantum violations of LGIs for the example of a
qubit in section 3, as this forms the basis for understanding
many of the experimental results. Section 4 considers the
LGIs with weak measurements. Sections 5 to 8 discuss
the various LGI experiments in the areas of superconducting
qubits, nuclear spins, light–matter interactions and pure optics.
Sections 9 to 11 discuss theoretical proposals in the areas
of quantum transport, photosynthesis and nano-mechanical
systems. In section 12 we consider constructions related to
the LGIs, before concluding in section 13.

2. Formalism

We begin this section by first discussing the assumptions
behind the LGIs and their implications. We then give an
explicit proof of equation (1) and then put this inequality in
the context of a broad family of LGIs. Finally we discuss
stationarity, ‘entanglement-in-time’ and the entropic versions
of the LGIs.

2.1. Assumptions

A crucial element of Leggett and Garg’s work is the
codification of how ‘most physicists’ intuitively expect
macroscopic objects to behave into a small set of principles
or assumptions. Quoting directly from [2], these principles
read.

(A1) Macroscopic realism: a macroscopic system with two or
more macroscopically distinct states available to it will
at all times be in one or the other of these states.

(A2) NIM at the macroscopic level: it is possible, in principle,
to determine the state of the system with arbitrarily small
perturbation on its subsequent dynamics.

In more-recent statements of the Leggett–Garg scheme
[53, 50, 54], a third assumption is often made explicit:

(A3) Induction: the outcome of a measurement on the system
cannot be affected by what will or will not be measured
on it later.

The conjunction of these properties has been called ‘classicity’
[55] or, somewhat confusingly, ‘macrorealism in the
broader sense’ with assumption (A1) in particular denoted
‘macroscopic realism per se’ [3, 49, 53]. We shall largely
eschew these terms and refer to the assumptions explicitly
to avoid confusion. Under such theories obeying (A1–3),
Schrödinger’s cat is, at each instant of time, either dead or
alive, and which of these possibilities actually pertains can
be divined through measurements that neither affect nor are
influenced by its future history. Assumptions (A1-3) are thus
in tune with our intuition about classical objects, but conflict
strongly with quantum mechanics.

Whilst the derivation of the LGIs certainly relies on
assumption (A3), so does much of our understanding of
the natural world. As this assumption reflects such basic
notions about causality and the arrow of time, it has remained
unchallenged in discussions of the source of LGI violation (but
see [53] for a word of caution on this point).

Concerning assumption (A1), Peres notes [9] that realism
has ‘at least as many definitions as there are authors’ and we
will not attempt to give an account of this topic here (see
rather [56]). The above definition of MR relies on the notion
of ‘macroscopically distinct’ states. A number of criteria
exist by which this may be judged (see [57] and references
therein) but we will defer a discussion of this point to later
when we consider specific examples (section 5 and section 7).
An important point, made by Maroney [58] and discussed in
section 2.2, is that ‘macroscopicity’ is not actually necessary
for the derivation of the LGIs—that the theory is ontic (i.e.,
realistic) is sufficient.

Whilst we can rely somewhat on our intuitive
understanding of these two assumptions, assumption (A2),
that of NIM, is more involved and has been the source
of much discussion [8–10, 35, 53, 55, 59–61]. By way of
clarification, let us first note that (A2) presupposes (A1), in that
a measurement is supposed to reveal a pre-existing property of
a MR system. Assumption (A2), therefore, defines a non-
invasive measurement as one that would leave the state of the
system unchanged by the measurement under a macroscopic
real understanding of the system. This clarification is
important because a measurement on a quantum system can be
‘non-invasive’ in the sense of (A2), i.e. a macrorealist might
agree that the measurement could not disturb the system, and
yet still be invasive in actuality because it causes a collapse of
the system’s wavefunction (a concept obviously absent from
a macroscopic real description). The statement of NIM for
a quantum system is therefore counterfactual—it refers to a
property the system would have, if it were macroscopic real,
which it is not.

Leggett and Garg [2] discuss how ‘ideal negative
measurements’ provide a method to probe a system in this
non-invasive way. Consider that we are interested in the
macroscopic variable Q = ±1 and we can arrange it so that
the detector only interacts with the system when it is in a
state corresponding to Q = +1. In this case, the absence
of a detector response, combined with MR, allows us to infer
the state of the system (Q = −1) even though our detector
has not interacted with it. Provided that we only take such
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negative results into account, our measurement will be non-
invasive in the sense of (A2), as the only results kept are those
in which system and measuring apparatus did not interact.
Despite this, a quantum system can clearly still be affected
by these measurements, since an ideal negative measurement
still induces wave function collapse [62].

There are two distinct issues associated with the NIM
assumption. Firstly, assuming that we can construct
a measurement scheme to satisfy a macrorealist of its
non-invasive credentials, then, setting (A3) aside, a measured
violation of a LGI implies either that MR must be rejected,
or that it is intrinsically impossible to measure the system
without disturbing its behaviour (or indeed both, as in quantum
mechanics). Leggett writes [2, 53, 63] that NIM is such a
‘natural corollary’ of MR that it is hard to see how NIM can
fail but MR stay intact. However natural this may be, there
is nothing in the violation of a LGI to preclude the possibility
that the system is MR and yet not NIM [55] (Bohm–de Broglie
would be a theory in this class [64, 65]). However, since even
an invalidation of this intrinsic-NIM shows that the system
is acting beyond what we expect from macroscopic objects,
it is perhaps a moot point whether it is MR or the intrinsic
NIM that fails. As an aside, we note that the inability to test
just MR is unavoidable, since realism by itself is consistent
with the predictions of quantum theory [53, 55]. In the LGIs,
realism is tested in conjunction with NIM, just as it is tested in
conjunction with locality in the spatial Bell’s inequalities.

The second and by far the more serious problem associated
with (A2) is that, when confronted with a violation of the
LGI, a macrorealist can always claim that, despite the best
efforts of the experimentalist, his/her measurements were
influencing the behaviour of the system in some unexpected
way. This is the so-called ‘clumsiness loophole’ [35] and a
devout macrorealist can always exploit this avenue to refute the
implications of a measured LGI violation since it is impossible
to conclusively demonstrate that a physical measurement
is in fact non-invasive. One might think this possible by
measuring the system at time t , again at time t + δt and
then comparing the results in the limit δt → 0 [63]. If the
results always agree, it would be tempting to conclude that
the measurements are non-invasive. The problem with this is
that, although this approach can exclude that the measurement
is directly influencing macro-variable Q, it cannot rule out
that some unknown hidden variables are being influenced
by the measurement, which then go on to affect the future
time evolution. By appealing to such hidden variables, a
macrorealist can always sidestep a LGI violation [31].

In Bell’s inequalities, the analogous loophole is the
communication loophole [66]. This loophole can, however,
be readily closed by making sure that the two measurements
are space-like separated, so that events at one detector cannot
influence the second during the duration of the experiment
[67]. Whilst a secure external physical principle (special
relativity) is used to close this Bell inequality loophole, no
such cast-iron defence exists for the LGI. The best one can
hope for is strategies, such as ideal negative measurement,
that make the explanation of LGI violations in terms of
experimental clumsiness so contrived as to be unacceptable.

In this direction, [35] formulated an improved Leggett–Garg
protocol that allows the clumsiness loophole to be narrowed.
Introducing the concept of an ‘adroit measurement’ as one
which, when enacted between the measurement times of the
LGI, does not, by itself, affect the measured values of the
Leggett–Garg correlation functions, the authors show that
a violation of their updated protocol means that either the
system is non-macrorealistic, or that two or more adroit-
measurements, each individually non-invasive, have somehow
conspired to disturb the system. This collusion is less plausible
than independent non-invasive measurements, and the size
of the loophole is correspondingly reduced. We note that
a number of ‘loophole-free’ Bell tests have been proposed
[68–71] (see also [72–74]). Whether loophole-free Leggett–
Garg protocols can be constructed is an open question.

2.2. Proof of the LGIs

The correlation function Cij is obtained from the joint
probability Pij (Qi, Qj ) of obtaining the results Qi = Q(ti)

and Qj = Q(tj ) from measurements at times ti , tj as

Cij =
∑

Qi,Qj =±1

QiQjPij (Qi, Qj ). (2)

The subscripts on P remind us of when the measurements were
made. Assumption (A1) means that, since observable Q has
a well-defined value at all times, even when left unmeasured,
the two-time probability can be obtained as the marginal of a
three-time probability distribution:

Pij (Qi, Qj ) =
∑

Qk;k �=i,j

Pij (Q3, Q2, Q1), (3)

where the measurement subscripts have carried through.
Under MR alone, the three probabilities P21(Q3, Q2, Q1),
P32(Q3, Q2, Q1) and P31(Q3, Q2, Q1) required in the
construction of equation (1) are independent, since measure-
ments at different times may affect the evolution differently.
Making the NIM assumption, (A2), however, precludes this
possibility and all three probability distribution functions be-
come the same: Pij (Q3, Q2, Q1) = P(Q3, Q2, Q1). This
means that not only is the macro-variable Q left unaltered by
the measurements, but so must be any relevant hidden micro-
scopic variables (not explicitly displayed here) that affect the
time evolution. This single probability can then be used to
calculate all three correlation functions:

C21 = P(+, +, +) − P(+, +, −) − P(−, −, +) + P(−, −, −)

−P(+, −, +) + P(+, −, −) + P(−, +, +) − P(−, +, −);
(4)

C32 = P(+, +, +) + P(+, +, −) + P(−, −, +) + P(−, −, −)

−P(+, −, +) − P(+, −, −) − P(−, +, +) − P(−, +, −);
(5)

C31 = P(+, +, +) − P(+, +, −) − P(−, −, +) + P(−, −, −)

+P(+, −, +) − P(+, −, −) − P(−, +, +) + P(−, +, −),

(6)
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where we have used the shorthand P(+, +, +) =
P(+1, +1, +1), etc. Simple addition and completeness,∑
Q3,Q2,Q1

P(Q3, Q2, Q1) ≡ 1, give K3 = C21 + C32 − C31

= 1 − 4 [P(+, −, +) + P(−, +, −)] . (7)

The choice of P(+, −, +) = P(−, +, −) = 0 gives a value
of K3 = 1, which is the upper bound of equation (1).
Setting P(+, −, +) + P(−, +, −) = 1 yields the lower bound:
K3 � −3. It is interesting to note that equation (7)
implies an explanation of violations of the LGI in terms of
negative probabilities [75], a perspective discussed in [76] and
employed in interpreting the experiments of [25].

An alternative proof of the LGIs has been given in terms
of hidden-variable theories, e.g. [24, 54, 58]. We shall describe
this proof in terms of the ‘ontic model’ framework [77–80], and
follow its terminology—rather than hidden variables we will
speak of the ontic state of the system, the real state of the system
‘out there’ from which all physical properties can be derived.
To calculate the correlation functions Cij , we assume that our
system is prepared with some probability distribution µ(ζ )

over ontic states ζ . Measurement at time ti is represented by
the outcome function, ξi(Qi |ζ ), which gives the probability of
outcome Qi given ontic state ζ . The probability of disturbance
of the ontic state ζ → ζ ′ by the measurement is given by
γi(ζ

′|Qi, ζ ). In this way the generic ontic description for the
joint probability function of two measurements reads

P(Qi, Qj )

=
∫

dζ ′dζ ξj (Qj |ζ ′)γi(ζ
′|Qi, ζ )ξi(Qi |ζ )µ(ζ ). (8)

Under the NIM assumption (A2), the disturbance function
leaves the ontic state untouched, γM(ζ ′|Q, ζ) = δ(ζ ′ − ζ ),
whence

P(Qi, Qj ) =
∫

dζ ξj (Qj |ζ )ξi(Qi |ζ )µ(ζ ). (9)

Inserting this into equation (2), we obtain〈
QiQj

〉 =
∫

dζ
∑

Qi,Qj =±1

QiQjξj (Qj |ζ )ξi(Qi |ζ )µ(ζ )

=
∫

dζ
〈
Qi

〉
ζ

〈
Qj

〉
ζ
, (10)

where 〈. . .〉ζ represents an expectation value for a given ontic
state ζ . In these terms, K3 of equation (1) can be written

K3 =
∫

dζµ(ζ )

[
〈Q2〉ζ 〈Q1〉ζ + 〈Q3〉ζ 〈Q2〉ζ − 〈Q3〉ζ 〈Q1〉ζ

]
.

(11)

Since the expectation value of Qi is bounded in magnitude
by unity, the bounds on K3 are once again seen to be
−3 � K3 � 1.

From this derivation it is apparent that the LGIs are valid
for any ontic (i.e. realistic) NIM theory. Maroney [58] points
out that this class of theories is larger than that of macroscopic
realism, for which the ontic state of the system at any time
must be of the form

µ(ζ ) =
∑

k

pkνk(ζ ), (12)

where νk(ζ ) is a distribution of states which all share
macroscopic property k with respect to the relevant
measurement M (i.e., νk > 0 only if ξM(k|ζ ) = 1 for
measurement outcome k).

2.3. A family of inequalities

The inequality of equation (1) is just one LGI to be found in
the literature. The most frequently encountered inequalities
concern the n-measurement Leggett–Garg strings [28]

Kn = C21 + C32 + C43 + · · · + Cn(n−1) − Cn1. (13)

Under assumptions (A1-3), these quantities are bounded as:

−n � Kn � n − 2 n � 3, odd;
−(n − 2) � Kn � n − 2 n � 4, even.

(14)

For n odd, only the upper bound is of interest (at least, it is
with projective measurements; see, however [81, 82]). For n

even, both bounds are relevant. For these bounds to hold, the
variable Q need not necessarily be dichotomic Q = ±1, but it
must be bounded |Q| � 1 [7, 19].

Various symmetry properties of the above inequalities can
be taken advantage of to derive further inequalities. Firstly,
the inequalities still hold under redefinition of the measured
observables (providing they still obey |Q| � 1) independently
at each time. In particular, we can redefine Q → −Q

at various times in Kn [19]. At third-order, this procedure
generates the inequality

− 3 � K ′
3 � 1; K ′

3 ≡ −C21 − C32 − C31, (15)

which is the three-time inequality found in [2]. Moving to
higher orders, this procedure allows us to generate inequalities
for quantities as in equation (13) but with any odd number of
minus signs (rather than just the one). At fourth-order there is
only one distinct sign assignment:

− 2 � C21 + C32 + C43 − C41 � 2, (16)

which is equivalent to the four-term inequality of [2]. At order
five, there are three possibilities

−5 � C21 + C32 + C43 + C54 − C51 � 3

−5 � C21 + C32 − C43 − C54 − C51 � 3

−5 � −C21 − C32 − C43 − C54 − C51 � 3. (17)

Further inequalities may also be generated by permutation of
the time-indices.

Avis et al [83] have given a characterization of the
complete space of LGIs formed with two-point correlation
functions in terms of the geometry of cut polytopes. In this
scheme, the above LGIs of order n � 4 are all reducible, in the
sense that they may be obtained from combinations of ‘triangle
inequalities’, i.e. K3, K ′

3 and their time-permuted cousins. The
multi-time LGIs of [84] and [35] are also of this reducible type.
As an example of a higher-order irreducible LGI, Avis et al
describe the five-time ‘pentagon inequality’,∑

i�i<j�5

Cji + 2 � 0, (18)
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which can be violated even when all relevant triangle
inequalities are satisfied. Reducibility does not necessarily
render the inequalities for Kn with n � 4 uninteresting.
For example, [35] takes advantage of higher-order reducible
LGIs to address the clumsiness loophole. Different reducible
inequalities are also affected differently by dephasing (see
section 3.3).

2.4. Stationarity

If the correlation functions Cij = 〈Q(ti)Q(tj )〉 are stationary,
i.e. functions only of the time difference: τ = ti − tj , then
the n-measurement upper-bound inequality of equation (14)
obtains the simple form

(n − 1)〈Q(τ)Q〉 − 〈Q([n − 1]τ)Q〉 � n − 2, (19)

and the experimental effort required to test each of these
LGIs is reduced to the measurement of just two correlation
functions. Let us reinforce that equation (19) is derived under
the same assumptions as the original LGIs, (A1-3), but with
the additional assumption that the correlation functions are
stationary, a property which can be experimentally verified.

Huelga and co-workers [26, 32, 85–87] have also
discussed the derivation of Leggett–Garg-style inequalities
under what they call ‘stationarity’. A typical example is

P(n, 2t |n, 0) − [P(n, t |n, 0)]2 � 0, (20)

where P(n, t |n, 0) is the conditional probability that, given
that the system is in MR state n at time t = 0, it will be
found in the same state at later time t . It is argued, e.g. [26],
that this inequality can be derived without NIM, and that
MR and ‘stationarity’ are sufficient, although the meaning of
‘stationarity’ is left slightly open to interpretation. We find that
to derive equation (20) without NIM, the full set of assumptions
required is:

(i) macroscopic realism;
(ii) time-translational invariance of the probabilities:

P(n, t + t0|n, t0) = P(n, t |n, 0) for arbitrary t0;
(iii) that the system is Markovian;
(iv) that the system is prepared in state n at time. t = 0.

The Markov assumption allows the probability P(n, 2t |n, 0)

to be decomposed according to Chapman–Kolmogorov rules
[88] as

P(n, 2t |n, 0) =
∑

k

P (n, 2t |k, t)P (k, t |n, 0), (21)

where the sum is over all possible (MR) states of the system at
time t . With time-translational invariance, the k = n term
in the sum cancels with the second term in equation (20)
to give a non-negative quantity as stated. This formulation
avoids having to make the NIM assumption by explicitly
preparing the system in state n at time t = 0 and utilizing the
Markov property that the subsequent evolution of the system
is independent of whether the system entered a given state
through preparation or in the course of its dynamics. If the
probabilities P(n, t |n, 0) are obtained by making two-time

measurements on an evolving system, then NIM once again
has to assumed for equation (20) to hold (and assumption (iv)
above, but not (i)–(iii), may be dropped).

A number of other authors have derived Leggett–
Garg-type inequalities using assumptions that are essentially
equivalent to the Markov approximation, e.g. [48, 61, 89]. The
Markov approximation is clearly stronger than NIM—NIM
requires only that the system has no memory of whether it has
been measured or not, Markovianity requires amnesia of its
entire history. In practice, the Markov assumption is as elusive,
if not more so, than NIM. Stated fully, the assumption is that
the system is Markovian under a MR understanding, which,
for a quantum system is an untestable proposition. Maybe
this macroscopic-Markov assumption can be made plausible,
as is done with NIM, but a discussion of this point is lacking
in the literature. The combination of Markovanity and time-
translational invariance corresponds to being able to write
down a Markovian master equation for the populations of the
complete set of macroscopic states that are thought to describe
the system. Violations of equation (20) by quantum systems
can therefore be understood in terms of rewriting the coherent
evolution of a quantum system as a non-Markovian rate
equation for these probabilities by ‘tracing out’ the coherences
from the Liouville–von-Neumann equation [90–92]. Finally
on this point, we note that, whereas violations of equation (20)
may be explained as a break-down in the Markovianity of the
system, this does not apply to the full LGIs, which are valid
whether the evolution is Markovian or not.

2.5. Entanglement in time

There exists another class of inequality which can lay
equal claim to the epithet ‘temporal Bell’s inequalities’.
A representative member is the temporal CHSH inequality
discussed in [46, 93] (see also [94] for a hidden-variables
treatment). There, in each run of the experiment, Alice makes
her dichotomic (±1) measurement at time t1, whilst Bob makes
his measurement at time t2 > t1. They each have two choices
(i = 1, 2) of detector setting, such that they measure variables
Ai and Bi for Alice and Bob, respectively. Under the Leggett–
Garg assumptions (A1-3) (see also [95] for a derivation based
on a ‘joint reality’ assumption) and in direct analogy with the
CHSH inequality [96], we obtain

|〈B1A1〉 + 〈B1A2〉 + 〈B2A1〉 − 〈B2A2〉| � 2. (22)

A qubit can violate equation (22) up to the Cirel’son bound of
2
√

2 [97].
Comparison of spatial and temporal Bell inequalities

has led Brukner et al [46] to consider the possibility of
‘entanglement-in-time’ in analogy with the usual entanglement
responsible for the violations of the spatial inequality. Whilst
this analogy works to a point, it is not complete. For
example, in the extension to multi-partite entanglement, spatial
entanglement is known to be monogamous [98], but the
temporal version was found to be polygamous. Marcovitch and
Reznik [51, 52] have extended the temporal-spatial analogy
by providing a precise mapping between two-time spatial and
temporal correlation functions for general measurements and
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time evolutions. Central to this is the Choi–Jamiołkowski
isomorphism [99, 100] between the space of bipartite systems
ρAB ∈ HA ⊗ HB and the set of evolutions from HA to HB .
In Marcovitch and Reznik’s scheme, the temporal correlations
must be obtained through weak measurements (the qubit is
a special case where projective and weak measurements give
analytically the same result). This ‘structural unification’ leads
to a number of insights into the temporal Bell inequalities,
as it allows the transfer of known results from the spatial to
the temporal domain. Further work on unifying spatial and
temporal correlations in quantum mechanics can be found
in [101–103].

As originally stated, LGIs and inequalities such as
equation (22) describe two physically distinct scenarios: the
first involves a set of measurements of the same operator at
n � 3 different times; equation (22), in contrast, considers
just two times but with different operator choices at each.
Formally, there is little difference between the two [104]. We
can map the LGI of equation (16) on to equation (22) by simply
assuming time evolutions such that Q(t1) = B2, Q(t2) = A1,
Q(t3) = B1 and Q(t4) = A2. This is similar to the situation
tested in many current experiments. For example, Goggin
et al [22] essentially test the inequality

〈Q2〉 + 〈Q2Q3〉 − 〈Q3〉 � 1, (23)

with, quantum mechanically, Q̂2 = σ̂z and Q̂3 = σ̂x and no
time evolution in between. In [22] this is portrayed as a LGI,
but it could equally well be interpreted as the three-term variant
of equation (22), namely (see [5])

〈B2A2〉 + 〈B1A1〉 − 〈B1A2〉 � 1; A1 = B2, (24)

with choices Â1 = B̂2 = σ̂z, Â2 = σ̂x , and B̂1 an operator that
returns a value of +1 on the initial state |σ 〉 (see section 8). The
danger of this path is that, without the temporal structure of
the LGIs (or indeed equation (22)), if we are just free to pick
the operators Ô(ti) (or Âi and B̂i) as we please, then these
inequalities essentially just become a test of the properties of
hand-picked non-commuting observables. This is far from the
spirit of the LGI—if one knew how to define and measure non-
commuting observables for a macroscopic system, there would
be no question of macroscopic-coherence to answer.

2.6. Entropic LGIs

The underlying assumption behind the bounds of both
the Leggett–Garg and Bell inequalities is the existence,
independent of measurement, of a joint probability distribution
that can provide information on all relevant marginals.
Braunstein and Caves [105, 106] used this assumption to
formulate a set of entropic Bell inequalities based on the
Shannon and conditional entropies of probability distributions
measured by spatially separated parties . This technique has
been adapted by Morikoshi [47] (and recently revisited by Usha
Devi et al [107]) to the Leggett–Garg, or temporal, setting.

Let P(qj , qi) be the joint probability that measurements
at times ti and tj of observable Q (not necessarily dichotomic)
give the results Q(ti) = qi and Q(tj ) = qj . In terms of

the conditional probability P(qi |qj ) = P(qj , qi)/P (qj ), the
conditional entropy reads

H [Q(ti)|Q(tj )] ≡ −
∑
qj ,qi

P (qj , qi) log2 P(qi |qj ). (25)

Using the chain rule for conditional entropies and the fact that
entropy never increases under conditioning, Morikoshi [47]
derived the N -measurement inequality

H(Q(tN), . . . , Q(t0)) � H [Q(tN)|Q(tN−1)] + · · ·
+ H [Q(t1)|Q(t0)] + H [Q(t0)], (26)

where the left-hand side is the joint entropy. He goes on to
employ this temporal entropic LGI in an investigation of the
role of quantum coherence in Grover’s algorithm.

From equation (26) one can derive the temporal analogues
of the spatial entropic Bell’s inequalities by noting that the
information contained in a set of variables is never smaller
than that in a subset of them. This gives, for example [107],

N∑
k=1

H [Q(tk)|Q(tk−1)] − H [Q(tN)|Q(t0)] � 0. (27)

The N = 3 version of this inequality was recently investigated
experimentally in [30]. One advantage of these inequalities is
that they are not restricted to bounded dichotomic operators
(the standard LGIs can be made to work with such operators
too, but this requires redefinitions and partitioning, and is not
unique).

3. LGI violations of a qubit

Most experimental tests of LGIs to-date have been performed
on two-level systems or qubits [36], the most elementary of
quantum systems. It is thus of interest to look in-depth at the
violation of the LGIs for this system. Although we consider
only a very specific two-level example, it has been shown [50]
that every non-trivial quantum evolution, irrespective of the
nature or size of the system, allows one to violate a LGI, given
the ability to make projective measurements on the initial state.

3.1. Maximum violations

The classical correlation functions Cij = 〈QiQj 〉 have no
unique quantum analogue, due to issues of operator ordering.
In discussing the measurement of Kn for a quantum system,
the meaning of the correlation function Cij must be specified.
Implicit in the original work of Leggett–Garg was that these
quantities be obtained with projective measurements, in which
case the correlation functions may expressed in the same way
as in equation (2). As Fritz has shown [93], the correlators so
obtained are equal to the symmetrized combination:

Cij = 1

2

〈{
Q̂i, Q̂j

}〉
. (28)

Parameterizing the qubit operators as Q̂i = ai · σ̂, with σ̂
the vector of Pauli matrices and ai a unit vector, and using the
identity (a2 · σ̂)(a3 · σ̂) = a2 ·a3 1̂1+iσ̂ ·(a2 × a3), we obtain

1

2

〈{
Q̂i, Q̂j

}〉
= ai · aj

〈
1̂1
〉
= ai · aj , (29)
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independent of initial conditions. The nth-order Leggett–Garg
parameter then reads Kn = ∑n−1

m=1 am+1 ·am −an ·a1. Finally,
defining θm as the angle between vectors am and am+1, we
obtain

Kn =
n−1∑
m=1

cos (θm) − cos

(
n−1∑
m=1

θm

)
. (30)

This quantity is maximized by setting all angles θm = π/n,
such that the maximum value for a qubit is

Kmax
n = n cos

π

n
. (31)

For the first few values of n, this gives values of

Kmax
3 = 3

2
; Kmax

4 = 2
√

2; Kmax
5 = 5

4

(
1 +

√
5
)
;

Kmax
6 = 3

√
3, (32)

and so forth. An analogous classical derivation posits a spin
with components aα

i , α = x, y, z, at time ti , such that our
correlation functions read 〈QiQj 〉 = ∑

α aα
i aα

j vα
0 , with v0 the

initial vector of the system which, without loss of generality,
we choose in the z direction. Classically, we have then
Kn = ∑n−1

m=1 az
m+1a

z
m − az

na
z
1, which differs from the quantum

case in that it only includes z components. This quantity is
maximized by setting az

m = ±1 and since at least one of the n

terms will be negative for any such assignment, the maximum
classical value is n − 2 as in equation (14).

Equation (28) holds not just for a qubit but also for a
quantum system of arbitrary size, provided that the observable
Q̂ is obtained as the difference between two projection
operators (one onto the subspace corresponding to Q = +1,
and one onto the Q = −1 subspace) [93]. From this it follows
that the maximum quantum values in equation (32) also apply
to systems of arbitrary size, provided that they are measured in
this fashion [108]. More general measurements (for example,
one measures precisely the state of the N -level system and
assigns Q = ±1 [179] values to each of these N states)
may give maximum violations of the LGIs that exceed these
values.

Violations of the LGIs can be associated with the non-
commutativity of the operator Q̂ with itself at different times.
With the above parameterization, we have the commutation
relation [

Q̂i, Q̂j

]
= 2iσ̂ · (ai × aj ). (33)

Assuming that the vectors ai all lie in the x-z plane with
equal angles between them, θi = θ , the commutators between
relevant operator pairs are[
Q̂2, Q̂1

]
=

[
Q̂3, Q̂2

]
= 2iσ̂y sin θ; and[

Q̂3, Q̂1

]
= 2iσy sin 2θ. (34)

The points where these commutators simultaneously vanish are
the points where violations of the LGIs (K3 and K ′

3 together)
disappear. Furthermore, the sum of the magnitudes of these
commutators is proportional to 2| sin θ | + | sin 2θ |, which is
maximized by setting θ1 = θ2 = ±π/3. Thus the points
where the commutators are simultaneously maximized are the
points where the LGI violations are greatest.

0 0.5 1 1.5 2
Ωτ/π
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Figure 1. Third-order Leggett–Garg function K3 with equi-spaced
measurements for a qubit as a function of measurement-time
spacing τ . The solid black curve shows the quantity K3; the blue
dashed curve the quantity K ′

3, and the thin green curve shows the
function obtained by permuting the indices of K3. The blue shaded
region denotes values of K3 excluded by the Leggett–Garg
inequality and thus incompatible with macroscopic realism and
NIM. A violation of one or the other of the K3 and K ′

3 inequalities
occurs for all τ except at multiples of π/2.

3.2. Time evolution

The canonical example of a time evolution that violates the
LGIs is a qubit evolving under the Hamiltonian

Ĥqb = 1
2�σ̂x, (35)

and measured in the z-direction, Q̂ = σ̂z. In this case, the
correlation functions read [2]

Cij = cos �(ti − tj ), (36)

and choosing equal time intervals, tm+1−tm = τ , we obtain [28]

Kn = (n − 1) cos �τ − cos(n − 1)�τ. (37)

The third-order K3 is plotted in figure 1. It oscillates as a
function of the measurement time τ with maximum value of
3/2 occurring at times�τ = ±π

3 +2πk, with k an integer. Only
for certain ranges of τ is K3 > 1. At third order, permutation
of the time indices only either recovers the original inequality,
equation (37), or generates the trivially satisfied cos 2�τ < 1.
The K ′

3 inequality of equation (15), however, yields the distinct

− 3 � −2 cos (�τ) − cos (2�τ) � 1. (38)

K ′
3 has maxima of 3/2 at �τ = ± 2π

3 + 2πk and, as figure 1
shows, is complementary to K3 in that the violations of K ′

3
fill in the gaps between those of K3 [85]. The only times for
which no violation occurs is when �τ = k

2π , where the system
state is an eigenstate of the measurement operator and a QND
measurement is performed [109].

Turning now to the fourth-order inequality, from
equation (37) we have

K4 = 3 cos �τ − cos 3�τ, (39)
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Figure 2. Same as in figure 1, but here for the fourth-order
Leggett–Garg inequality, |K4| � 2. The thick black curve depicts K4

itself; the other curves show K4 with permutations of time indices.
Permutations that lead to violations of the inequality are plotted with
blue dashed curves, and those that do not, with green thin curves.

bounded from above and below by ±2. Of the 4! possible
permutations of the time indices at fourth order, six distinct
LGIs arise. These results are plotted as a function of
measurement time in figure 2. For the qubit evolution
considered here, only three of these permutations violate a LGI.
As in the K3 case, at least one of the inequalities is violated for
all values of �τ , except for multiples of π/2 . Note that for
the even-order inequalities, both the upper and lower bounds
are relevant.

Montina [110] has shown that this pattern of violations of
the LGIs for the qubit can be reproduced by a minimal classical
model consisting of just four states—the two states measured
in the LGI test plus one ancillary bit—combined with invasive
measurements.

3.3. Dephasing

The foregoing assumes unitary dynamics of the qubit. Contact
with an environment can, however, induce dephasing, the
effects of which can be seen in, e.g., figure 3, where the
oscillations of the Leggett–Garg parameter are damped with
time. From the perspective of obtaining the largest violations,
the K3-test is preferable to the K ′

3-test because the maximum
violation occurs at an earlier time with K3, such that the effects
of dephasing will be less.

A general framework for understanding the influence of
non-unitary evolution on the maximal violations of the LGIs
was given in [111]. There it was assumed that the observables
Qα(tα) could be chosen arbitrarily and independently at the
three-measurement times. By maximizing over all possible
choices of these operators, the maximal possible violation for
a given environment can be obtained. This approach has an
analogy with the treatment of the spatial Bell’s inequalities,
where maximization over measurement angles connects the
value of the Bell correlator with a property of the input state,
entanglement. For the LGI, maximization over measurement
angles reveals the connection between the Leggett–Garg

correlator, K , and the non-unitary parameters of the dynamics.
A broad class of environments acting on a qubit was studied
in [111], modelled by generic quantum channels [112, 113]
acting in between measurements. For example, consider a
depolarizing channel that serves to isotropically contract the
Bloch sphere by a factor −1 � c � 1 in each of the evolution
periods, t1 to t2 and t2 to t3. The maximal value of K3 in this
case was found to be

Kmax
3 =

{|c|(1 − |c|) |c| � 1/2
1
2 + c2 |c| > 1/2.

(40)

Violations of the LGI are thus only possible when |c| > 1√
2

and
the violation thus shows a threshold behaviour—if dephasing
is too strong no Leggett–Garg violation can occur. This
behaviour is not restricted to this particular example, but rather
a general feature of unital (i.e., dephasing without relaxation)
[112] evolutions.

4. LGIs and weak measurements

In contrast to projective ones, weak measurements do not
completely distinguish between possible values of the property
being measured [114–118]. This ambiguity means that less
information is gained about the system per experimental run
and, quantum-mechanically, it means that such measurements
may only partially collapse the system wavefunction. A
true weak measurement is obtained in the limit of maximal
ambiguity and vanishing effect on the wavefunction. We
follow [24] in referring to measurements intermediate between
weak and projective as ‘semi-weak’.

A number of works have derived [19, 81, 119] and tested
[11, 22, 24, 25] Leggett–Garg-like inequalities with semi-weak
measurements and it is the aim of this section to elucidate how
these tests differ from the standard LGI tests and from each
other.

4.1. Weakness and ambiguity

As emphasized in [120], weak measurements can be
introduced classically through the notion of an ambiguous
detector. Let us assume that we measure a system with
a detector that gives response q (assumed continuous here,
but this need not be) to system variable Q = ±1 with
probability P(q|Q). One can arrange that this ambiguous
detector is calibrated such that the ambiguously-measured
ensemble average

〈q〉 ≡
∑
Q

∫
dq q P (q|Q) P (Q), (41)

with P(Q) the distribution of system variable is the same
as would be measured with an unambiguous one, namely
〈Q〉 = ∑

Q P (Q)Q. With this constraint the range of possible
values of q will exceed the original range of system variable Q.

Quantum-mechanically, this situation can be expressed
in terms of Kraus operators [121, 122], where a single
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instantaneous semi-weak measurement of observable Q̂ yields
a result q and changes the state of the system as

ρ̂ → ρ̂1(q) = K̂(q)ρ̂K̂†(q), (42)

with Kraus operator K̂(q). The probability of obtaining
outcome q is P(q) = Trρ̂1(q). As example, let us consider
that q is Gaussian-distributed about the eigenvalues of Q̂ with
a Kraus operator of the form [123]

K̂(q) = (2λ/π)1/4 exp
[
−λ(q − Q̂)2

]
. (43)

Here, the parameter λ � 0 characterizes the strength of the
measurement; for λ → ∞ we obtain a strong, projective
measurement (corresponding to an unambiguous classical
measurement), whereas λ → 0 corresponds to the weak-
measurement limit (corresponding to maximum ambiguity).
The Kraus operator is defined such that the expectation 〈q〉 ≡∫

dqqP (q) is, as above, consistent with that of a projective
measurement, 〈Q̂〉 = TrQ̂ρ̂. In the language of [120, 124],
the detector response q is a ‘contextual value’ in a generalized
spectrum for Q̂ that depends on the context of the specific
detector being used.

4.2. Two-point LGIs

There are a number of different ways in which weak
measurements could be or have been deployed in LGI tests.
Most obviously, we could replace the projective measurements
of the standard LGI procedure by weak measurements. To be
clear, the standard procedure for obtaining K3 involves making
three different types of experimental run and measuring each
of the three correlation functions Cij separately. We will refer
to this way of obtaining the Cij as the ‘two-point method’
since in any given run, the system is only measured at two
points in time. For the qubit of section 3.2, exchanging
projective measurements for semi-weak ones leaves the two-
point correlation functions Cij entirely unaltered. This
is consistent with the observation of Fritz [93] that the
projectively measured correlation functions are identical to
those obtained in the weak-measurement limit, 1

2 〈{Q̂j , Q̂i}〉
[125]. The question of LGI violations when measured in
the two-point fashion is thus independent of measurement
strength. This holds for a qubit, but not necessarily for systems
of larger dimension. Indeed, Kofler and Brukner [49, 50] have
shown that ‘fuzzy’ measurements on a quantum system can
explain the emergence of classical behaviour (in this case, the
compliance with the LGI) as the size of the system increases.

4.3. Three-point LGIs

The second, and far more interesting, approach with weak
measurements departs from the original Leggett–Garg protocol
and constructs K3 (we shall only discuss this simplest form)
by measuring the system at all three times in each run. We
shall refer to this method of determining K3 as the ‘three-
point method’. Conducting LGI tests with weak measurements
in this manner was first proposed in [119], albeit there the
measurements were performed in a repeatedly-kicked fashion.

The authors of [119] refer to the inequalities so-defined as
generalized LGIs to indicate that they are different in kind
to those of the original LGI proposal. Violations of this
type of LGI have been probed in several recent experiments
[22, 24, 25], to be discussed in section 8.1. We note that
a similar reformulation of the spatial Bell’s inequalities was
given in [126].

A proof that the inequality K3 � 1 still holds when the
measurements are ambiguous can be obtained with a slight
adaption of the proof given by Dressel et al [24] for their
two-party inequality. In terms of violating this three-point
LGI, the strength of the first and last measurements is irrelevant
[22], so we shall only consider that the middle measurement
is semi-weak. Classically, repeated runs of the three-point
experiment furnish us with the probabilities P(Q3, q2, Q1),
where Q3 and Q1 are dichotomic system variables at times t3
and t1 obtained from unambiguous measurements, and q2 is
the output of our ambiguous detector set to measure system
variable Q2 at time t2. For simplicity, we shall assume that
we prepare the system in the state Q1 = +1, such that the
probability reads P(Q3, q2, Q1) = P(Q3, q2)δQ1,+1. The
quantity K3 constructed from these three-point probabilities
is then

K3 =
∑
Q3

∫
dq2 P(Q3, q2)(q2 + Q3q2 − Q3). (44)

If we were to make the measurement at t2 unambiguous and
q2 is restricted to the values ±1, it is clear that this quantity is
bounded as −3 � K3 � 1.

To determine the bounds on K3 when the q2-measurement
is ambiguous, we may modify the argument of section 2.2 in
terms of ontic states (hidden variables in [24]). Under the
assumption of realism and NIM equation (44) can be written as

K3 =
∫

dζµ(ζ )
[

〈q2〉ζ + 〈Q3〉ζ 〈q2〉ζ − 〈Q3〉ζ
]
. (45)

Since the expectation value from an ambiguous detector is
identical with that of the variable itself, the magnitude |〈q2〉ξ |
is bounded by unity. The bounds on K3 measured in this way
are thus identical to those when measured projectively, i.e.
−3 � K3 � 1. Thus, a violation of this three-point LGI
means that the middle measurement must have been ambiguous
and that one of the standard Leggett–Garg assumptions (A1-3)
breaks down for the system. It is interesting to compare how
the two-point and three-point inequalities admit violations.
In the two-point LGI, it is the incompatibility between the
independently assessed two-point correlation functions with a
single three-point joint probability distribution function that is
the source of the LGI violations. In the three-point case, it is
the fact that q is not restricted to the range of the measured
variable Q that opens up the scope for K3 to exceed unity in
the first place. This, coupled with the fact that the quantum
measurement is invasive permits the violation.

As an example of this type of violation we can consider a
qubit with parameters as in section 3, initialized in the state |+〉
(corresponding to Q1 = +1) and measured at time t2 with a
detector described by the Kraus operators of equation (43). For
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equally spaced measurement times (spacing τ ), the requisite
probability may be obtained as

P(Q3, q2) = ∣∣〈Q3|Û (τ )K̂(q2)Û(τ )|+〉∣∣2
, (46)

with unitary time-evolutions operator Û (τ ) = exp (−iĤ τ ),
such that the K3-parameter reads

K3 = 2 cos �τ − exp (−λ)(cosh λ cos 2�τ − sinh λ), (47)

with λ the strength parameter of the middle measurement. In
the limit λ → ∞, we obtain

K3 = 2 cos �τ − cos2 �τ, (48)

which is always less than or equal to one. Thus with
projective measurements, we recover the expected result
that calculating marginals from the projectively-measured
three-point distribution cannot violate the LGI [59, 60].
However in the opposite limit, λ → 0, the weakly measured
K3 here becomes the same as that of the undamped qubit,
equation (37), with the same pattern of LGI violations. Indeed,
all non-infinite values of λ permit LGI violations. It may at first
seem strange that maximum violations are obtained in the limit
λ → 0 when in this limit, the influence of the measurement on
the systems wavefunction is negligible. However, this must be
understood as the result of limiting process where, in order to
obtain reliable statistics, the number of runs of the experiment
also diverges.

Thus, providing that the intermediate measurements are
semi-weak to some degree, an n-term LGI based on marginals
calculated from an n-point measurement can be violated. We
note that the probability function P(Q3, q2) calculated here
is a genuine probability in that it is normalized and non-
negative. The LGI is violated because the marginals derived
from P(Q3, q2) are inconsistent with the NIM assumption.
A quasi-probability can be extracted from P(Q3, q2) by
subtracting the detector noise [123]. This quasi-probability can
be negative, underlining the quantum origins of the violations.
Curiously, the correlation functions Cij are the same whether
one calculates them using the full probability distribution or the
quasi-probability equivalent. This is expected to be a property
of the two-level system only.

4.4. LGIs with continuous weak measurements

The final type of weak measurement to be discussed here
is the continuous weak measurement, which is important
particularly in the solid state where the typical measurement
device is permanently attached to the system [115, 117].
Such a continuous weak measurement can be described by
extending the Kraus-operator approach above [123]. However,
violations of a LGI with continuous weak measurement were
first discussed by Ruskov et al [19] within a quantum stochastic
approach, and it is instructive to consider this presentation.

Rather than measuring the qubit observable Q(t) directly,
the continuous weak measurement detector obtains the noisy
signal

I (t) = I0 + (�I/2)Q(t) + ξ(t), (49)

where I0 is an offset, �I the signal response and ξ(t) a
stochastic variable representing Gaussian white noise with zero
temporal average

〈ξ(t)〉t ≡ lim
T →∞

1

T

∫ T/2

−T/2
ξ(t) dt = 0, (50)

and δ-correlation

〈ξ(t)ξ(t + τ)〉t = 1
2S0δ(τ ), (51)

with spectral density S0 [127]. The time-averaged correlation
function of the detector variable

CI (τ) = 〈[I (t) − I0][I (t + τ) − I0]〉t , (52)

consists of four contributions. However, by specifying τ > 0,
the detector noise contribution is avoided and, provided that
the qubit doesn’t anticipate the future behaviour of the detector
(see (A3)), the term 〈Q(t)ξ(t + τ)〉 also vanishes. The quantity
〈ξ(t)Q(t + τ)〉 describes the back-action of the detector upon
the qubit. In line with the NIM assumption of the projective
LGI, we assume that the measurement set-up can be arranged
such that this term vanishes. Assumptions (A2) and (A3) are
thus expressed in the continuous weak measurement case by
the statement

〈Q(t)ξ(t + τ)〉t = 〈ξ(t)Q(t + τ)〉t = 0, (53)

which is postulated to hold true for macroscopic systems.
Under these assumptions, we obtain a direct relation between
the detector correlation function and that of the system:

CI (τ) = (�I/2)2〈Q(t)Q(t + τ)〉t . (54)

We can then use the known LGIs for Q to write down
inequalities for the continuous weak measurement correlation
functions, e.g. [19]

CI (τ1) + CI (τ2) − CI (τ1 + τ2) � (�I/2)2. (55)

In this way of testing the LGIs, the averages are temporal
averages, which has the practical advantage that a correlation
function may be obtained in a single run and the theoretical
advantage that any possible issues with ensembles [3] are
avoided.

Ruskov et al [19] calculated these correlation functions
for a double-quantum-dot charge qubit coupled to a quantum-
point-contact detector [128–130]. With qubit Hamiltonian and
measurement operator as in section 3.2 they found

CI (τ) =
(

�I

2

)2

exp (−�τ/2)

(
cos �̃τ +

�

2�̃
sin �̃τ

)
,

(56)

with shifted frequency �̃ ≡ √
�2 − �2 and total dephasing

rate � = γ + (�I)2/4S0 that includes an environmental
contribution, γ , and one arising from the coupling to the
detector. In the limit of weak system-detector coupling
and good isolation from the environment, �/� � 1, the
ratio CI (τ)/(�I/2)2 recovers the correlation functions of
section 3.2 and the corresponding pattern of LGI violations
result. This continuous weak measurement formalism was
utilized in the Palacios–Laloy experiment [11], which we
discuss in section 5.
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4.5. Weak versus non-invasive measurements

It is important to stress that a weak measurement is not
necessarily a non-invasive (in the sense of (A2)) one. Whereas
the strength/weakness of a measurement relates to the degree
of ambiguity in the results, the non-invasivity of (A2) is
the property that the measurement should not influence the
future time evolution of a macroscopic-real system. With this
distinction made, it is obvious that an ambiguous measurement
performed clumsily can be just as invasive as an unambiguous
one.

Where the confusion arises is that, from a purely quantum-
mechanical perspective, a (strictly) weak measurement induces
a vanishing degree of wavefunction collapse, thus minimising
the ‘quantum-mechanical invasiveness’ per run. This
invasiveness, though, is purely a quantum-mechanical in origin
and has no meaning for a macrorealist. It therefore cannot enter
into his/her opinion on whether a system is being measured
invasively or not.

It might be argued that weakness of the measurement
arises from a weak physical coupling between the system
and detector and therefore any effects of the detector must
be minimal. However, this isn’t necessarily the case—a
weak measurement can be performed with a strongly coupled
detector, provided that the detector is very noisy. Moreover,
concentrating on the continuous weak measurement case,
equation (55) shows that the threshold for LGI violations is
(�I/2)2. Thus, an inadvertent invasive component of the
measurement need only have a coupling strength similar to
the system-detector coupling to exert an influence on whether
a LGI is violated or not. The clumsiness problem remains, no
matter how weak the coupling is made.

The NIM criteria in the continuous weak measurement
case is actually very clear, and it is distinct from notions
of weakness—to claim NIM, one has to be able to
convince a macrorealist that equation (53) holds [35]. Of
course, for a quantum-mechanical system, the cross-correlator
〈ξ(t)Q(t + τ)〉t will not be zero (except for the singular
and uninteresting case of QND measurements) due to the
unavoidable collapse-related back-action of the detector on
the system. This back-action is precisely the reason why
equation (55) can be violated in the quantum-mechanical
case [19, 35]. Thus, how to counterfactually assert that the
measurement is non-invasive is just as much of a problem with
weak measurements as it is with strong ones. This problem
seems to have gone unaddressed in the literature.

5. Superconducting qubits and the first
experimental violation of a LGI

The first experimental test of a LGI came not with the rf-
SQUID of the original Leggett–Garg proposal but rather a
superconducting charge qubit of transmon type formed by a
Cooper-pair box shunted by a microwave transmission line
[12–18, 131]. Due to the large ratio of Josephson- to charging-
energy, such qubits show a reduced sensitivity to charge noise,
making them good candidates for observing quantum coherent
phenomena.

Figure 3. Experimental results from the measurement of the
three-term continuous-weak-measurement Leggett–Garg inequality,
equation (57), for a superconducting transmon qubit. Red points are
experimental data points; the blue line, theoretical quantum
prediction and yellow, the region forbidden under Leggett–Garg
assumptions. The data point marked with the arrow indicates a
violation at short times. Figure from [11].

In the circuit-QED experiments of Palacios-Laloy et al
[11] the qubit was both driven and measured by a microwave
resonator with the measurement in the continuous-weak-
measurement paradigm discussed previously. Under MR
assumptions about the response of the microwave resonator
and the subtraction of detector noise, the correlation functions
CI (τ) were extracted from the measured spectral density of
the resonator. From these, the weakly measured LGI

fLG(τ) = 2CI (τ) − CI (τ) � 1, (57)

was tested. The experimental results are reproduced in
figure 3 and good agreement with the quantum-mechanical
predications was observed. A violation of equation (57) was
observed, but only as a single data point with fLG(τ ) =
1.37 ± 0.13 at τ ∼ π/3ωR, with ωR the Rabi frequency of
the qubit.

Palacios–Laloy [34] gives an interesting discussion of
whether their experiment should be seen as a test of
macroscopic coherence and concludes that ‘[the] experiment
does not involve superpositions of macroscopic states but
rather superpositions of microscopically distinct states of a
macroscopic body’. This conclusion is based on two criteria
for macroscopic distinctness of two states, set forth by Leggett
[3, 132]:

• The extensive difference, L, is the difference between the
expectation values of the measured observable between
the two states (e.g., the magnetic flux), scaled to some
relevant atomic reference unit (e.g., the flux quantum).

• The disconnectivity D is a measure of the type of
entanglement of the state: a density matrix with irreducible
M-body correlations has a disconnectivity D = M .

In terms of these measures, macroscopic coherence implies
L ∼ D ∼ N , with N the number of microscopic constituents
of the macropscopic body. This was found to be the case
by Leggett [3] for the rf-SQUID of [2], although this was
later found to be overly optimistic [133]. In contrast, for the
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transmon qubit, Palacios-Laloy report a value of L ∼ 10−7,
since the difference in flux of the two states is small, and a
disconnectivity of D = 2, since the Cooper-pair box can be
described purely in terms of two-body wavefunctions. Thus,
although certain aspects of the experiment are macroscopic
(e.g., the actual physical dimensions of the system), the
superposition states involved in the LGI violations are only
microscopic. No justification of the non-invasivity of the
measurement assumption was made.

In a recent experiment, Groen et al [33] have also realized
a measurement of LGIs in a transmon qubit, but this time
using a second transmon qubit as read-out device. The set-
up allowed the strength of the measurement to be controlled
and the relationship between weak values and LGIs to be
investigated. These themes are taken up in a different context
in section 8.1.

6. Nuclear spins

A number of groups have reported experimental tests of LGIs
with nuclear-spin qubits. Waldherr et al [26] studied a nuclear
spin at a nitrogen-vacancy defect in diamond undergoing Rabi
oscillations induced by rf pulses. The state of the nuclear spin
was read-out by a defect electron and Huelga’s inequality of
equation (20) was tested. George et al [27] also performed
experiments with an NV centre, but considered the nuclear
spin as a three-level system and investigated the relation
between quantum strategies in the ‘three-box’ quantum game
[58, 134] and violations of LGIs. Several experimental tests
of LGIs in liquid-state (room temperature) NMR systems have
been reported [28–30]. In all cases, the experiments were
conducted on the chloroform molecule in which spin-half
carbon-13 nuclei were probed using the spin of hydrogen-1
nuclei. Souza et al [29] considered the K3 inequality whereas
Athlaye et al [28] considered both K3 and K4 inequalities.
Katiyar et al [30] investigated an entropic LGI and also
compared marginals obtained from the directly measured
three-point joint probability distribution P(Q3, Q2, Q1) with
those from the two-point LGI measurements and found the
mismatch responsible for LGI violations in a quantum system.
The interpretation of the measurements of Souza et al [29]
as constituting a meaningful violation of a LGI has been
criticized [135] (see also [136]) and some of these objections
apply more generally to other NMR tests of the LGIs (see
later in this section). Finally, Knee et al [31] considered spin-
bearing phosphorus impurities in silicon with a nuclear spin
as system qubit and an electron spin as an ancillary read-out
qubit.

All of these works make use of a probe or ancilla qubit to
perform the measurement [7]. In [31], this technique was used
to realize an ideal negative measurement and we will discuss
this method here. A quantum circuit for the measurement of the
correlation functions Cij is shown in figure 4. The essential
ingredient is a CNOT gate acting on the system-ancilla pair
with the system qubit as control and ancilla as target [137]. The
CNOT gate performs a bit-flip of the ancilla if, for instance, the
control is in state ↓, but leaves it untouched if the control is in
the ↑ state. Since the measurement ancilla is only influenced

Figure 4. Quantum circuit to non-invasively measure part of the
correlation function C32. The system qubit is prepared in state ρS

and the ancilla qubit in ρA. The time evolution of the system is
induced by the unitary operators Uji acting between times ti and tj .
The measurement at t2 is carried out with a CNOT gate, in which the
state of the ancilla is flipped if the system is in the ↑-state and left
unaltered if the system is in the ↓ state. The ancilla is then read-out
at the end and only results where no flip has occurred are kept. The
measurement of the system at t3 can be performed invasively. This
circuit is then repeated with an anti-CNOT gate instead and the
measurements combined to build C32 from ideal negative
measurements. Adapted from Knee et al [31].

when the system qubit is in the ↓ state, by discarding results
when the ancilla experiences a flip, we obtain the probability
that the system was in the ↑ state. By repeating the experiment
with an anti-CNOT gate in which the role of ↑ and ↓ for
the control qubit are switched, we obtain an ideal negative
measurement , and hence a non-invasive measurement of the
state of the system.

To work as described, this measurement scheme requires
that the ancilla be prepared in a pure state. Without further
consideration, deviations from exact purity could be exploited
by a macrorealist to explain LGI violations. To seal off this
loophole, Knee et al [31] explicitly took the ancilla impurity
into account in their LGI tests. They considered the quantity

f = 1 − K ′
3, (58)

which must be non-negative according to the standard Leggett–
Garg arguments and under the assumption that perfect ancillas
are used. Knee et al then define the ‘venality’, ζ , as the fraction
of ancillas that are incorrectly prepared. Taking into account
incorrect preparation and assuming the worst case scenario,
they showed that their LGI must be modified to read

f � −2ζ. (59)

The importance of this revised bound was demonstrated by
considering two ancilla ensembles, see figure 5. Although
results for a thermal ensemble at 2.6 K could violate the
original bound, f � 0 the revised bound, equation (59), was
not violated—the implication being that a macrorealist could
plausibly ignore the conclusion of this experiment as an effect
of unreliable measurement protocol. However, by polarizing
the ancilla such that the venality reached ζ = 0.056, even
the revised bound could be violated (they measured a value
of f = −0.296 as compared with a LGI lower bound of
−2ζ = −0.112) and thus a MR/NIM description could be
ruled out.

With the precautions made in [31] to ensure that their
measurements were of the ideal negative type, as well as their
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Figure 5. Results from the nuclear spin experiment of [31]. Shown is the LGI correlator f ≡ 1 − K ′
3 as a function of the system evolution

angle θ . The black line shows the theoretical prediction and the data point, the experimentally measured result. With perfect ancilla
preparation, a realistic description of the spin implies that f � 0. Taking imperfect preparation into account, the bound on f becomes
equation (59) with ‘venality’ ζ the fraction of incorrectly prepared ancillas, and this is shown in red (blue denotes a less strict bound, not
discussed here). The two figures show the results for two initial ensembles: (a) a thermal initial state (2.6 K) and (b) a highly polarized state.
For the thermal ensemble, the measured value lies between −2ζ and zero—this means that the apparent violation of the LGI can be
explained away in terms of ancilla errors. For the polarized ensemble, the measured value satisfies f < −2ζ , such that a genuine violation
of the LGI can be claimed. Figure from [31].

mitigation of the ‘venality-loophole’ which is, in principle, an
issue for all measurement schemes using an ancilla, the work
of Knee et al [31] represents the most complete experimental
test of a LGI to date.

Katiyar et al [30] have also implemented an ideal negative
measurement scheme, similar to the foregoing, but with an
NMR sample. LGI tests with liquid-state NMR systems rely
on writing the state of the nuclear spin ensemble as

ρ̂ = ερ̂pure + 1
2 (1 − ε)1̂1, (60)

where ρpure is the pure part upon which the quantum
operations are performed whilst the remaining maximally
mixed component remains unobserved in the experiment.
At room temperature, the parameter ε is very small—[135]
estimates a value of ε < 10−7 for the experiment of [29].
This gives rise to two problems. The first stems from the
interpretation of the small ε as a low detector efficiency
[135]. To draw conclusions in the presence of such detector-
efficiency requires the fair sampling hypothesis that the
observed component is reflective of the entire ensemble to hold,
which is not the case here. Furthermore, it has been shown
[138] in the context of liquid-state NMR quantum computation
that the results of quantum operations on a small number of
liquid-state NMR spins can always be described in terms of a
local hidden-variables theory. Menicucci and Caves conclude
that ‘...NMR experiments up to about 12 qubits cannot violate
any Bell inequality, temporal or otherwise’. Souza et al seem
to agree and write in [136] that ‘... [their] experiment can
only be viewed as a demonstration of the circuit and not as
a disproof of macroscopic realism’ and go on to state that the
same conclusion should apply to other NMR experiments such
as [28], and by extension, [30]. Thus, whilst Katiyar et al [30]
rightly seek to close off the clumsiness loophole with their use
of ideal negative measurement, the loopholes intrinsic to NMR
prevent a serious challenge to a macrorealistic description of
nature.

The experiment by George et al [27] draws the connexion
between the violation of a LGI and winning quantum strategies

in a quantum game. This in itself is an interesting point, but the
experiment is also important as it represents the only LGI test
to date where the system is of greater complexity than a single
qubit. Unfortunately, some of the discussion accompanying
their results adds unnecessary confusion (much of which has
been addressed by one of the authors [58]).

The quantum game in question is the three-box game
[139], played by two protagonists, Alice and Bob, who
manipulate the same three-level system. We will just describe
the quantum sequence of events for this game, and refer
the interested reader to the above articles for the details and
classical play of this game. Alice first prepares the system in
state |3〉, and then evolves it with a unitary operator that takes

|3〉 → 1√
3
(|1〉 + |2〉 + |3〉). (61)

Bob then has a choice of measurement: with probability pB
1

he decides to test whether the system is in state |1〉 or not
(classically, he opens box 1), and with probability pB

2 he tests
whether the system is in state |2〉 or not. Alice then applies a
second unitary to the system, which takes

1√
3
(|1〉 + |2〉 − |3〉) → |3〉, (62)

before she makes her final measurement to check the
occupation of state |3〉.

If both Alice and Bob find the system in the state that they
check (e.g., Bob measures level 1 and finds the system there
and Alice, the same for state 3), then Alice wins. If Alice
finds the system in state 3, but Bob’s measurement fails, then
Bob wins. Finally, if Alice doesn’t find the system in state 3,
the game is drawn. In a realistic description of this game in
which Bob’s measurements are non-invasive, Alice’s chance of
winning can be no better than 50/50 as long as Bob chooses his
measurements at random (pB

1 = pB
2 = 1/2). In the quantum

version as described above, however, interference between
various paths means that Alice wins every time. Alice’s
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quantum strategy therefore outstrips all classical (i.e. realistic,
NIM) ones.

George et al realized this three-box quantum game in a
nuclear spin system. They then went on to consider a LGI, K ′

3
of equation (15), for the system, where Alice’s preparation
constitutes the first measurement, Bob’s measurement the
second, and Alice’s final measurement, the third. In evaluating
the LGI, all measurements assign a value of +1 to state
3 and a value −1 to the other states. The direct way to
implement such a measurement would simply be to use the
two projectors |3〉〈3| (value +1) and (|1〉〈1| + |2〉〈2|) (value
+1). Using this projective measurement scheme and unitary
evolutions consistent with equations (61) and (62), the three
correlation functions obtained in the two-point fashion evaluate
as 〈Q2Q1〉 = −1/3, 〈Q3Q2〉 = −3/9 and 〈Q3Q1〉 = −7/9.
The LG parameter K ′

3 in turn evaluates as

K ′
3 = 13

9 > 1, (63)

which represents a clear violation of the LGI.
This measurement scheme, however, is not the one

pursued by George et al. Rather, they restrict the middle
measurements to those permitted to Bob in the three-box
game: a yes/no measurement for whether the system in state 1,
and yes/no measurement for whether the system in state 2.
Under a realistic understanding of the system, knowledge
of the probabilities of the outcomes of these measurements
allow one to construct the probability that the system was
in state 3. George et al are therefore able to obtain K ′

3
using only that set of measurements involved in the three-box
game. The calculated value of K ′

3 using these measurements
is exactly as in equation (63). In the experiment, a value of
K ′

3 = 1.265 ± 0.23 was measured which, although differing
from the theoretical expectation, still shows a clear violation of
the inequality. The significance of this result is that the authors
were able to show that violation of the LGI necessarily implies
that the corresponding quantum strategy adopted by Alice will
allow her to win the three-box game with a probability higher
than classical theory will allow. This result therefore suggests
a general correspondence between LGI violations and winning
quantum strategies.

In discussing their results, the authors of [27] introduce
the concept of ‘non-disturbing measurements’. As formulated
in [58], a measurement of Q2 at time t2 is non-disturbing (from
the point of view of a subsequent measurement at time t3) if

P3(Q3) =
∑
Q2

P32(Q3, Q2), (64)

i.e., the results of the measurement at time t3 are the same
irrespective of whether the measurement at t2 is performed
or not (we will meet this concept again in section 12 under
the guise of a quantum witness or no-signalling in time). In
the three-box game, it can be shown that Bob’s measurements
do not disturb Alice’s later results. Unfortunately, in [27], the
concept of a non-disturbing measurement is conflated with that
of a non-invasive one, although the distinction between the two
is made in [58]. In the language of this review, and indeed most
of the literature on the topic, the ‘non-disturbance’ character of

the measurement is equivalent to saying that the measurement
is a weak measurement. That this is so can be seen by
observation that, if Bob’s measurements are non-disturbing,
then in the LGI it does not matter whether the correlation
functions are measured in the same, or in separate, runs.
Thus, two-point and three-point ways of obtaining the LGI
are equivalent, which is only the case if the measurements are
weak (see section 4.2). Indeed, we would categorize the LGI
test of the three-box protocol as a three-point LGI test where
the middle measure is weak, consisting of a POVM defined by
the set of projectors pB

1 |1〉〈1|, pB
1 (|2〉〈2| + |3〉〈3|), pB

2 |2〉〈2|
and pB

2 (|1〉〈1| + |3〉〈3|). A consequence of this interpretation,
when combined with the connection between three-point LGI
violations and the existence of weak values [24, 119], is
that better-than-classical quantum strategies should also be
associated with weak values. This is indeed found to be the
case in e.g. [140].

Finally, we note that proof is given in [27] that, for
two-level systems, violation of a LGI necessarily means
that the measurements are disturbing. As can be seen
from the numerous examples of LGI violations for two-
level systems measured in a three-point weak-measurement
(non-disturbing in this language) fashion, this is not true in
general, but holds only if the measurements are assumed
to be projective measurements acting directly on the system
itself. Furthermore, if we understand this result to apply for
projective measurements on the system, the result is trivially
extended to arbitrary system size—since non-disturbing
(weak) measurements imply the equivalence of two-point
and three-point LGIs, and we know that three-point LGIs
with projective measurements cannot yield violations (see
section 4.3), then projective measurements that give a LGI
violation must be disturbing. What is interesting about the
three-box problem is that the partial projections performed
on the system by Bob in a probabilistic fashion enable him
to build a POVM that implements a weak measurement on
the system. Since partial projections require more than two
levels, this only becomes possible once the system has a Hilbert
space larger than that of a qubit. It is interesting to note
that e.g. Goggin et al [22] enact their weak measurement by
adding an auxiliary qubit to the system and making projective
measurements in this extended Hilbert space.

7. Light–matter interactions

Aside from superconducting qubits and nuclear spins, the only
other report of a violation of a LGI in a matter system is
the work of Zhou et al [32]. Their system consisted of two
millimetre-scale pieces of Nd3+ : YVO4 crystal separated by a
half-wave plate. Using an atomic-frequency comb technique,
they could tailor the absorption spectrum of the crystal so that
a single input photon created a state in one of the crystals of
the form

|e〉N =
N∑
j

cj e−ikzj ei2πδj t |g1 � � � ej � � � gN 〉, (65)

where N ∼ 103 is the number of atoms involved in
the delocalized excitation; gj (ej ) indicates that atom j
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(with position zj ) is in the ground (excited) state; k is the
wavenumber of the input field; δj is the detuning between
atom and input laser frequency; and cj is an atom-dependent
amplitude. This state, similar to a Dicke- [141] or W -state
[142], also arises in arrays of quantum wells, and has been
discussed in terms of a LGI violation in Chen et al [143].

By simultaneously illuminating both crystals and tuning
the phase ψ0 of the polarization H + V exp iψ0 of the input
photon, the crystals can be prepared in the joint state,

ψ(t) = 1√
2
{|e〉N1|g〉N2 + |g〉N1|e〉N2 exp [i(2πδt + ψ0)]} ,

(66)

where δ is the frequency detuning between the two atomic
frequency combs. The Leggett–Garg measurement was chosen
as a measurement in the basis

|D〉 = 1√
2
(|e〉N1|g〉N2 + |g〉N1|e〉N2) , (67)

with eigenvalue +1 and

|A〉 = 1√
2
(|e〉N1|g〉N2 − |g〉N1|e〉N2) , (68)

with eigenvalue −1. The occupation of states |D〉 and |A〉
was measured as a function of time by the observation of the
polarization state of an emitted photon at some time after the
state was created. This measurement set-up, which involves
state-preparation followed by an invasive-measurement meant
that Zhou et al [32] investigated Huelga’s inequality of
equation (20). Thus, the observed violations can, at best, be
associated with the lack of a Markovian description of the
system. As discussed by Chen et al [143] performing a test of
the standard LGIs on a Dicke- or W-state is challenging

The issue of whether this system exhibits macroscopic
coherence or not is an interesting one. While the crystals
are certainly macroscopic, both in size and separation, and
the excitation consists of a coherent distribution of phase
between a macroscopic number of particles, at the end of
the day, the interfering states only differ by the absorption
of a single quantum. Correspondingly, the disconnectivity, D,
and extensive difference L are small. The situation is thus
similar to the experiment of Palacios–Laloy, in that we should
talk here of a test of microscopic coherence in a macroscopic
system.

We also note that Sun et al [144] have proposed a test of
equation (20) via an optical excitation of biexciton states in a
single quantum dot.

8. Optics

A single photon is perhaps as far from being a macroscopic
object as one can imagine. Nevertheless, tests of the LGI
with photons have attracted significant interest, particularly in
connexion with weak measurements.

The simplest optical LGI test would be the Mach–Zehnder
interferometer [54, 39], in which the arm index is taken as the
system’s qubit degree of freedom and the time-evolution of the
particle is generated by beamsplitters. Measuring K3 requires
two beamsplitters with the measurement times ti mapped onto

positions in the interferometer: t1-measurements are made
before the first beamsplitter, t2-measurements between them,
and those for t3 are made at the output ports. Measurements
at these points can be made by inserting photo-detectors
into the arms of the interferometer and this presents a very
natural way to realize an ideal negative measurement [39], as
a macroweaselist would have to claim that the photon taking
one path was affected by the presence of a detector in the other.

Another simple optics set-up is that considered
experimentally by Xu et al [23], where the observable Q

was the polarization of a single photon. The set-up was
similar to that of figure 4 with a single photon ancilla and
CNOT gate to perform the middle measurement (no account
of non-invasiveness was given, though). The time-evolution
(Uij in figure 4) was produced by angled quartz plates that
induced a relative phase between polarization components.
The frequency dependence of this phase combined with the
spread of the initial wave packet was used to simulate the
dephasing effects of an environment. As noted in [23, 39], a
classical laser pulse would violate the LGI in both this and the
Mach–Zehnder set-up, since classical wave mechanics is not a
macroscopic-real theory. This is a reminder that the violations
of a LGI cannot strictly speaking be taken as evidence of
quantum mechanics, but rather evidence of the absence of a
description along the lines of (A1-3).

8.1. Optical LGIs and weak measurements

LGI tests with weak measurements have been performed
in several optical set-ups [22, 24, 25]. Goggin et al
[22] considered a polarization qubit in a system-ancilla
configuration somewhat similar to figure 4. The state of the
system qubit at t1 is simply defined as the Q = +1 state; the
operator U10 was absent, and U21 was chosen such that its
output state was

|σ 〉 = cos θ/2|H 〉 + sin θ/2|V 〉, (69)

with |H, V 〉 two orthogonal linear-polarization directions; U32

was chosen such that the measurement at t3 is effectively
measured in the basis

|D, A〉 = 2−1/2(|H 〉 ± |V 〉). (70)

The inequality that was measured was therefore

K3 = 〈Q2〉 + 〈Q2Q3〉 − 〈Q3〉 � 1, (71)

with operators Q̂2 = σ̂z and Q̂3 = σ̂x (see section 2.5). The
measurement at t2 was performed with a C-SIGN gate in which
the |V V 〉-component of the system-ancilla wavefunction
obtains a phase-inversion. The ancilla photon was prepared
in the pure superposition state ρA = |µin〉〈µin| with

|µin〉 = γ |D〉 + γ̄ |A〉, (72)

and γ 2 + γ̄ 2 = 1. This superposition of ancilla states allows
one to alter the type of measurement made at t2: for γ = 1,
the measurement is strong and performs an ideal projective
measurement of the system; for γ → 1/

√
2, the measurement
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Figure 6. Results from the optics experiment of [22], which show the Leggett–Garg parameter (labelled B, red) and a weak value (labelled
WV, blue) for a range of input states parametrized by the angle θ . The two parts show results for different measurements at the second
position in the three-measurement experiment, with solid lines showing the theoretical predictions and points, the experimental data. It is
evident that for this three-point LGI test with semi-weak measurements, a violation of the LGI is accompanied by the emergence of a weak
value. The measurement strength (see equation (73)) here was K = 0.5445 ± 0.0083. The experiment was repeated with
K = 0.1598 ± 0.0091 and larger LGI violations were observed. Figure from Goggin et al [22].

is weak with minimal information gathered per run. Goggin
et al [22] describe this range of possibilities by the parameter
(‘knowledge’)

K ≡ 2γ 2 − 1, (73)

ranging from K = 1 for a strong measurement and K = 0 for
a weak one. The measurement at t3 is performed projectively.
Both Q2 and Q3 were measured in every run (three-point
measurement) and the probabilities of detecting system and
ancilla photons in their various states were obtained. Based
on the knowledge of the detector action, Goggin et al
determined the expectation value of Q2, as obtained by the
weak measurement, as

〈Q2〉 = Pa(D) − Pa(A)

K
, (74)

where Pa(X = D, A) is the probability to find the ancilla in
state A or D at the final measurement. Based on this, they
reported violations of the LGI for two different values of the
measurement parameter, K , with a larger violation associated
with the smaller K-value (weaker measurements). Results
from this experiment are shown in figure 6.

Suzuki et al [25] also considered a polarization qubit
with three-point measurements, but they implemented the
measurement of Q2 with an interferometer set-up [145], which
allows a complete tuning from weak to strong measurements.
With the qubit initialized in the Q = +1 state they showed
that the probabilities Pexp(Q2, Q3) obtained directly in the
experiment do not violate a LGI. From equation (7), we
see that this would require Pexp(−1, +1) to be negative.
Indeed, Suzuki et al interpret the lack of LGI violations
with the raw measured probabilities as being ‘because the
errors in measurement resolution and back-action required
by the uncertainty principle guarantee that Pexp(−1, +1) will
always remain positive’. This statement strongly echoes the
arguments made by Onofrio and Calarco [76, 109, 146, 147],
who have consistently argued against the observability of LGI
violations due to the uncertainty principle. Whilst Onofrio and
Calarco maintain that their argument applies to the original,
two-point method of measuring the LGI tests [148], we find
that it only makes sense when restricted to the three-point

Figure 7. A two-party Leggett–Garg inequality with measurements
as discussed in [24]. A pair of particles is extracted from the
ensemble ζ and then subjected to the measurements A1, B1 and B2

in the sequence shown, yielding measurement results α1, b1, b2.
Measurements Bi are projective, whereas measurement A1 is
semi-weak. A Leggett–Garg inequality is then investigated for the
two-party correlator C � 1. Figure from [24].

method with projective measurements, in line with Suzuki et al
in the above quote.

Suzuki et al went on, however, and by introducing a
model for their detector which takes into account the finite
resolution of a weak measurement, they obtained revised quasi-
probabilities such that, as the measurement became weaker,
the relevant quasi-probability P(−1, +1) became negative and
thus LGI violations were observed. Suzuki et al [25] also
included a classical back-action effect in their detector model.
By including the two effects (finite resolution and this back-
action) they arrived at a quasi-probability P(−1, +1) that was
both negative and independent of measurement strength. They
concluded therefore that this negative probability is inherent to
the original state and not dependent on the type of measurement
performed. While this may be the case, since Suzuki et al [25]
consider that their detectors are producing a classical back-
action effect, no conclusions regarding the LGI can be made,
due to the conflict with the NIM assumption.

Dressel et al [24] derived and tested a novel weakly
measured LGI in which the system under test was a pair of
particles. The sequence of measurements on the particle pair
is illustrated in figure 7 in which detector A1 may be ambiguous
(corresponding to a semi-weak measurement in the quantum
case) and the end detectors B1 and B2 are unambiguous
(corresponding to projective measurements in the quantum
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case). In each run, the three detectors obtain values α1, b1,
and b2 and the quantity

C = 〈A1 + A1B1B2 − B1B2〉, (75)

constructed. With a derivation similar to that given in
section 4.3, Dressel et al showed that this quantity is bounded
−3 � C � 1 under MR and under the assumption that the
detector A1 is both non-invasive and unambiguous.

The set-up in figure 7 was implemented with polarization
qubits with measurement A1, a semi-weak one. Violations
were observed in line with quantum theory. An interesting
aspect of the experiment is that in order to obtain violations,
the two particles had to be entangled with one another. This
suggests that the inequalities of Dressel et al combine aspects
of both Bell and LGIs. Another work that appears to span these
two types of inequality is [149].

A focus of the experiments in [22, 24] was to investigate
the prediction of Williams and Jordan [81, 82] that the violation
of every ‘generalized LGI’ (i.e. one measured with weak
measurements) can be associated with the occurrence of a so-
called strange weak value [114, 118] for a system variable.
Strange weak values are measured values of an observable that
lie outside the eigenspectrum of the observable. They can arise
under the conditions of weak measurement and post-selection
and have a ‘...long history of controversy...’ [124], which we
shall not go into here (see citations in [124, 134]). For example,
in conjunction with their LGI experiment, Goggin et al looked
at weak values such as

D〈Q2〉 = Pa|s(D|D) − Pa|s(A|D)

K
, (76)

where, e.g., Pa|s(A|D) is the conditional probability of finding
the ancilla photon in state |A〉 given that the system is found in
state |D〉. Considering a range of weak values and the (third-
order) LGIs for this problem, they indeed find a strange weak
value whenever a generalized LGI is violated, see figure 6.
The violations of the two-particle LGIs [24] were likewise
associated with strange weak values and their conjunction
understood in terms of contextual values [124, 120].

9. Quantum transport

Quantum transport studies the motion of electrons through
structures small enough in dimension that the quantum nature
of the electron plays an important role [150, 151]. Such
systems show a rich interplay between non-equilibrium and
quantum physics, which has been revealed through both time-
resolved charge and more standard transport measurements,
such as current and noise (e.g., [151–156]). To date, there have
been several theoretical works investigating the possibility of
observing violations of LGIs in transport systems.

In [38], Lambert et al first considered how a LGI can be
violated by measuring the location of the electron charge in
some discrete region within a quantum nanostructure. The
assumption of Coulomb blockade provides an upper bound for
the charge in the system, such that one can define a bounded
operator as required by the LGIs. Let us assume a charge

detector that registers the value Q′
n � 0 when the system is

in the nth of N possible states and that state N is the state for
which Q′ has its maximum value: Q′

N = Q′
max. Then, defining

the bounded operator Q = 2Q′/Q′
max − 1 and introducing

this into the stationary three-term LGI of equation (19), one
obtains,

2
〈
Q′(t)Q′〉 − 〈

Q′(2t)Q′〉 � Q′
max

〈
Q′〉. (77)

The use of the stationary LGI here is motivated by the fact that
in transport experiments this is typically the regime of interest.
Lambert et al [38] also showed that this inequality can hold in
the non-stationary regime (i.e., with arbitrary initial states) but
only under the conditions of a Markovian, time-translationally
invariant evolution and when only a single state contributes to
the detection process, i.e., Qn = QmaxδnN . In this second case,
the resultant equality is then similar to that of equation (20).
Lambert et al went on to show theoretically the violation of
equation (77) (in the stationary case) by measurements of
the position of a single electron within a double quantum
dot in the large bias, Coulomb Blockade, regime. The
effects of a phonon bath were included, and even though
this damped the oscillations of the LGI correlator, violations
at short times were found to remain up to relatively large
phonon temperatures. Lambert et al also derived an additional
inequality for the current flowing through the double quantum
dot. Although the instantaneous current is an unbounded
observable and a simple LGI of the form equation (77) cannot
generally be constructed, under some additional, rather strict,
assumptions pertinent to the double quantum dot in the large
bias regime, just such an inequality was derived and shown to
be violated by the quantum description of the problem. This
same inequality has also been discussed in terms of photonic
‘current’ measurements in cavity-QED systems [157].

A direct measurement of equation (77) would prove
difficult in practice due to the short time-scales over which
the correlation functions need to be measured (of the order
of a nanosecond [158]). Moreover, it may be difficult to
construct charge measurements that satisfy the NIM criterion.
Emary et al [40] proposed electron interferometers as a way
to overcome these difficulties. The simplest set-up they
considered was an electronic Mach–Zehnder interferometer
realized by quantum Hall edge-channels. The test of the
LGI, equation (1), in this system proceeds in direct analogy
with the photonic Mach–Zehnder interferometer discussed in
section 8, with single electrons in edge channels replacing
photons propagating in free space, and quantum point contacts
playing the role of beamsplitters. The advantages of this
Mach–Zehnder geometry is that it enables the unambiguous
implementation of ideal negative measurement and only mean
currents, rather than time-dependent correlation functions,
need to be measured.

9.1. Full counting statistics

Full counting statistics seeks to understand electronic transport
by counting the number of charges transferred through a
conductor in a certain time interval tb � t � ta [159, 160].
Considered as a classical stochastic process, the information
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about transferred charge can be encapsulated by the moment-
generating function

Gcl.(χ; tb, ta) = 〈exp [iχ(n(tb) − n(ta))]〉, (78)

where n(t) is the collector charge at time t and χ is the counting
field. In [40], Emary et al showed that the quantity

L(χ, {ti}) ≡ G(χ; t1, t0) + G(χ; t2, t1) − G(χ; t2, t0), (79)

which involves the moment-generating function over three
different time intervals obeys the Leggett–Garg-inspired
inequalities

BR(χ) � Re{L(χ, {ti})} � CR(χ); (80)

−CI(χ) � Im{L(χ, {ti})} � CI(χ), (81)

for all χ and times {ti}. These inequalities were derived
under the usual Leggett–Garg assumptions, (A1-3), with
the additional assumption of charge quantisation. In these
inequalities, the bounds are χ -dependent with, for example,
CR(χ) = 1, BR(χ) = −3 and CI(χ) = 0 when χ = π ,
corresponding to a parity measurement of the reservoir charge.

The canonical quantum-mechanical moment-generating
function of full counting statistics was given by Levitov et al
[159, 160] as

GL(χ; tb, ta)

=
〈
exp

[
−i

χ

2
n̂(ta)

]
exp

[
iχn̂(tb)

]
exp

[
−i

χ

2
n̂(ta)

]〉
.

(82)

The set-up proposed to measure this moment-generating
function was a spin processing under the influence of the
magnetic field generated by the collector current. In this
set-up, the counting field χ has the physical significance of
being the coupling strength between system and detector and
so can, in principle, be scanned through. In the ideal case,
this measurement can be performed non-invasively. In [40]
it was shown that both normal-metal and superconducting
single-electron transistors can cause violations of inequalities
equation (81).

The inequalities equations (77) and (81) are compli-
mentary to one another—the former tests the existence of
a macrorealist description of charges inside a nanostructure,
the latter tests the same for the charges in the leads.
Correspondingly, the former can be violated by quantum
superpositions within the structure, whereas the latter can
be violated by coherences between the system and the lead.
Whilst these inequalities were derived for charge flow in
quantum transport, this approach should be applicable to any
dynamical stochastic process. The significance of inequalities
of the form equation (81) is that they give classical bounds
based on the complete statistical information about the system,
which can be arbitrarily complex (i.e. they are not just restricted
to Q = ±1 observables). In this sense they are similar to the
entropic LGIs.

Bednorz and Belzig [161] have considered theoretically
continuous weak measurement of the current through a
mesoscopic junction and derived an inequality, similar in spirit
to the LGIs, but involving up to fourth-order current cumulants
in the frequency domain [162]. Violations of this inequality
were obtained for a quantum point contact. A related fourth-
order inequality was discussed for a qubit in [123].

10. Photosynthesis

The possible role of quantum coherence in certain biological
functions has garnered a great deal of interest in the last decade.
In 2007 Engel et al [155, 163] performed an experiment, on a
particular pigment–protein complex from the light-harvesting
apparatus of green sulfur bacteria, which revealed the apparent
wave-like quantum coherent motion of a single electronic
excitation through the complex. This complex, termed the
Fenna–Matthews–Olson (FMO) complex, consists of seven
‘bacteriochlorophyll a’ molecules, which in totality act as a
wire connecting a large antenna complex to the reaction centre.
Photons are absorbed by the antenna complex as electronic
excitations, and are then routed through an FMO trimer to
the reaction centre. The highly efficient transfer of these
excitations has been the subject of much discussion, and the
possible role of quantum coherence in enhancing this efficiency
has played a fundamental part in the development of the field
of quantum biology [45].

The observation of coherent oscillations [155, 163] is
intriguing. However, it has been often argued that a variety
of other phenomena could induce similar signatures. To help
resolve this argument Wilde et al [43] proposed the application
of an LGI to the FMO complex, in the spirit of using an LGI as a
tool to verify the presence of quantum coherence and eliminate
other ‘classical’ explanations of the wave-like phenomena. In
their work they calculated K3 and its cousins and found the
time-scales on which a violation may be observed under certain
assumptions about the environment.

A practical implementation of such a phenomenon seems
difficult at this time. Experiments on the FMO complex so
far rely on two-dimensional spectroscopy, which does not
correspond to an idealised measurement in the site basis, and
is presumably highly invasive. In addition, even at 77 K the
violation of the LGI occurs only on a timescale of 0.035 ps [44]
(the value in [43] differs), which may be exceptionally difficult
to observe. Li et al [44] (and independently Kofler and Brukner
[50, 54]) proposed an alternative to the LGI (see equation (84)
in section section 12 for a full discussion) which gives a broader
window of violation (t0 = 0.3 ps at 77 K, based on a model of
the FMO complex which included strong coupling to a non-
Markovian environment). However, an unambiguous test of
the quantum coherence, with an LGI or otherwise, remains to
be realized experimentally.

11. Nano-mechanical systems

Nano-mechanical systems are mechanical oscillators fabri-
cated on the nano-scale [164, 165]. Such devices come in
several varieties, including single- and doubly clamped semi-
conductor beams, cantilevers, toroidal, and drum geometries.
They are typically characterized by an exceedingly high fre-
quency of oscillation ωm (of the order of giga-Hertz) and
large quality factor Q. In several experiments [166, 167]
such devices have been cooled to temperatures low enough
(kBT � h̄ωm) that the quantum ground state motion of their
centre of mass can be observed, and potentially manipulated.
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As pointed out by several authors [41, 168, 169] there
remains an ambiguity in distinguishing whether the ground
state motion of such systems is quantum or classical,
particularly in opto-mechanical set-ups like Teufel et al [167].
This ambiguity arises because both quantum mechanics and
classical mechanics predict nearly identical properties for
linear harmonic oscillators. The only easily accessible
quantum signature in this case is the non-zero quantum vacuum
displacement of a harmonic oscillator as T → 0 (though
the asymmetry in the spectral properties of absorption and
emission of quanta has been identified as a purely quantum
effect and observed in experiments [170]). Can the Leggett–
Garg inequality assist in this case? Naive considerations say
no, as the measurement of both the displacement and the
energy of a nano-mechanical system are unbound continuous
variables, which do not satisfy the Leggett–Garg requirement
of bound or dichotomic observables. However, two approaches
have been suggested. The first is to construct a dichotomic
measurement using dispersive coupling to a qubit [42, 171].
This dispersive coupling allows one to distinguish between the
occupancy of different vibronic states within the mechanical
system, allowing one to perform the effective dichotomic
measurement

Q̂m = 2|1〉〈1| − 11. (83)

In other words, one could measure whether there is one phonon
in the mechanical system, or not. The second approach is
to consider the extended class of inequalities for continuous
variable measurements such as in [172]. An initial examination
of this possibility was also discussed by Clerk [41], and
Lambert et al [42]. However, no explicit proposal showing
how such higher-order correlation functions could be measured
on a nano-mechanical device has been made, and even
conceptualizing such an implementation remains challenging.

12. Related tests of macrorealism

Whilst we have restricted the scope of this review to the LGIs,
or their very close relatives, there exist a number of related
tests of macrorealism that are worth comment.

In analogy with Bell’s theorem without inequalities
[173–175], a number of authors have written down equalities
based on the Leggett–Garg assumptions [89, 176], although
at least some of these appear to be unmeasurable [61]. In
two recent works Li et al [44] and, independently Kofler and
Brukner [54] (in the spirit of their earlier discussion [50])
proposed an alternative to the Leggett–Garg inequality based
on the same macrorealism assumptions of the LGI. Assumption
(A1) implies that, since the system will have a well-defined
value of Q at times where it is not measured, the probabilities
used to determine measurement results can be obtained as the
marginal of a two-time probability distribution (which is itself
a marginal of a three-time probability distribution),

Pi(Qi) =
∑
Qk

Pik(Qi, Qk), (84)

which was called the ‘no-signalling in time’ condition in
[50, 54] and a ‘quantum witness’, in analogy to entanglement

witness [177], in [44]. The main result of these two works
is to suggest that deviations from this equality can be used as
a test of macrorealism plus NIM directly. This criterion was
also described as the ‘non-disturbing measurement’ criterion
in [27].

Both Li et al [44] and Kofler and Brukner [54] showed
that this witness can have a much larger window of violation
than a single LGI, as illustrated in the case of a photosynthetic
complex in section section 10. However, one could argue that
measuring a combination of different LGIs will also reveal the
full range of violation as this witness. In addition, there is
an extra difficulty in that testing this witness in some cases
requires the measurement of a larger number of correlation
functions between all possible states in the system’s Hilbert
space. Li et al [44] pointed out, however, that this was
not strictly necessary as, since all terms on the right-hand
side of equation (84) are positive, one can simply truncate
the summation once the right-hand side is larger than the
left. Finally, Li et al [44] considered the implications of an
additional Markovian assumption on this equality, and showed
that the resulting time-translational invariance allows one to
construct a new witness which relies on state-measurements
alone, and does not require the measurement of any two-
time correlation functions. However, as with the inequality of
[26, 32, 38, 85–87], classical non-Markovian phenomena can
cause a false detection, and may be difficult to rule out.

A temporal version of Hardy’s paradox has also been
considered [93] that has been tested in experiment [178]. Let
P(r, s|k, l) be the probability that Alice and Bob, measuring
one after the other, obtain results r and s, given that they
chose detector settings ak and bl , respectively. The (temporal)
Hardy’s paradox is then that the probabilities

P(+1, +1|1, 1) = 0; P(−1, +1|1, 2) = 0;
P(+1, −1|2, 1) = 0; P(+1, +1|2, 2) > 0, (85)

as calculated under the classical assumptions (A1-3), are
mutually inconsistent and yet, when calculated quantum-
mechanically, they can indeed be simultaneously fulfilled.
Both this paradox as well as the temporal CHSH of
equation (22) were tested with photon-polarization qubits
and results consistent with quantum mechanics were
observed [178].

13. Conclusions

The experiments discussed in this review show that we are
within the era of LGI tests on microscopic systems. The timing
of this is a consequence of the developments in quantum-
computation technology over the last decade or so that have
made the precise preparation and control of individual quantum
systems possible.

These experiments have explored a number of interesting
aspects of LGIs, such as different measurement strategies, the
connection with weak values, and the effects of decoherence,
etc. However, it really comes as no surprise to find that
these systems violate the LGIs. Years of hard work in pursuit
of practical quantum computation have made these systems
resemble the macroscopic world as little as possible.
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Despite the excellent agreement between quantum theory
and experiment, if we are serious about using the LGIs to test
whether a realistic (macroscopic or otherwise) description of
the world is tenable, then of all the LGI tests performed to
date, the only one that would cause a devout macrorealist
to think twice is that of Knee et al [31], since this is the
only experiment to take any kind of precaution against the
clumsiness loophole (Katiyar et al [30] do also consider ideal
negative measurements, but their experiment is subject to
other serious loopholes). Given the fundamental requirement
that the measurement operations must be perceived as being
non-invasive in order to draw any useful conclusions from a
LGI violation, it is strange that only these two experiments
have taken efforts to ensure this is the case. It is hard to
explain why this is so, but perhaps a mistaken belief that
weak measurement provide inoculation against the clumsiness
loophole is partially to blame. Of course, the measured results
in all these experiments match very well the predictions of
quantum theory without any nefarious detector back-action
effects. But, unless the possibility of such effects is excluded
by e.g. an ideal negative measurement scheme, a macrorealist
can always resort to such effects to explain the results and
the significance of the violations of the LGI is lost. The
analogy with the Bell inequalities is that it is no good claiming
the overthrow of local-hidden-variable theories when the two
parties are still at liberty to signal their results to one another.

Thus, it is clear that we are only at the outset of the
journey in testing the penetration of quantum coherence into
the macroscopic world with LGIs. Further progress involves
not only moving up in scale to address ever-more macroscopic
entities, but also in confronting the challenges posed by the
clumsiness loophole.
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[33] Groen J P, Ristè D, Tornberg L, Cramer J, de Groot P C,
Picot T, Johansson G and DiCarlo L 2013
Partial-measurement back-action and non-classical weak
values in a superconducting circuit Phys. Rev. Lett.
111 090506

[34] Palacios-Laloy A 2010 Superconducting qubit in a resonator:
test of the Leggett–Garg inequality and single-shot readout
PhD Thesis Saclay

[35] Wilde M and Mizel A 2012 Addressing the clumsiness
loophole in a Leggett–Garg test of macrorealism Found.
Phys. 42 256

[36] Buluta I, Ashhab S and Nori F 2011 Natural and artificial
atoms for quantum computation Rep. Progr. Phys.
74 104401

[37] Miranowicz A, Bartkowiak M, Wang X, Liu Y-X and Nori F
2010 Testing nonclassicality in multimode fields: a
unified derivation of classical inequalities Phys. Rev. A
82 013824

[38] Lambert N, Emary C, Chen Y-N and Nori F 2010
Distinguishing quantum and classical transport through
nanostructures Phys. Rev. Lett. 105 176801

[39] Emary C 2012 Leggett–Garg inequalities for the statistics of
electron transport Phys. Rev. B 86 085418

[40] Emary C, Lambert N and Nori F 2012 Leggett–Garg
inequality in electron interferometers Phys. Rev. B
86 235447

[41] Clerk A A 2011 Full counting statistics of energy fluctuations
in a driven quantum resonator Phys. Rev. A 84 043824

[42] Lambert N, Johansson R and Nori F 2011 Macrorealism
inequality for optoelectromechanical systems Phys. Rev. B
84 245421

[43] Wilde M M, McCracken J M and Mizel A 2010 Could light
harvesting complexes exhibit non-classical effects at room
temperature? Proc. R. Soc. A 466 1347

[44] Li C-M, Lambert N, Chen Y-N, Chen G-Y and Nori F 2012
Witnessing quantum coherence: from solid-state to
biological systems Sci. Rep. 2 885

[45] Lambert N, Chen Y, Cheng Y, Chen G, Li C-M and Nori F
2013 Quantum biology Nature Phys. 9 10
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