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Entangled-state generation and Bell inequality violations in nanomechanical resonators
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We investigate theoretically the conditions under which a multimode nanomechanical resonator, operated
as a purely mechanical parametric oscillator, can be driven into highly nonclassical states. We find that when
the device can be cooled to near its ground state, and certain mode matching conditions are satisfied, it is
possible to prepare distinct resonator modes in quantum entangled states that violate Bell inequalities with
homodyne quadrature measurements. We analyze the parameter regimes for such Bell inequality violations,
and while experimentally challenging, we believe that the realization of such states lies within reach. This is a
re-imagining of a quintessential quantum optics experiment by using phonons that represent tangible mechanical
vibrations.
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I. INTRODUCTION

Reaching the quantum regime with mechanical resonators
have been a long-standing goal in the field of nanomechan-
ics [1–4]. In recent experiments, such devices have been
successfully cooled down to near their quantum ground
states [5–7], and in the future may be used for quantum
metrology [8], as quantum transducers and couplers between
hybrid quantum systems [9–15], for quantum information
processing [16], and for exploring the limits of quantum
mechanics with macroscopic objects. In many of these
applications it is essential to both prepare the nanomechanical
system in highly nonclassical states and to unambiguously
demonstrate the quantum nature of the produced states.

Nonclassical states of harmonic resonators can be achieved
by introducing time-dependent parametric modulation [17]
or via nonlinearities. The latter can be realized by a variety
of techniques, for example by coupling to a superconducting
qubit [5], coupling to additional optical cavity modes [18–21],
applying external nonlinear potentials [16], or via intrinsic
mechanical nonlinearities in the resonator itself [22–25].
Using such nonlinearities, specific modes of a nanome-
chanical resonator could potentially be prepared in a rich
variety of different nonclassical states, such as quadrature
squeezed states [18,26–30], sub-Poissonian phonon distribu-
tions [31–33], Fock states [34], and quantum superposition
states [5,35,36]. Quantum correlations and entanglement
between states of distinct oscillator modes could also be
potentially generated, typically taking the form of entangled
phonon states and two-mode quadrature correlations and
squeezing [37–40]. Experimentally, nonlinear interactions
between modes of nanomechanical resonators have already
been used [41,42] for parametric amplification and noise
squeezing. Various schemes [34,43,44] have proposed using
nonlinear dissipation processes to realize steady state entan-
glement. In a similar direction, a recent proposal [45] looked
at ways to couple different internal mechanical modes of a
nanomechanical system via ancillary optical cavities. Also,
Rips et al. [34] looked at ways to prepare nonclassical states
using enhanced intrinsic mechanical nonlinearities.

Here we consider the generation of nonclassical states
and the subsequent violation of Bell inequalities by the use
of similar intrinsic mechanical nonlinearities [16,23–25]. We
focus on a model relevant to a recent experimental realiza-
tion [46] of a phonon laser, where a single mechanical device
exhibits significant coupling between three internal modes
of deformation, due to asymmetries in the beam [25], and
selective activation using external driving. Here we examine
that same intrinsic intermode interaction in the quantum limit.
A schematic illustration of the device considered here is shown
in Fig. 1, though this is not intended to be representative of
the ideal realization or measurement scheme for operating
in the quantum limit. In most of our discussion we do not
consider an explicit physical setup but rather focus on setting
bounds on the fundamental system parameters necessary to
realize the phenomena we discuss. The model we derive
consists of an adiabatically eliminated pump mode which
drives the interaction between two lower-frequency signal and
idler modes. We show that in the transient regime one can
obtain violations of a Bell inequality based on correlations
between quadrature measurements of the signal and idler
modes. This is a re-imagining of a quintessential quantum
optics experiment by using phonons that represent tangible
mechanical vibrations.

This paper is organized as follows: In Sec. II we introduce
the general model and the Hamiltonian for a nonlinear
nanomechanical device. In Sec. II A we consider a regime
in which a parametric oscillator is realized using three modes
in the mechanical system, and in Sec. II B we introduce an
effective two-mode model, valid when the pump mode can be
adiabatically eliminated, and we analyze the types of nonclas-
sical states that can be generated in this system. In Sec. III
we review Bell’s inequality using quadrature measurements,
and in Sec. IV we analyze the conditions for realizing a
violation of this quadrature-based Bell inequality with the
mechanical system in the parametric oscillator regime studied
in Sec. II B. Finally, we discuss the outlook for an experimental
implementation using either intrinsic nonlinearities in Sec. V,
or, as an alternative, optomechanical nonlinearities in Sec. V C.
We summarize our results in Sec. VII.
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FIG. 1. (Color online) Schematic illustration of a conceptual
nanomechanical resonator with two homodyne measurement setups
that probe two different modes of oscillation. The beam can
oscillate in a large number of vibrational and flexural modes with
different frequencies. The two homodyne detectors measure the mode
quadratures X1(φ) and X2(θ ) with frequencies ω1/2π and ω2/2π ,
respectively. By analyzing the correlations between the X1(φ) and
X2(θ ) quadratures, it is possible to determine whether or not the
mode states are quantum-mechanically entangled.

II. MODEL

The general Hamiltonian for a nonlinear multimode res-
onator, describing both the self-nonlinearities and multimode
couplings up to fourth order, can be written as [24]

H =
∑

k

ωka
†
kak +

∑
klm

βklmxkxlxm

+
∑
klmn

ηklmnxkxlxmxn + O(x5), (1)

where ωk is the frequency, ak is the annihilation operator,
and xk = ak + a

†
k is the quadrature of the mechanical mode

k. Here the basis has been chosen so that linear two-mode
coupling terms are eliminated. The third-order mode-coupling
tensor βklm describes the odd-term self-nonlinearity and
the trilinear multimode interaction. The fourth-order terms
describes the even-term self-nonlinearity and fourth-order
multimode coupling. In symmetric systems the fourth-order
terms dominate (odd terms vanish due to symmetry), and it
has been proposed elsewhere that they can be used to create
effective mechanical qubits [16]. The possible combination of
both third- and fourth-order terms will be briefly considered
in the final section. The strength of the nonlinearity depends
on the fundamental frequency (length) of the resonator, and
can be enhanced by a range of techniques [16]. In this
work we focus on the three-mode coupling terms, as these
are necessary to generate the states that violate continuous
variable Bell inequalities. Such terms vanish in symmetric
systems and thus depend on the degree of asymmetry in the
mechanical device [24,25], which again can be enhanced with
fabrication techniques. Our approach in the following is to
identify the ideal situation under which one can realize these
rare Bell inequality violating states. Ultimately these states
will be degraded by losses (which we investigate), but also by
unwanted nonlinearities from the above Hamiltonian.

A. Parametric oscillator regime

Nanomechanical devices of the type described in the
previous section have a large number of modes with different
frequencies which depend on the microscopic structural
properties of the beam. Here we focus on three such modes

0

ω1 ω2 ω0

ω1 + ω2ωL

ΔL Δ0

FIG. 2. A visualization of the mode-matching condition required
to obtain an effective three-mode system. The modes are represented
as solid vertical lines, and the driving frequency and the sum of the
signal and idler frequencies, which should sum up to a frequency
close to ω0, are represented by dashed vertical lines.

(relabeled as k = 0,1,2) which are chosen such that they
satisfy the phase-matching condition ω1 + ω2 = ω0 + �0,
where �0 � ω0. In this case we can perform a rotating-wave
approximation to single out the slowly oscillating coupling
terms, and obtain the desired effective three-mode system, ne-
glecting any higher-order nonlinearities. In the original frame,
the Hamiltonian with this rotating-wave approximation is

H =
2∑

k=0

ωka
†
kak + iκ(a†

1a
†
2a0 − a1a2a

†
0), (2)

where a1 and a2 are the signal and idler modes, respectively,
and a0 is the pump mode. Furthermore, we apply a driving
force that is nearly resonant with ω0, with frequency
ωL = ω0 − �L, |�L| � ω0, and transform the above
Hamiltonian to the rotating frame where the resonant drive
terms are time independent,

H = �La
†
0a0 +

∑
k=1,2

�ka
†
kak

+ iκ(a†
1a

†
2a0 − a1a2a

†
0) − i(Ea

†
0 − E∗a0). (3)

Here �1 = �2 = (�0 − �L)/2, κ = β012 is the intermode
interaction strength, and E is the driving amplitude of mode
a0. See Fig. 2 for a visual representation of the mode-matching
condition and the detuning parameters �0 and �L.

This is an all-mechanical realization of the general three-
mode parametric oscillator model in nonlinear optics [47,48],
where mode a0 is the quantized pump mode, and modes a1

and a2 are the signal and idler modes, respectively.

B. Effective two-mode model

We assume that in this purely nanomechanical realization of
the parametric oscillator model, Eq. (3), all three mechanical
modes interact with independent environments. We describe
these processes with a standard Lindblad master equation on
the form

ρ̇ = −i[H,ρ] +
∑

k

γk{(Nk + 1)D[ak] + NkD[a†
k]}ρ, (4)

where D[ak]ρ = akρa
†
k − 1

2a
†
kakρ − 1

2ρa
†
kak is the dissipator

of mode ak , γk is the corresponding dissipation rate, and the av-
erage thermal occupation number is Nk = [exp(�ωkβ) − 1]−1.
Here β = 1/kBT is the inverse temperature T , and kB is
Boltzmann’s constant.

Assuming that the pump mode is strongly damped com-
pared to the signal and idler modes, γ0 � γ1,γ2, and that
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the pump-mode dissipation dominates over the coherent in-
teraction, γ0 � 〈H 〉 ∼ κ〈a†

0a1a2〉, one can adiabatically elimi-
nate [48,50,51] the pump mode from the master equation given
above. Here we also assume that the high-frequency pump
mode is at zero temperature, N0 = 0, while the temperatures
of modes a1 and a2 can remain finite. This results in a two-
mode master equation that includes correlated two-phonon
dissipation, where one phonon from each mode dissipates to
the environment through the pump mode, in addition to the
original single-phonon losses in each mode:

ρ̇ = − i[H ′,ρ] + γD[a1a2]ρ

+
∑
k=1,2

γk{(Nk + 1)D[ak] + NkD[a†
k]}ρ, (5)

where the effective two-phonon dissipation rate is

γ = κ2γ0/2

|γ0/2 + i�L|2 . (6)

The reduced two-mode Hamiltonian is given by

H ′ =
∑
k=1,2

�ka
†
kak + i(μa

†
1a

†
2 − μ∗a1a2) + χa

†
1a1a

†
2a2, (7)

with the two-mode interaction strength

μ = Eκ

γ0/2 + i�L

, (8)

and the effective cross-Kerr interaction strength

χ = − κ2�L

|γ0/2 + i�L|2 , (9)

which vanishes when the driving field is at exact resonance
with the pump mode. In the following we will generally assume
that this resonance condition can be reached, and �L will be
set to zero in the equations above.

In this resonant limit the Hamiltonian H ′ describes an
ideal two-mode parametric amplifier, which is well known
to be the generator of two-mode squeezed states [52]. When
applied to the vacuum state, or a low-temperature thermal state,
the resulting two-mode squeezed states are nonclassically
correlated [53], but when viewed individually, both modes
appear to be in thermal states. In spite of being quantum
mechanically entangled, these two-mode squeezed states have
a positive Wigner function and cannot violate the quadrature
binning Bell inequalities [54] that we consider below. One
must consider the effect of the two-phonon dissipation in
Eq. (5) to induce such violations.

In the highly idealized case when single phonon dissipation
in the a1 and a2 modes is absent, i.e., γ1 = γ2 = 0, but with
γ0 > 0, the model Eq. (5) produces a steady state [50] of the
form

ρ = 1

I0(2r2)

∑
m,n

r2m+2n

m!n!
|m,m〉〈n,n|, (10)

where I0 is the zeroth order modified Bessel function and
r = √

2E/κ . The special structure of this steady state, with
equal number of phonons in each mode, is because both the
Hamiltonian and two-phonon dissipator conserve the phonon-
number difference a

†
2a2 − a

†
1a1. However, this symmetry is

FIG. 3. (Color online) Visualization of the steady state of the
effective two-mode system. (a) The Fock state distribution of modes
a1 and a2. (b) The single-mode Wigner function of modes a1 and
a2. Both the Fock state distribution and the Wigner function are
identical for both modes a1 and a2, due to the symmetric two-phonon
processes and equal dissipation rates and initial states. The single-
mode Wigner function is positive, and the single-mode state can
therefore be considered classical. However, strong correlations exists
between quadratures of two different modes, as shown in the joint
quadrature probability distribution PX1,X2 (0,0) in (c). Here we have
used the parameters κ = 0.15, E = 0.094, γ0 = 1.0, γ1 = γ2 = 0,
and �0 = �L = 0. These parameters were chosen to produce a steady
state that closely corresponds to the ideal state [49] for quadrature
Bell inequality violation, i.e., with r = 1.12 (see Sec. IV A).

broken if the single-phonon dissipation processes are included
in the model, i.e., γ1,γ2 > 0. The state Eq. (10) is visualized
in Fig. 3 for the specific set of parameters given in the figure
caption. Figures 3(a) and 3(b) show the Fock-state distribution
and the Wigner function for the modes a1 and a2 (because of
symmetry the states of both modes are identical in this case,
and only one is shown). In this case the states of the two modes
no longer appear to be thermal when viewed individually, but
the reduced single-mode Wigner functions are positive and
thus, on their own, each mode appears classical. However,
together the two-mode Wigner function can be negative. For
example, there is a strong cross-quadrature correlation, as
shown in Fig. 3(c). The variances of the cross-quadrature
differences, in the transient approach to the steady state, are
shown in Fig. 4, and exactly in the steady state the variance of
the squeezed two-mode operator difference is

Var(x1 − x2) = 1 + 2r2 I1(2r2)

I0(2r2)
− 2r2, (11)
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(a)

(b)

(c)

(d)

FIG. 4. (Color online) The time evolution of the phonon number
(a), single-mode quadrature variances (b), and the variances of the
two-mode quadrature differences (c), the logarithmic negativity (d),
for the case when the state is initially in the zero-temperature ground
state. In the large-time limit the state approaches the steady state that
is visualized in Fig. 3. The single-mode variances increase above the
vacuum limit as time increases, but the variance of cross-quadrature
difference Var(x1 − x2) decrease below the vacuum limit, which is a
characteristic of two-mode squeezing, and the nonzero logarithmic
negativity demonstrates that the steady state is nonclassical. Here we
used the same parameters as those given in the caption of Fig. 3.

which in the limit of large r approaches 1/2, but has a local
minimum of about 0.4 at r ≈ 0.92. We note that for the vacuum
state Var(x1 − x2) = 1, and thus this quadrature difference
variance is therefore squeezed below the vacuum level for
any r > 0. The logarithmic negativity [55] shown in Fig. 4(d)
further demonstrates the nonclassical nature of this state.

These intermode quadrature correlations, with squeezing
below the vacuum level of fluctuations, are nonclassical and
it has been shown that this particular state can violate Bell
inequalities based on quadrature measurements [54], as we
will discuss in the next section. In fact, this steady state
is, for a certain value of r , a good approximation to the
ideal two-mode quantum state [49] for these kinds of Bell
inequalities. However, it has also been shown that in the
presence of single phonon dissipation the steady state two-
mode Wigner function is always positive, and thus exhibits
a hidden-variables description and cannot violate any Bell
inequalities [47]. Fortunately, this is only the case for the

steady state, and there can be a significant transient period
in which the two-mode system is in a state that can give a
violation.

In the following we consider two regimes; the steady state,
and the slow transient dynamics of a system that is originally
in the ground state, and approaches the new steady state after
the driving field has been turned on.

III. BELL INEQUALITIES FOR
NANOMECHANICAL SYSTEMS

Verifying that a nanomechanical system is in the quantum
regime, and that the states produced in the system are
nonclassical, can be sometimes be experimentally challenging,
largely because of the difficulty in implementing single-
phonon detectors in nanomechanical systems. As has been
done in circuit QED [56,57], measuring a nonlinear energy
spectrum [16] would be a convincing indication that the system
is operating in the quantum regime, although it does not imply
that the state of the system is nonclassical, and all quantum
nanomechanical systems need not necessarily be nonlinear.
A number of techniques could be used to demonstrate that
the state is nonclassical [58], for example reconstructing
the Wigner function using state tomography and looking
for negative values, or evaluating entanglement measures
such as the logarithmic negativity (for Gaussian states) or
entanglement entropy (suitable only at zero temperature).

Here we are interested in a nonclassicality test that can
be evaluated using joint two-mode quadrature measurements.
The two-mode squeezing shown in the previous section can
be considered as an entanglement witness [59,60], and was
recently investigated experimentally in an optomechanical
device [28,29]. The quadrature-based Bell inequality can be
seen as another, stricter, example of a nonclassicality test, and
in the following we focus on the possibility of violating these
Bell inequalities with the nanomechanical system outlined in
the previous section. Even though one cannot rule out the
locality loophole in such a system, and thus a violation would
lack any meaning as a strict test of Bell nonlocality [61],
it would still serve as a very satisfying test for two-mode
entanglement.

The original Bell inequalities are formulated for dichotomic
measurements, with two possible outcomes. However, di-
chotomic measurements are not normally available in har-
monic systems like the nanomechanical systems considered
here, where the measurement outcomes are, for the most
part, continuous and unbound. In this continuous-variable
limit one must choose how to perform a Bell inequality test
with care. Generalized inequalities for unbound measurements
exist [62], but are both extremely challenging to implement and
hard to violate. Fortunately one can implement CHSH-type
Bell inequality by binning quadrature measurements, and
thus obtaining a dichotomic bound observable. Munro [49]
showed that, while in general it is hard to generate states
which can violate such an inequality, it is possible to generate
precisely the type of states which do cause a violation with a
nondegenerate parametric oscillator, which is analogous to the
system we investigate here.

One possible binning strategy [54,63] for the continuous
outcomes of quadrature measurements of the mechanical
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modes is to classify the outcomes as 1 if the measurement
outcome is Xθ > 0, and 0 otherwise. The probability of the
outcomes 0 and 1 for the two modes can then be written

Pαβ(θ,φ) =
∫ U (α)

L(α)

∫ U (β)

L(β)
d2Xp

(
Xθ

1 ,X
φ

2

)
[ρ], (12)

where

L(α) =
{

0 if α = 1
−∞ if α = 0 , U (α) =

{∞ if α = 1
0 if α = 0 . (13)

Here ρ is the two-mode density matrix and p(Xθ
1 ,X

φ

2 )[ρ]
is the probability distribution for obtaining the measurement
outcomes Xθ

1 and X
φ

2 for the signal and idler mode quadratures

xθ
1 = a1e

−iθ + a
†
1e

iθ , (14)

x
φ

2 = a2e
−iφ + a

†
2e

iφ, (15)

respectively. This probability distribution is given by

p
(
Xθ

1 ,X
φ

2

)
[ρ] = 〈

Xθ
1 ,X

φ

2

∣∣ρ∣∣Xθ
1 ,X

φ

2

〉

=
∑

m,n,p,q

ρ(m,n),(p,q)
e−i(mθ+nφ)ei(pθ+qφ)

π
√

2m+n+p+qm!n!p!q!

×e−X2
1 e−X2

2 Hm(X1)Hn(X2)Hp(X1)Hq(X2),

(16)

where Hn(x) is the Hermite polynomial of nth order, and where
we have written the density matrix in the two-mode Fock basis,

ρ =
∑

m,n,p,q

ρ(m,n),(p,q) |m,n〉〈p,q| . (17)

The integral in Eq. (12) can be evaluated analytically [49], but
in general the sum in Eq. (16) cannot.

Treating the binned quadrature measurements as di-
chotomic observables we can write the standard Bell’s in-
equalities in the Clauser-Horne (CH) [64] form

BCH = P11(θ,φ) − P11(θ,φ′) + P11(θ ′,φ) + P11(θ ′,φ′)
P1(θ ′) + P1(φ)

, (18)

which for a classical state satisfies |BCH| � 1, and in the
Clauser-Horne-Shimony-Holt (CHSH) [65] form

BCHSH = E(θ,φ) − E(θ ′,φ) + E(θ,φ′) + E(θ ′,φ′), (19)

E(θ,φ) = P11(θ,φ) + P00(θ,φ) − P10(θ,φ) − P01(θ,φ), (20)

which for a classical state satisfies |BCHSH| � 2. Here we have
also used

P1(θ ) =
∫ ∞

0

∫ ∞

−∞
d2Xp

(
Xθ

1 ,X
φ

2

)
[ρ]. (21)

Both BCH and BCHSH are in general functions of the
four angles θ,φ,θ ′, and φ′. However, to reduce the number
of parameters here we consider the angle parametrization
θ = −2ϕ, φ = 3ϕ, θ ′ = 0, and φ′ = ϕ, which only leaves a
single free angle parameter ϕ. In principle, this can reduce the

magnitude of violation one can observe, but as we will see this
parametrization still allows violations to occur for the types of
states we are interested in here. In the following we evaluate
both BCH and BCHSH using this angle parametrization.

IV. VIOLATION OF BELL’S INEQUALITY
WITH NANOMECHANICAL RESONATORS

In this section we investigate the conditions under which
the states formed in the multimode nanomechanical system
may violate Bell’s inequality. We emphasize again that in this
context we are interested in Bell’s inequality as a test that
can demonstrate entanglement between different mechanical
modes. We begin with an analysis of the steady state for the
idealized model with γ1,γ2 = 0, and then turn our attention to
the transient behavior for finite γ1 and γ2.

A. Steady state

With γ1,γ2 = 0, the steady state is given by Eq. (10), and
inserting this state in the Bell inequalities Eqs. (18) and (19)
gives an expression as a function of the steady state parameter
r and the angle ϕ that can be optimized for maximum Bell
violation. The optimal value of the angle turns out to be ϕ =
π/4, and the resulting equation for optimal r is

I0(2r2)
dG(r)

dr
= 4r2I1(2r2)G(r), (22)

but the sum over Fock-state basis that comes from Eq. (16)
cannot to our knowledge be evaluated in a simple analytical
form, so we have

G(r) =
∑

n

∑
m>n

8(2r2)n+mπ

(n!m!)2(n − m)2
[F(n,m) − F(m,n)]2

×{3 cos [(n − m)ϕ] − cos [3ϕ(n − m)]} (23)

and

F(n,m) =
[
�

(
1

2
− n

2

)
�

(
− m

2

)]−1

, (24)

as given in Ref. [49]. Solving Eq. (22) numerically gives ropt ≈
1.12, as reported in Ref. [54]. The corresponding steady state
Eq. (10) for ropt is visualized in Fig. 3. We note that for this
optimal Bell violating state the mean phonon number in each
mode is only 〈n〉 ≈ 0.94, which highlights the need to operate
the system near its ground state. If fact, when 〈n〉 � 1 no Bell
inequality violation can be observed.

In our nanomechanical model this translates to an optimal
driving strength Eopt = r2

optκ/2 that maximizes the Bell in-
equality violation for a given nonlinearity κ . This optimal
driving amplitude Eopt applies to the steady state of the
idealized model without single-phonon dissipation. With finite
single-phonon dissipation, the steady state does not violate any
of the Bell inequalities. However, as we will see in the
following section, Eopt still gives a good approximation for the
optimal transient violation. While these transients are harder to
capture, recent experiments on optomechanical systems have
shown they are in principle possible [28,29], and relevant for
the alternative proposal in the final section below. How far
one can go with using multiple ancilla optical or microwave

174307-5



JOHANSSON, LAMBERT, MAHBOOB, YAMAGUCHI, AND NORI PHYSICAL REVIEW B 90, 174307 (2014)

cavities to perform similar measurements on different internal
modes of a single mechanical device is not yet clear.

B. Transient

Since the more realistic model, with finite single-phonon
dissipation processes, does not produce a steady state that
violates any of the Bell inequalities, we are led to investigate
transient dynamics. Here we focus on the transient which
occurs when the driving field E is turned on after the relevant
modes have been cooled to their ground states. The state of
the system then evolves from the ground state to the steady
state that does not violate the Bell inequalities. However, if the
single phonon dissipation processes are sufficiently slow there
can be a significant time interval during which the state of the
system does violate the Bell inequalities.

To investigate this transient dynamics we numerically
evolve the effective two-mode system described by the master
equation, Eq. (5), and evaluate the BCH and BCHSH quantities
as a function of time and the angle ϕ. The results shown
in Fig. 5 for the situations with and without signal and idler
mode dissipation and at zero temperature, demonstrate that the
nanomechanical system we consider can indeed be driven into
a transient state that violates both types of Bell inequalities.
With losses the onset of violation is proportional to γ0/κ

2,
and the time at which the violation ceases is proportional to
γ −1

1 ,γ −1
2 , so if

γ1,γ2 � κ2/γ0, (25)

we expect a significant period of time during the transient
where the inequalities will be violated. We note that in Fig. 5(a)
the regions of violation for the CH and CHSH inequalities are
identical, and this is, according to our observations, always
the case for this model and angle parametrization. Because of
this, in the following we only show the results for the CHSH
inequality.

To further explore the parameter space that can produce a
Bell-inequality violation we evolve the master equation as a
function of time and the parameters E, κ , and γ0, for both
the ideal case with dissipation-less signal and idler modes
γ1 = γ2 = 0, and for the case including signal and idler mode
dissipation γ1,γ2 > 0. In these simulations the initial state is
always the ground state, and we take the temperature of the
signal and idler modes to be zero. The results are shown in
Figs. 6(a)–6(c) and 6(e) and 6(f), respectively. From Fig. 6
it is clear that for the case γ1 = γ2 = 0 there exist optimal
values of κ and E, given that other parameters are fixed,
that produce steady states that maximally violates the Bell
inequality (marked with dashed lines in the figures). However,
importantly we also note that the optimal values for κ and E for
the steady state of the ideal model also give a good indicator for
the optimal regime for the Bell violation in the transient of the
case with finite single-phonon dissipation, when additionally
taking into account the time scales for the transient given in
Eq. (25).

When the signal and idler modes have finite temperature
the region of Bell inequality violation is further reduced, as
shown in Fig. 7. The detrimental effects of thermal phonons
are twofold: It reduces the transient time interval during which
a violation can be observed, and the nonlinear interaction

(a)

(b)

FIG. 5. (Color online) (a) The normalized CH and CHSH Bell
quantities (violation above 1) as a function of time, for the pumped
two-mode nanomechanical resonator, under the ideal condition
without signal and idler mode dissipation (dashed line) and for
the case including signal and idler dissipation. The initial state is
the vacuum state, which we assume can be prepared to a good
approximation using cooling. At t = 0, the parametric amplification
is turned on by the activation of the driving field with amplitude E. In
the ideal case, the steady state violates both the CH and CHSH Bell
inequalities, but there is no steady state violation when single-phonon
dissipation is included. However, there is a period of time during
the transient where both inequalities are violated. (b) The angle ϕ

dependence for the normalized CH and CHSH Bell quantities for
tκ2/γ0 = 1.8, where solid lines include dissipation and dashed lines
are the ideal case. The optimal value of ϕ for the states produced in
the model we investigate here is ϕ = π/4, which was used in (a). The
parameters used here are the same as in Fig. 3, and for the solid lines
we used γ1 = γ2 = 0.001.

strength required to be able to see any violation at all increases.
In fact, to observe a transient Bell inequality violation, the
average thermal occupation number must be very small: An
average thermal occupation number of even 0.1 phonon in the
signal and idler mode is sufficient to inhibit any Bell violation
with the system we have considered here. Excellent ground
state cooling is therefore a prerequisite to violating a Bell
inequality tests in a nanomechanical resonator.

V. EXPERIMENTAL OUTLOOK

As can be seen in Figs. 6 and 7, the violation of a Bell
inequality in the system we consider here requires, as expected,
a combination of low temperature, large nonlinearity, and
transient quadrature measurements. These conditions can all
be rather challenging to satisfy in an experimental system, but
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FIG. 6. (Color online) Violation of the normalized quadrature CHSH Bell inequality (redish region) as a function of time t and the intermode
coupling κ (a) and (d), the pump mode driving amplitude E (b) and (e), and the pump-mode dissipation rate γ0 (c) and (f). The ideal case
without signal and idler mode dissipation is shown in (a)–(c), and (d)–(f) include signal and idler mode dissipation with equal dissipation rates
γ1 = γ2 = 0.001. In (a)–(c) there is a parameter window for κ and E which results in a violation for sufficiently large t , as well as in the steady
state. However, in (d)–(f) there is no violation in the steady state, but during a transient time a violation may still occur for suitably chosen
parameters. Apart from the parameters on the vertical axes, the parameters were kept fixed at the same values as given in Fig. 3, and denoted
by a bar over the symbol in the axes.

on the other hand they are exactly the type of conditions that
one can expect would have to be satisfied for realistic quantum
mechanical applications in these devices. The Bell inequality
violation can therefore be seen as a benchmark that indicates

FIG. 7. (Color online) The regions where a transient Bell in-
equality violation can be achieved, as a function of nonlinearity κ and
time t , and for different temperatures. The region of violation at zero
temperature is shown in redish color. The contours mark the regions
of violation for finite signal and idler mode temperatures (assumed
equal), labeled by the average number N of thermal phonons. We note
that even a very small number of initial thermal phonons inhibits the
Bell inequality violation, which suggest that excellent ground-state
cooling of both modes is a prerequisite to obtaining a violation.

that entangled quantum states can be generated and detected
with high precision.

A. Nonlinear interaction strength

Our proposal requires that two conditions must be met:
low temperature (kBT � �ω), and large nonlinearity with
respect to dissipation in the lower modes (κ2 > γ0γ1,2, while
γ0 > γ1,2,κ). The latter means we must be in what amounts
to the strong-coupling limit for the interaction between
the modes. While large nonlinearity and (effective) lower
temperatures [5–7,66] typically require higher frequency, and
thus smaller mechanical systems, the converse is true of the dis-
sipation condition; in high frequency systems dissipation tends
to increase. Experiments [22–25,67,68] involving intrinsic
nonlinearities have so far only realized very weak mode-mode
couplings at high temperatures. A beam-theory analysis [23]
suggests that such nonlinearities increase drastically as devices
are decreased in size, however there has been very little
experimental investigation of such effects in smaller high-
frequency devices.

One particularly relevant experiment by Castellanos-
Gomez et al. [69] showed that nonlinear mode-mode coupling
within a carbon nanotube was mediated by single-electron
transport through the device (as it operates as a quantum dot
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as well as a mechanical oscillator), and with this mediation they
obtained a coupling strength six times larger than the intrinsic
one. While this is still too small for our needs (effectively
just giving κ = 12 Hz for coupling between ground states in
both modes, while the loss rate of the modes in the nanotube
are of the order >10 kHz) the authors also predict that the
strong-coupling regime “may be reached in devices with larger
Q factors and sharper Coulomb peaks” [69].

In addition, there are several other methods by which three-
mode interactions may be engineered and our approach may
be realized [70,71], or by which the intrinsic nonlinearity per
phonon may be enhanced [16]. So far such studies have only
considered two-mode interactions, but an extension to three-
mode couplings is an interesting open theoretical problem.

B. Transient quadrature measurements

Performing efficient transient quadrature measurements
on selected modes of the mechanical resonator is another
experimental challenge. There are several levels of complexity
with respect to this type of measurement: First, the mechanical
motion must be converted to an electrical signal that can be
detected by the measurement device. Second, the transient
nature of the measurements is inherently more complex
than measurements in the steady state, since it requires
many cycles of the protocol (state preparation, evolution,
measurement), rather than consecutive measurements in the
steady state. Third, to compensate for the noise added in the
amplification process, it is required to average a large number
of measurements. Since the amplification of the two distinct
modes adds independent Gaussian noise to each mode, it can
be suppressed with sufficient averaging. However, averaging
cannot eliminate systematic errors in the measurement process,
such as for example detector inefficiency. Thus, finally, there
is a requirement on the acceptable levels of systematic errors.

The displacement of the nanomechanical resonator can be
converted to an electrical signal using a range of different
techniques. For example, experiments have already demon-
strated applications of piezoelectric schemes [72], coupling to
a quantum-point contact [73], coupling to auxiliary optical
modes [13,74], and capacitive coupling to a microwave
circuit [8]. The electromechanical transduction is therefore
quite well developed, and should not be a limiting factor
for implementing the measurements considered here. Also,
in recent experiments, transient quadrature measurements of a
nanomechanical system were carried out with high precision
and level of control [28,29]. Those experiments demonstrated
transient quadrature measurements that are very similar to the
ones required here. Thus, although challenging and potentially
time consuming, transient quadrature measurements should
not in principle represent any experimental problems.

The weak electrical signal from the electromechanical
transduction must be amplified in order to be detectable
by standard microwave measurements devices. With phase-
insensitive amplification, this processes adds noise to the
signal [75], which must be compensated for by averaging
a large number of measurements. With extensive averaging
of linearly amplified microwave fields, quadrature resolved
detection of single-excitation coherent states have been
demonstrated [28]. Also, in microwave electronics, quadrature

measurements in the quantum regime have been applied to
measure two-mode squeezing [76,77], state tomography [78],
and entanglement [79]. In the Bell-inequality measurements
considered here, optimal violation is expected for resonator
states that correspond to about one excitation (see Fig. 3)
per mode. The level of amplification and averaging to detect
this weak signal is therefore similar to experimentally demon-
strated measurements. Additionally, since the relative violation
of the Bell inequality is about 1%–2% (see Fig. 5), we require
averaging until the reconstructed quadrature correlation dis-
tribution [Eq. (16)] is consistent with a variance of BCHSH

[Eq. (19)] that is smaller than this relative violation. In the
absence of systematic errors in the quadrature measurements,
we can expect to reach this regime with sufficient averaging.
However, since systematic errors, such as quadrature detection
inefficiency, cannot be reduced by averaging, the maximum
relative violation of the quadrature-based Bell inequality sets
a fundamental limit on the acceptable systematic error in the
quadrature measurement processes. However, near-quantum-
limited detection of mechanical motion via microwave mea-
surements have been demonstrated [28], and further progress
in this field can be expected.

Given these recent advances in nanomechanical and mi-
crowave quadrature measurement, the outlook for realizing
the required measurements for evaluating the quadrature Bell
inequality is encouraging, although satisfying all the above-
mentioned conditions in a single setup remains a demanding
task for experimentalists.

C. Optomechanical realization

As an alternative to the purely mechanical approach dis-
cussed so far, one could observe the similar quadrature-based
Bell inequality violations in an optomechanical setup akin to
that proposed in Refs. [19] and [80], where a single mechanical
mode is coupled to two optical cavities [81,82], e.g., in
a membrane-in-the-middle geometry or within a photonic
crystal cavity. The most straightforward implementation would
be to use the mechanical mode as the pump mode which then
acts to entangle the optical modes. The optical modes are
coupled due to photon tunneling, and the resulting hybridized
modes replace the mechanical signal and idler modes a1 and
a2 discussed in this work. On resonance, this again leads to
the same interaction we use in Eq. (2). The main motivation
of inducing this interaction in these earlier works was to
engineer anharmonic energy levels. This anharmonicity allows
specific transitions to be addressed with external laser fields
allowing one to use such devices as single-phonon/photon
transistors and for nondemolition measurements of phonons
or photons. In the limit where the mechanical pump mode
can be driven and adiabatically eliminated, one in principle
could observe Bell-inequality violations in the (hybridized)
quadrature measurements of the two optical cavities.

VI. COMBINING EVEN AND ODD NONLINEARITIES:
COUPLING MECHANICAL QUBITS

In the previous calculations we have been exclusively
considering the effect of odd nonlinearities which can only
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arise in asymmetric mechanical systems. In purely sym-
metric devices the even order terms dominate, arguably the
most important of which is the x4 Duffing nonlinearity.
Recent works [16] have examined how this induces an
anharmonic energy spectrum in the fundamental mode of a
nanomechanical system, and outlined how this anharmonic
spectrum can be used as an effective qubit for quantum
computation. Naturally one can consider the effect of both
the third order coupling we have outlined here, and the third
and fourth order Duffing self-anharmonicity. Ultimately the
relative strengths of these different terms depend strongly
on the overlap between the different mode shapes within the
device, the geometry of the device, and the effect of various
nonlinearity enhancing mechanisms. A naive investigation of
the contributions from these quartic terms suggest they only
work to degrade the Bell inequality violation we discuss here.
However, going beyond the regime we have outlined thus
far, one may note that by changing the frequency of the
driving field in Eq. (1) one can get an excitation-preserving
beam-splitter type of interaction between the signal and idler
modes:

Hint = μ(a†
1a2 + a

†
2a1). (26)

If this is combined with a sufficiently strong third- or fourth-
order self-nonlinearity, such that the lowest lying energy
states of each mode can be considered as a two-level system,
one has a means to couple different mechanical qubits in
a single device. It may be possible to construct similar
interactions with ancilla cavities and optomechanical interac-
tions [19,45]. The original parametric interaction described
in Eq. (3) is not useful for this purpose as it takes one
out of a single excitation subspace, as does the two-phonon
dissipation.

VII. CONCLUSIONS

We have investigated a regime of a multimode nanome-
chanical resonator, with intrinsic nonlinear mode coupling, in
which three selected modes realize a parametric oscillator. In
the regime where the pump mode of the parametric oscillator
can be adiabatically eliminated, we have investigated the
generation of entangled states between two distinct modes of
oscillation in the nanomechanical resonator, and the possibility
of detecting this entanglement using quadrature-based Bell
inequality tests. Our results demonstrate that while realistically
it will not be possible to violate any Bell inequality in the
steady state, there can be a significant duration of time in
which the transient evolution from the ground state (prepared
by cooling) to the steady state where the state of the system
violates Bell inequalities. However, to achieve this transient
violation requires a relatively large nonlinear mode coupling,
excellent ground state cooling, and fast and efficient quadra-
ture measurements. These are, of course, very challenging
experimental requirements, but we believe that if a quadrature
Bell inequality violation is realized experimentally it would
be a very strong demonstration of quantum entanglement in a
macroscopic mechanical system.
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