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We predict the coexistence of both transverse-electric- and transverse-magnetic-polarized localized electro-
magnetic waves that can propagate in the same frequency range along a graphene layer inserted in a photonic
crystal. In addition, we studied the excitation of these modes by an external wave and have shown that the
resonance peaks of the sample transmissivity should be observed due to the excitation of the localized waves,
independently of the polarization of the exciting wave. The simplicity of the derived dispersion relations for
the localized modes and the possibility to excite waves of both polarizations provide a method for measuring
graphene conductivity.
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I. INTRODUCTION

The unusual and remarkable transport properties of
graphene have attracted considerable attention, including an
unconventional quantum Hall effect [1]; the possibility of
testing the Klein paradox [2]; the Aharonov-Bohm effect in
graphene rings [3] as well as mesoscopic effects, such as
weak localization [4], conductance fluctuations [5], quantum
noise [6], Coulomb blockade [7], and Anderson localiza-
tion [8]; specular Andreev reflection and Josephson effect [9];
formation of a Wigner crystal [10]; voltage-driven quantum
oscillations of the conductance [11]; intriguing electron
lensing [12], and other fascinating phenomena (see, e.g.,
Refs. [13–22] and references therein). Studies of graphene
are also inspired by its potential application in nanoelectronic
devices, because the electron concentration can vary consider-
ably due to applied electric fields, and graphene can have both
electrons and holes as high-mobility charge carriers.

A main feature of the graphene electron structure, which
is very different from conventional two-dimensional electron
systems, is the existence of six Dirac cones at the corners of a
hexagon-shaped Brillouin zone with a massless linear electron-
hole dispersion. This specific spectrum for the charge carriers
leads to a number of interesting transport properties, or imparts
new features to them. The phenomena listed above are caused
by the quantum peculiarities of graphene, and these manifest
at the quantum level. However, it is worthwhile to emphasize
that the quantum features of the graphene conductivity can
also play a very important role in classical macroscopic
phenomena. A nontrivial example of a classical phenomenon
is the propagation of the electromagnetic waves localized near
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a graphene layer inserted into a dielectric [23]. It is known
that surface electromagnetic waves cannot propagate along the
interface between two dielectrics. Surprisingly, the addition
of only one monatomic graphene layer changes radically
the macroscopic electrodynamic properties of the system.
The graphene layer can support a surface wave between two
dielectrics and can play a very important role in other problems
of plasmonics (see, e.g., Refs. [24–32]).

The Dirac spectrum of electrons leads to new features
of the electrodynamic response of the electron-hole plasma
in graphene, as compared to conventional electron systems.
For instance, the existence of a localized transverse-electric
(TE) mode, a mode which cannot exist in systems with a
parabolic electron dispersion, was predicted in Ref. [23] for the
graphene in a symmetrical dielectric environment. Thus, both
the transverse-magnetic (TM) and transverse-electric surface
waves can propagate along the graphene layer. However, these
TM and TE modes exist in very different frequency ranges.
Indeed, as shown in Ref. [23], the frequency range for the TE
modes can vary from radio to infrared frequencies, depending
on the carriers concentration, but the TM surface waves do not
exist at the frequencies for the TE modes.

In this paper, we predict the coexistence of localized
both TE- and TM-polarized electromagnetic waves that can
propagate in the same frequency range along the graphene
layer inserted into a photonic crystal (PC). It is important
to emphasize that the TE-polarized localized waves can
propagate along the graphene layer placed between two
semi-infinite dielectrics with very similar permittivities only.
Here we consider the case when the graphene layer is in a
nonsymmetrical environment. We show that due to the periodic
structure of the environment, localized TE-polarized waves
can exist even in such a nonsymmetric case. Moreover, this
periodicity also allows the possibility for propagation of the
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TE- and TM-polarized localized waves in the same frequency
range, contrary to the case of propagation of the TE- and
TM-polarized waves along the graphene layers placed between
two identical semi-infinite dielectrics.

We also consider the problem of the excitation of the TE-
and TM-polarized modes by the external wave that irradiates
the PC-graphene-PC structure. We show that the resonance
peak of the transmissivity of the structure appears, when
changing the frequency or the incident angle, due to the
TM or TE surface wave excitation, independently of the
polarization of the exciting wave. The predicted phenomenon
can be observed in the terahertz frequency range, which is very
important for various applications but not easily accessible
with modern electronic and optical devices. This technological
perspective provides an additional motivation for study of these
phenomena. The analysis of the resonance peaks of the wave
transmissivity can give important information on the graphene
conductivity in the centimeter, millimeter, and submillimeter
wavelength frequency ranges.

II. DISPERSION RELATIONS FOR THE TE- AND
TM-POLARIZED SURFACE WAVES

Consider a graphene layer inserted into a photonic crystal.
The elementary cell consists of two nonmagnetic dielectrics
with permittivities ε1, ε2 and thicknesses d1, d2, respectively.
The period of the PC structure is d = d1 + d2. The z axis
is perpendicular to the layers of the PC, and the graphene
layer is arranged in the plane z = 0. Thus, the photonic crystal
occupies the half spaces z < 0 and z > 0 (see Fig. 1).

First we consider a TM-polarized surface wave with wave
vector �k = (kx,0,kz) and with the following components of the
electric �E and magnetic �H fields proportional to exp(−iωt):
�E = (Ex,0,Ez) and �H = (0,Hy,0). The fields in the photonic

crystal satisfy the translation condition [33](
Hy[z = (m + 1)d]

Ex[z = (m + 1)d]

)
= MTM

(
Hy(z = md)

Ex(z = md)

)
, (1)

FIG. 1. (Color online) Geometry of the problem for waves local-
ized on the graphene layer.

and the Bloch relation

(
Hy[z = (m + 1)d]

Ex[z = (m + 1)d]

)
= exp(±iϕ)

(
Hy(z = md)

Ex(z = md)

)
, (2)

where m is an integer number, MTM is the propagation matrix
for the TM wave with the elements

MTM
11 = cos ϕ1 cos ϕ2 − ε2k1z

ε1k2z

sin ϕ1 sin ϕ2, (3)

MTM
12 = i

ωε1

ck1z

sin ϕ1 cos ϕ2 + i
ωε2

ck2z

sin ϕ2 cos ϕ1, (4)

MTM
21 = i

ck1z

ωε1
sin ϕ1 cos ϕ2 + i

ck2z

ωε2
sin ϕ2 cos ϕ1, (5)

MTM
22 = cos ϕ1 cos ϕ2 − ε1k2z

ε2k1z

sin ϕ1 sin ϕ2, (6)

where ϕj = kjzdj (j = 1,2), kjz =
√

k2
0εj − k2

x , k0 = ω/c, ω

is the wave frequency, ϕ = qd, q is the complex Bloch number,
and cos ϕ = (MTM

11 + MTM
22 )/2 [33]. For the determinacy, we

assume that Im(q) > 0. In this case, the signs “+” and “−”
in the exponent in Eq. (2) correspond to the electromagnetic
fields in the regions z > 0 and z < 0, respectively.

The boundary conditions on the graphene layer (at z = 0)
consist of the continuity of the component Ex of the electric
field and the presence of the jump of the magnetic-field
component Hy , caused by the current in graphene,

Hy(+0) − Hy(−0) = −4πσ

c
Ex(0). (7)

Here σ = σ intra + σ inter is the graphene conductivity, which
is the sum of the intraband conductivity σ intra and interband
conductivity σ inter [34]. For a degenerate electron gas, when
kBT � μ (here kB is the Boltzmann constant, T is the
graphene temperature, and μ is the chemical potential), σ intra

and σ inter can be written as [34]

σ intra = ie2μ

π�2(ω + iν)
, (8)

σ inter = e2

4�

[
θ (�ω − 2μ) − i

2π
ln

(�ω + 2μ)2

(�ω − 2μ)2 + (2kBT )2

]
,

(9)

where ν is the intraband electron relaxation frequency and θ (x)
is the Heaviside step function.

Using Eqs. (1)–(7), we obtain the following dispersion
relation for the TM-polarized surface wave:

sin ϕ = 2πiσ

c
MTM

21 . (10)

Similarly, we can derive the dispersion relation for the
TE-polarized surface wave with the following components of
the electromagnetic field and the wave vector: �E = (0,Ey,0),
�H = (Hx,0,Hz), and �k = (kx,0,kz). The fields in the photonic
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crystal satisfy the conditions [33](
Ey[z = (m + 1)d]

Hx[z = (m + 1)d]

)
= MTE

(
Ey(z = md)

Hx(z = md)

)
, (11)

(
Ey[z = (m + 1)d]

Hx[z = (m + 1)d]

)
= exp(±iϕ)

(
Ey(z = md)

Hx(z = md)

)
, (12)

where MTE is the propagation matrix for the TE wave with
components

MTE
11 = cos ϕ1 cos ϕ2 − k1z

k2z

sin ϕ1 sin ϕ2, (13)

MTE
12 = −i

ω

ck1z

sin ϕ1 cos ϕ2 − i
ω

ck2z

sin ϕ2 cos ϕ1, (14)

MTE
21 = −i

ck1z

ω
sin ϕ1 cos ϕ2 − i

ck2z

ω
sin ϕ2 cos ϕ1, (15)

MTE
22 = cos ϕ1 cos ϕ2 − k2z

k1z

sin ϕ1 sin ϕ2. (16)

Afterward, we obtain the dispersion relation for the TE surface
wave in the form

sin ϕ = −2πiσ

c
MTE

12 , (17)

where cos ϕ = (MTE
11 + MTE

22 )/2 [33].

III. ANALYSIS OF THE DISPERSION CURVES

For the numerical calculations of the dispersion curves, we
assume that T = 10 K and the graphene electron concentration
n = 1.5 × 1015 m−2. The corresponding chemical potential μ

is about 45 meV (or 522 K). These parameters are in agreement
with experimental results [35]. We will neglect the dissipative
losses and consider the graphene conductivities σ intra and σ inter

as purely imaginary values.

A. Dispersion curves for the TM-polarized surface modes

Curves 1–3 in Fig. 2 show the numerically calculated
dispersion curves for the TM-polarized surface waves. The
wave frequency is normalized to ω0 = 2π × 1012 s−1 (tera-
hertz range). Hereafter, we assume the following parameters
for the photonic crystal: d1 = d2 = 1.2 c/ω0, ε1 = 3.8 (this
value corresponds to silica glass), and ε2 = 2.04 (Teflon) (see
Refs. [36,37]). Curves 4 and 5 are the light lines for silica glass
and Teflon, respectively. All the dispersion curves run within
the forbidden zones (regions marked by yellow) of the infinite
photonic crystal. Note that the edges of these forbidden zones,
expressed in dimensionless coordinates ω/ω0 and ckx/ω0, are
the same for different frequency ranges. However, the positions
of the dispersion curves depend substantially on the choice
of ω0. One can see that each of the forbidden zones of the
photonic crystal contains one branch of the spectrum for the
TM-polarized surface wave.

Note that the dispersion curve, which corresponds to the
dispersion relation for the waves localized near the graphene
layer placed between the semi-infinite Teflon and semi-infinite
silica glass, practically coincides with curve 1 in Fig. 2. This
coincidence means that replacing the semi-infinite Teflon and

FIG. 2. (Color online) Dispersion curves 1–3 for the TM-
polarized surface waves in the PC-graphene-PC structure in the THz
frequency range. Curves 4 and 5 are the light lines for silica glass
and Teflon, respectively. Here μ/�ω0 ≈ 11. The forbidden zones are
marked in yellow. The square on curve 2 indicates the values of ω

and kx which correspond to the peak of the transmissivity arising due
to the excitation of the TM-polarized mode (see the next section).

semi-infinite silica glass by the photonic crystals does not
change significantly the dispersion curve for the TM-polarized
surface wave in the THz frequency range. However, this
remark only concerns the first forbidden zone.

This fact has a simple physical interpretation. Namely, the
plasmons (TM modes) near the graphene layer are extremely
localized, and at large frequencies, the evanescent tail can be
smaller than the thickness of the dielectric layers. In other
words, graphene can truly “see” only the nearest uniform
dielectrics. On the other hand, in the low-frequency limit
(when the evanescent tail becomes larger), the graphene layer
will be able to see many layers of the photonic crystal,
changing the plasmon dispersion relation. To demonstrate this,
we present some numerical estimates for the dimensionless
localization depth ξ = kx/Im(q) of the electromagnetic fields
of the TM-polarized waves. Recall that kx is the wave vector
of the localized mode and Im(q) is the Bloch decay constant.
Physically, the value of ξ is the ratio of the distance from the
graphene layer, where the field amplitudes are reduced by a
factor of e ≈ 2.718, to the wavelength. For the mode in the
first forbidden zone, we have ξ ≈ 1.04 in the THz frequency
range and ξ ≈ 4.35 in the centimeter-wavelength frequency
range (for ω0 = 2π × 1010 s−1). Note that curves 2 and 3
on Fig. 2 seem to be lying precisely at the boundaries of
the forbidden regions (marked in yellow). This means that
these modes are weakly localized near the graphene layer.
Indeed, we have ξ ≈ 534 and ξ ≈ 176 for the modes in the
second and third forbidden zones, respectively. The main new
remarkable feature of the spectrum for the surface waves in
the PC-graphene-PC system, in comparison with the Teflon-
graphene-silica glass structure, consists in the appearance of
additional branches of the spectrum in the second, third, and
so on, forbidden zones.

B. Dispersion curves for the TE-polarized surface modes

Curves 1 and 2 in Fig. 3 show the dispersion curves for
the TE-polarized surface waves in the THz frequency range
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FIG. 3. (Color online) Dispersion curves for the TE-polarized
surface waves in the structure PC-graphene-PC in the THz frequency
range (curves 1 and 2). Curves 3 and 4 are the light lines for silica glass
and Teflon, respectively. Here μ/�ω0 ≈ 11. The forbidden zones are
marked in yellow. The square on curve 1 indicates the values of ω

and kx which correspond to the peak of the transmissivity arising due
to the excitation of the TE-polarized mode (see the next section).

for the same parameters of the photonic crystal as in Fig. 2.
Curves 3 and 4 in Fig. 3 are the light lines for silica glass and
Teflon, respectively. The principal difference of the spectrum
for the TE-polarized waves, in comparison with TM waves, is
the absence of dispersion curves in the first forbidden zone for
the terahertz range. Indeed, the dispersion curve appears in the
first forbidden zone only when Im(σ ) < 0. In contrast to the
usual two-dimensional electron gas with Drude conductivity,
this inequality can be satisfied in monolayer (or bilayer [38])
graphene. For the chosen values of n and T , this condition is
only satisfied starting with the infrared (IR) frequencies. As
seen from Fig. 3, the dispersion curves for the TE modes, as
well as for the TM modes (see the dispersion curves 2 and 3 in
Fig. 2), are very close to the boundaries of the forbidden zones.
This means that these modes are weakly localized near the
graphene layer. The numerical estimates of the dimensionless
localization depth ξ for the TE waves give similar values as
for the corresponding TM-polarized modes.

Now we consider the dispersion curves of the TE-polarized
modes in the IR frequency range, where unusual transport
properties of the graphene layer manifest themselves. These
curves (1 and 2) are shown in Fig. 4 for the same parameters of
the photonic crystal as in Fig. 3 (however, with the dielectric
permittivities ε1 = 2.25 and ε2 = 1.74 for silica glass and
Teflon in the IR frequency range, see Refs. [36,37]). The wave
frequency is normalized to ω0 = 2π × 1014 s−1.

As seen from Fig. 4, dispersion curve 2 for the TE-polarized
mode in the second forbidden zone is very close to the
boundary of the forbidden zone, similar to the case of the THz
frequency range. This means that this mode is also weakly
localized near the graphene layer. The dispersion curve for
the TE mode in the first forbidden zone exists only in a
finite-frequency interval. The edges of the corresponding part
of the dispersion curve are depicted by the open circle and open
triangle on curve 1 in Fig. 4. At higher frequencies, the Bloch
phase Im(ϕ) in the dispersion relation given by Eq. (17) is very
small, Im(ϕ) < 10−5. The localization depth is much larger

FIG. 4. (Color online) Dispersion curves for the TE-polarized
surface waves in the structure PC-graphene-PC in the IR frequency
range (curves 1 and 2). Curves 3 and 4 are the light lines for silica
glass and Teflon, respectively. Here μ/�ω0 ≈ 0.11. The forbidden
zones are marked in yellow. The open circle indicates the starting
point of dispersion curve 1. The part of curve 1 between the circle
and triangle corresponds to the highest degree of localization of the
mode’s field.

than the wavelength of the TE mode in this case. To clarify
this, it is worthwhile to analyze the frequency-dependence of
the conductivity, Im(σ ) = Im(σ intra) + Im(σ inter), for the given
values of μ and T at ν = 0. This dependence is shown in Fig. 5
for the IR frequency range. The open circle and open triangle
in Fig. 5 are in agreement with the same symbols shown on
curve 1 in Fig. 4.

The maximum absolute value of Im(σ ) corresponds to
the maximum of the Bloch phase Im(ϕ) ∼ 5 × 10−3 and to
the strongest localization of the electromagnetic field of the
TE wave near the graphene layer. The conductivity Im(σ )
tends to zero when increasing the frequency. As a result,
the localization depth becomes 100 times larger for the point
marked by the open triangle on curve 1 in Fig. 4.

FIG. 5. (Color online) Frequency dependence of the dimension-
less conductivities (2π/c)Im(σ intra) (curve 1), (2π/c)Im(σ inter) (curve
2), and (2π/c)Im(σ ) (curve 3) calculated by means of Eqs. (8) and (9)
for the given values of μ = 522 K, T = 10 K, and ω0 = 2π ×
1014 s−1, at ν = 0.
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C. Dispersion curves for TE-polarized surface modes
versus the PC parameters

Note that there are three necessary conditions for the
existence of TE-polarized surface waves propagating along
a conducting layer placed between semi-infinite homogeneous
dielectrics. First, according to Ref. [23], the linear electron-
hole dispersion law, specific for the graphene layer, should be
valid. Second, the condition Im(σ ) < 0 should be satisfied.
Finally, the permittivities of the two dielectrics surrounding
the graphene layer should be very similar. Here we now
consider the system PC-graphene-PC where the graphene layer
is placed between two very different adjacent dielectrics. So,
at first glance, the localized TE modes cannot exist in such
a system because the third condition mentioned above is not
satisfied. However, the dimensionless localization depth ξ for
all the TE surface modes considered are extremely large, and
the graphene layer can actually “see” a symmetric dielectric
environment which enables the existence of the TE modes.

Here we present results of our numerical analysis of the
dispersion curve for the TE localized mode in the lowest
forbidden zone of the photonic crystal versus the thicknesses
d1 and d2 of the dielectric layers. In the case d1 > d2, i.e.,
when the thicknesses of the silica glass layers are greater than
the thicknesses of the Teflon layers, the boundary of the first
forbidden zone of the photonic crystal in Fig. 4, as well as
the dispersion curve for the TE-polarized mode (curve 1 in 4)
shift towards the light line in silica glass (curve 3 in Fig. 4).
When the inverse inequality is realized, i.e., when d1 < d2,
the boundary of the first forbidden zone and the dispersion
curve for the TE-polarized mode shift towards the light line in
Teflon (curve 4 in Fig. 4). In addition, the dispersion curve
for the TE-polarized mode shifts towards the light line in
silica glass when increasing the thicknesses of the PC layers
(for d1 = d2 � 1) and tends to this light line in the limit
d1 = d2 → ∞. This means that in the limit d1 = d2 → ∞,
the electromagnetic field of the localized TE wave becomes
delocalized in silica glass, and the localized wave itself does
not exist.

In this section, we used the Floquet theorem [39] to
derive the dispersion relations for the TM- and TE-polarized
eigenmodes localized near the graphene layer inserted into
a photonic crystal with an infinite number of layers. As
known, this theorem is valid for the nondissipative case only.
However, the behavior of the dispersion curves does not
change significantly for systems with small enough dissipative
parameters. We demonstrate this in the next section where
we study the problem of the excitation of localized waves
in the PC-graphene-PC structure with a finite number of
layers. We will not use the Floquet theorem but instead apply
the propagation-matrix method, which allows us to take into
account realistic dissipation parameters.

IV. EXCITATION OF THE TE- AND TM-POLARIZED
SURFACE WAVES

A. Transmissivity of the PC-graphene-PC structure
with a finite number of layers

In this section, we study the transmittance of the
PC-graphene-PC structure for TE-polarized waves. The

calculation of the transmission coefficient for the TM-
polarized waves is performed in the same way. We now
consider the excitation of the TE waves propagating along
the graphene layer placed in the middle of the photonic
crystal containing a finite number 2N of elementary cells.
This structure is irradiated, by an electromagnetic wave, from
its right side. The external wave is incident from a dielectric
with permittivity εd on the PC-graphene-PC structure under the
angle arcsin(kxc/ω

√
εd ), passes through the PC-graphene-PC

structure, and, finally, transmits to another external dielectric
with the same permittivity εd . Evidently, the resonance
excitation of the surface wave will occur if its polarization,
frequency, and the component kx of the wave vector coincide
with the parameters of the incident wave.

We define the electric and magnetic fields in the dielectric
on the right-hand side of the structure (at z > 2Nd) as

Ey = A0 exp{−ikzd (z − 2Nd)} + B0 exp{ikzd (z − 2Nd)},
(18)

Hx = ckzd

ω
[A0 exp{−ikzd (z − 2Nd)}

−B0 exp{ikzd (z − 2Nd)}], (19)

where A0 and B0 are the amplitudes of the incident and
reflected waves, respectively. We define the electromagnetic
field of the wave on the left-hand side of the structure (at
z < 0) as

Ey = C0 exp(−ikzdz), Hx = ckzd

ω
C0 exp(−ikzdz), (20)

where C0 is the amplitude of the transmitted wave.
To find the transmission coefficient t = C0/A0, we use the

condition of the magnetic field discontinuity on a graphene
layer (similar to Eq. (7) written for the TM wave) and Eq. (11).
Following the procedure described in Ref. [33], we derive(

Ey(z = 2Nd)

Hx(z = 2Nd)

)
= PTE

(
Ey(z = 0)

Hx(z = 0)

)
, (21)

with PTE = (
MTE

)N
MTE

Gr

(
MTE

)N
. Substituting Eqs. (18)–(20)

into Eq. (21), we derive the following relation for the wave
amplitudes: (

A0 + B0
ckzd

ω
(A0 − B0)

)
= PTE

(
C0

ckzd

ω
C0

)
. (22)

Solving Eq. (22), we have the following expression for the
Fresnel transmissivity coefficient:

t = 2

P TE
11 + P TE

22 + ω

ckzd

P TE
21 + ckzd

ω
P TE

12

(23)

with kzd =
√

εdk
2
0 − k2

x . The corresponding expression for the
TM-polarized wave is

t = 2

P TM
11 + P TM

22 − ωεd

ckzd

P TM
21 − ckzd

ωεd

P TM
12

. (24)
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FIG. 6. (Color online) Frequency dependence of the transmissiv-
ity D(ω) for the PC-graphene-PC structure for the TE (curve A) and
TM (curve B) waves. The resonance frequencies and the values of
other parameters correspond to the squares on the dispersion curves
in Figs. 2 and 3. Note that we have kzd/kx ≈ 6.92 and kzd/kx ≈ 6.93
for the maxima on curves A and B, respectively.

Here P TM
jk and P TE

jk are the elements of the matrices PTE and
PTM = (MTM)NMTM

Gr (MTM)N . The matrices MTE
Gr and MTM

Gr are

MTE
Gr =

(
1 0

4πσ/c 1

)
, MTM

Gr =
(

1 −4πσ/c

0 1

)
. (25)

We now study the frequency dependence D(ω) = |t(ω)|2 of
the transmissivity of the PC-graphene-PC structure, which
should have a sharp maximum when the resonance excita-
tion of the surface wave takes place. Figure 6 shows the
frequency dependence D(ω) for the TM- and TE-polarized
waves at ω0 = 2π × 1012 s−1, kxc/ω0 = 0.1, N = 15, εd = 1
(vacuum), and ν = 2 × 1012 s−1. The chosen value of the
relaxation frequency is in agreement with the theoretical
and experimental results [32,35,40]. The resonance peaks of
the transmissivity are observed within the forbidden zone
at frequencies that correspond to the open squares on the
dispersion curves in Figs. 2 and 3. Note that these peaks are

FIG. 7. (Color online) The distribution of the squared amplitude
|Ey(z)|2 of the dimensionless electric field for the TE-polarized wave
Ey(z) in the PC-graphene-PC structure.

FIG. 8. (Color online) The distribution of the squared amplitude
|Hx(z)|2 of the dimensionless magnetic field for the TE-polarized
wave Hx(z) in the PC-graphene-PC structure.

clearly seen in spite of the weak localization of the excited
modes. The positions of the peaks, which can be measured
for any wave polarization, and the quite-simple Eqs. (10)
and (17) allow one to calculate the graphene conductivity
in the centimeter, millimeter, and submillimeter wavelength
frequency ranges. Note also that in the absence of the graphene
layer in PC, the peaks of the transmissivity are not observed.

B. Spatial distributions of the squared electromagnetic-field
amplitudes for the excited localized waves

The presence of a graphene layer within a photonic crystal
results in a concentration of the electromagnetic field near it. In
this section, we discuss the spatial distribution of the squared
amplitudes |Ey(z)|2 and |Hx(z)|2 of the electric and magnetic
fields in the problem of the excitation of the localized wave by
the incident electromagnetic wave (see the previous section).
The distributions of |Ex(z)|2 and |Hy(z)|2 for the TM-polarized
wave are qualitatively the same as the distributions |Ey(z)|2
and |Hx(z)|2 for the TE wave. For numerical calculations, we
chose the frequency which corresponds to the maximum of
the peak on curve A in Fig. 6. The results of the calculations
are shown in Figs. 7 and 8. The values |Ey(z)|2 and |Hx(z)|2
are normalized to the corresponding values of the incident
wave. The dashed vertical lines in the figures show the position
of the graphene layer. We assume that the light is incident from
the right-hand side of the structure, i.e., the wave propagates
from the unit cell with number 30 to the unit cell with number
1. Figures 7 and 8 show that the maxima in the distributions of
the electric and magnetic fields are near the graphene plane.
In addition, the value of |Hx(z)|2 suffers a discontinuity on the
graphene plane (see the inset in Fig. 8) which is caused by the
ac current excited in the graphene layer by the incident wave.

V. CONCLUSION

To conclude, we predict the coexistence of localized TE-
and TM-polarized surface electromagnetic waves in a PC-
graphene-PC structure. These waves can propagate in the same
frequency range due to the zone structure of the photonic
crystal, in contrast to the waves localized near the graphene
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layer placed between two identical dielectrics. In the latter
case, the TM and TE surface waves can propagate in different
frequency ranges. We also consider the excitation of localized
TM and TE modes by the external wave that irradiates the
PC-graphene-PC structure. We show that independent of the
polarization of the exciting wave, the resonance peak of the
transmissivity of the structure appears when changing the
frequency or the incident angle. The analysis of the resonance
peaks of the wave transmissivity can provide important

information on the graphene conductivity in the centimeter,
millimeter, and submillimeter wavelength frequency ranges.
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