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Collective excitations reveal fundamental properties and potential applications of superconducting states. We
theoretically study macroscopic quantum tunneling (MQT) in a Josephson junction composed of multiband
superconductors, focusing on a phase mode induced by interband fluctuations: the Josephson-Leggett (JL)
collective excitation mode. Using the imaginary-time path-integral method, we derive a formula for the MQT
escape rate for low-temperature switching events. We clarify that the JL mode has two major effects on the MQT:
(i) the zero-point fluctuations enhance the escape rate, and (ii) the quantum dissipation induced by the couplings to
the gauge-invariant phase difference suppresses the quantum tunneling. We show that the enhancement exceeds
the suppression for a wide range of junction parameters. This enhancement originates from the single-mode
interaction between the tunneling variable and the interband fluctuations.
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I. INTRODUCTION

Josephson junctions show phenomena caused by
macroscopic-scale quantum coherence and nonlinear dynam-
ical properties. Their unique properties come from couplings
between superconducting gauge-invariant phase differences
and the electromagnetic field, leading to practical applications,
as seen, e.g., in Ref. [1]. Macroscopic quantum tunneling
(MQT) [2–5] is one of the characteristic phenomena of Joseph-
son junctions. Superconducting-to-resistive switching events
in current-biased Josephson junctions are related to MQT at
low temperatures, where thermal excitations are negligible.
A wide variety of junction systems (artificial niobium-based
junctions [6,7], grain boundary junctions [8,9], and intrinsic
Josephson-junction stacks in single-crystalline high-Tc cuprate
superconductors [10–12]) show this tunneling phenomenon.
The theoretical aspects have been studied well, depending on
the types of Josephson junctions [13–21]. MQT in Josephson
junctions plays an important role in Josephson phase qubits and
the relevant superconducting quantum engineering [22–26].
Hence, the study of MQT in Josephson junctions attracts
a great deal of attention theoretically and experimentally in
the search to find quantum characteristics of superconducting
devices.

The discovery of superconducting materials, including
magnesium diboride [27] and iron-based compounds [28],
triggered the studies of multiband superconductivity. These
superconductors have intriguing properties, originating from
the multiple superconducting gaps opening in different parts
of the Fermi surfaces [29–33]. Notable Josephson effects
are predicted in junctions with multiband superconductors
[21,34–40]. The characteristic behaviors in these systems
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originate from the presence of multiple gauge-invariant
phase differences coupled by interband Josephson coupling
[39,41–45]. Specifically, a phase mode induced by interband
fluctuations, which is referred to as a Josephson-Leggett (JL)
mode [39], can lead to singular behaviors. However, the JL-
mode excitations are not coupled directly to the electric field,
owing to their neutral-superfluid feature [43,45]. Instead, they
interact with the Josephson-plasma (JP) mode (i.e., in-phase
motion of superfluids) [39]. Thus, a careful and systematic
study of the interaction between the JP and JL modes is
desirable for exploring characteristic phenomena in Josephson
junctions composed of multiband superconductors.

In this paper, we construct a theory of MQT in a Josephson
junction formed by a conventional single-band superconductor
and a two-band superconductor (a hetero-Josephson junction)
to clarify the effects of the JL mode on low-temperature
switching events in Josephson junctions. From theoretical
considerations of the dynamics of gauge-invariant phase
differences, we choose a tunneling path along the center-
of-mass motion of the phase differences, and consider the
interband fluctuations to be the environment for the center-
of-mass motion. We evaluate the MQT escape rates, varying
different junction parameters. We show that the interband
fluctuations have both positive and negative effects on the
MQT. Zero-point fluctuations of the JL mode enhance the
MQT escape rate, whereas the quantum dissipation induced
by the JL mode suppresses the quantum tunneling. The former
was found by two of the authors (Y.O. and M.M.) [21],
focusing only on a specific junction parameter. Thus, the
present approach successfully extends the previous results in
Ref. [21] and reveals two distinct features of the JL mode,
i.e., amplification and reduction. Moreover, we show that
the zero-point-fluctuation enhancement exceeds the quantum-
dissipation suppression. Therefore, we find that the escape rate
is significantly enhanced by the JL mode. In these junctions,
the dissipation effect is marginal because there is only one
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dissipation channel corresponding to a monochromatic JL
mode. We also examine the dependence of the escape rate on
the interband Josephson energy for junction parameters which
are typical for BaFe2As2 and MgB2. We find that the effects of
interband fluctuations on MQT strongly depend on the nature
of the JL mode characterized by the superconducting material
parameters of the junction.

This paper is organized as follows. In Sec. II, we introduce
a minimal model of multiband Josephson junctions. In Sec. III,
we describe a theory of MQT in this Josephson junction and
derive the MQT escape-rate formula. In Sec. IV, we evaluate
the escape rate for various junction parameters. Section V
presents a summary.

II. MODEL

We study a minimal model of a multiband Josephson
junction, as seen in Fig. 1, to find an essential feature of the
JP-JL coupling. The system is composed of a conventional
single-gap superconductor and a two-gap superconductor. The
superconducting electrodes are separated by an insulating
layer with thickness D and area W . The dc current Iext

is applied to this junction. The right electrode has two
gaps, |�(1)

R |eiφ
(1)
R and |�(2)

R |eiφ
(2)
R , whereas the left electrode

has a single gap, |�L|eiφL . These superconducting phases
are coupled to each other via the Josephson couplings EJ1,
EJ2, and Ein. The standard Josephson energy associated with
Cooper-pair tunneling between the superconducting electrodes
is characterized by EJ1 and EJ2. The interband Josephson
energy associated with the tunneling between the two bands is
characterized by Ein [41].

Now we show two key variables in this paper, i.e., the
center-of-mass phase and the relative phase. Using the gauge-
invariant phase differences θ (1) and θ (2) between the electrodes
(see Fig. 1), the center-of-mass phase is

θ = α2

α1 + α2
θ (1) + α1

α1 + α2
θ (2), (1)

with a dimensionless constant αi , related to the density of
states of the ith-band electron near the interface between the

FIG. 1. (Color online) Schematic diagram of a Josephson junc-
tion composed of a single-gap superconductor (left electrode) and a
two-gap superconductor (right electrode). Two gauge-invariant phase
differences θ (1) and θ (2) are defined between the electrodes.

right electrode and the insulator [21]. The relative phase is

ψ = θ (1) − θ (2). (2)

When the voltage difference is V , the Josephson relation is [39]

∂θ

∂t
= 2eD

�
V, (3)

with the electric charge e and the Planck constant �. The
Josephson relation indicates that θ is directly coupled to the
electric field, but ψ is not. In this paper, we focus on a
short Josephson junction, that is, D is much smaller than the
Josephson penetration depth. Hence, we ignore the spatial
modulation of θ (1) and θ (2) and the influence of solitonic
excitations shown in Refs. [17] and [18].

III. FORMULATION

We formulate the MQT escape rate based on the semi-
classical approximation with the imaginary-time path-integral
method [3]. Our discussion is divided into four steps. First, we
show the Lagrange formalism of our junction, which is useful
for the path-integral method. Second, from a physical point of
view, we find a plausible tunneling path for low-temperature
switching events in the present junction. Our approach is to
choose a specific path and reduce the issue into an effective
one-dimensional (1D) tunneling problem. Third, we show that
the relevant Euclidean (imaginary-time) Lagrangian can be
mapped into the Caldeira-Leggett model [2]. In this step, we
mainly use a small ψ expansion. Finally, we obtain the MQT
escape rate using a technique based on the influence-functional
method [2,3,20].

A. Real-time Lagrangian

The real-time effective LagrangianL for our junction is [39]

L(θ,ψ) = 1

2
mcm

(
dθ

dt

)2

+ 1

2
mrlt

(
dψ

dt

)2

+ EJ1 cos θ (1)

+EJ2 cos θ (2) + Ein cos ψ + EJγ θ, (4)

with mcm = �
2/2Ec and mrlt = �

2/2(α1 + α2)Ec. The charg-
ing energy is denoted by Ec. The total Josephson-energy
coupling is EJ = EJ1 + EJ2. The dimensionless bias current
is γ = Iext/Ic. The critical current Ic is related to EJ.

In this paper, we take a positive value for the interband
Josephson coupling Ein [39]. Thus, we focus on the case of
a 0 phase shift in the two-band superconductor (i.e., φ

(1)
R −

φ
(2)
R ≡ 0 mod 2π ). We can find that our results do not change

qualitatively when a π phase shift (i.e., ±s wave) occurs.

B. Determining a tunneling path

We now seek a predominant tunneling path on (θ, ψ). In this
paper, we choose an in-phase tunneling path along the θ axis.
Here, we justify this choice based on the physical properties
of θ and ψ . First, θ has a direct coupling to the electric field,
whereas ψ does not. Thus, the switching event in this junction
is caused by the tunneling of θ . This tunneling is strongly
enhanced by the bias current γ because the potential barrier
height along the θ axis decreases with increase of γ . Second,
ψ tends to be fixed to 0 or π because the dynamics of the
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relative phase is subjected to a restoring force induced by the
interband coupling (in this paper, ψ tends to be 0 because
Ein > 0). Although ψ fluctuates around these fixed values,
the amplitude of the fluctuations is relatively small compared
to the oscillation of θ , as described below. Moreover, the
fluctuations are not affected by the bias current γ , in contrast to
the tunneling of θ . Therefore, the switching event in a high-bias
current condition γ � 1 may occur via the tunneling along
the θ axis. Thus, we can reduce our issue to an effective 1D
tunneling problem along this in-phase path.

Let us more closely examine the dynamical behaviors of θ

and ψ around the in-phase tunneling path. The amplitudes
of θ oscillations and ψ fluctuations are characterized by,
respectively, m−1

cm and m−1
rlt . Since the dimensionless constants

α1 and α2 are small (αi < 1), we have small fluctuations of
ψ . Hence, we examine the switching event in this Josephson
junction, using the in-phase tunneling path with small relative-
phase fluctuations. Along this tunneling path, the dynamics of
θ is expressed by a particle under the so-called washboard
potential. Furthermore, the dynamics of ψ can be expressed
by a simple harmonic oscillator, with angular frequency

ωL = 1

�

√
2(α1 + α2)EcEin. (5)

In other words, ψ is regarded as a bosonic environment for
the center-of-mass phase. We will show these points via the
derivation of the Euclidean Lagrangian with the expansion of
L around the in-phase tunneling path.

C. Euclidean Lagrangian around an in-phase tunneling path

Now we derive the Euclidean Lagrangian with three steps.
Throughout this paper, we denote the imaginary time as
τ (=it). First, we take a small ψ expansion, up to second order.
We obtain the Euclidean Lagrangian LE = LE

cm + LE
rlt + LE

int,
with

LE
cm = mcm

2

(
dθ

dτ

)2

− EJ(cos θ + γ θ ), (6)

LE
rlt = mrlt

2

(
dψ

dτ

)2

+ 1

2
mrltω

2
Lψ2, (7)

LE
int = g+EJψ

2 cos θ − g−EJψ sin θ. (8)

The first term (LE
cm) is the Lagrangian for the center-of-mass θ ,

the second term (LE
rlt) is for the relative phase ψ , and the third

term describes the interaction between θ and ψ . The coupling
constants g+ and g− are

g+ = 1

2EJ

[
α2

1

(α1 + α2)2
EJ1 + α2

2

(α1 + α2)2
EJ2

]
, (9)

g− = 1

EJ

[
− α1

(α1 + α2)
EJ1 + α2

(α1 + α2)
EJ2

]
. (10)

We find that g+ is positive, whereas g− vanishes when the
parameters of the respective gaps are equivalent: α1 = α2 and
EJ1 = EJ2.

Second, in order to remove the nonlinearity with respect
to ψ in the interaction Lagrangian, we use the mean-field
approximation [21]. The expectation values of ψ and ψ2 for

the ground state (i.e., zero-temperature limit) of LE
rlt are

〈ψ〉ψ = 0, 〈ψ2〉ψ = �

2mrltωL
≡ �2, (11)

where the symbol 〈·〉ψ indicates the expectation value with
respect to ψ . Using these values, we rewrite LE

int as a sum-
mation of the expectation values and the deviation from them,
LE

int = 〈LE
int〉ψ + δLE

int. Omitting higher-order fluctuations, we
obtain the linearized interaction Lagrangian,

LE
int = g+�2 cos θ − g−ψ sin θ. (12)

We then derive the effective Euclidean Lagrangian with the
mean-field approximation,

LE(θ,ψ) = mcm

2

(
dθ

dτ

)2

+ Veff(θ ) + LE
rlt − g−ψ sin θ, (13)

with

Veff(θ ) = −EJ[(1 − ε) cos θ + γ θ ], (14)

where ε = g+�2.
Third, we expand Eq. (13) around the local minimum of

Veff , denoted by θ0 = arcsin[γ /(1 − ε)]. In this paper, we focus
on the case γ � 1; this is typical for MQT experiments. After
performing a constant phase-shift transformation, which does
not change the path-integral measure, we obtain

LE(θ,ψ) ≈ mcm

2

(
dθ

dτ

)2

+ Ṽeff(θ ) + LE
rlt − Cintθψ + δV,

(15)

with

Ṽeff(θ ) = �
2ω2

eff(γ )

4Ec

(
θ2 − θ3

θ1

)
, (16)

where θ1 = cot θ0 and Cint = EJg− cos θ0. We have dropped
constants irrelevant to θ and ψ . The current-dependent
Josephson-plasma frequency is

ωeff(γ ) =
√

2EcEJ(1 − ε)

�

[
1 −

(
γ

1 − ε

)2 ]1/4

. (17)

We stress that the effect of the JP-JL coupling explicitly
appears in this formula. Furthermore, we find that the inter-
action term Cintθψ is essentially the same as the system-bath
interaction in the Caldeira-Leggett model [2]. The last term in
Eq. (15) is the counterterm [3] δV = (C2

int/2mrltω
2
L)θ2, which

is added for reproducing Hooke’s law between θ and ψ [i.e.,
(θ − ψ)2].

D. Escape-rate formula

We now show the formula for the MQT escape rate �.
At the low-temperature limit, the escape rate [3] is � =
(2/�β)Im K(β), with the inverse temperature β and

K(β) =
∫ ∞

−∞
dψ

∫ θ(β)=0,ψ(β)=ψ

θ(0)=0,ψ(0)=ψ

Dθ (τ )Dψ(τ )

× exp

{
−1

�

∫
�β

0
dτ L̃E[θ (τ ),ψ(τ )]

}
. (18)
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One of the authors (S.K.) [20] developed a method to evaluate
the MQT escape rate for this class of Lagrangian. This
approach is essentially the same as the influence-functional
method [2,3]. Thus, we find that when β → ∞ (i.e., zero-
temperature limit) for the case γ � 1,

� = ωeff

√
30SB

π�

(
1 + SD

2SB

)
exp

[
−1

�
(SB + SD)

]
, (19)

with

SB = 8

15

�
2

2Ec
ωeff θ2

1 , (20)

SD = 8πC2
intθ

2
1

mrltω
2
Lωeff

∫ ∞

0
g(z) dz, (21)

where g(z) means the effects of the memory kernel in terms
of the influence functional method,

g(z) = z4

[(ωL/ωeff)2 + z2] sinh2 (πz)
. (22)

Here, SB is the bounce action of the tunneling particle θ along
the extremal path on the potential Ṽeff(θ ), whereas SD is the
dissipative action, which corresponds to the energy dissipation
from θ to the environment ψ .

Before closing this section, let us summarize the role of the
JL mode on MQT based on our theory described above. On the
one hand, the zero-point fluctuations give a positive nonzero ε.

θ

ψ

Tunnel-ba
suppress

(a)

Veff = - (1 - ε) cosθ - γθ

Decrease of
tunnel barrier

Dissipation

θ

ψ

(b)

Cint θψ
Dissipation 

FIG. 2. (Color online) Schematic diagrams of two effects of the
Josephson-Leggett (JL) mode on a macroscopic quantum tunneling
(MQT) process. (a) MQT enhancement by the decrease of the barrier
height. The curves indicate the potential energy with (blue) and
without (red) JL mode. (b) MQT suppression by dissipation (quantum
dissipation). The wiggling arrow schematically shows the energy
dissipation from θ to ψ via linear coupling, Cintθψ .

This quantity effectively reduces the tunneling barrier height,
as seen in Eq. (14). As a result, the zero-point fluctuations
enhance the MQT escape rate. On the other hand, the linear
interaction Cintθψ in Eq. (15) causes energy dissipation from
θ to the environment ψ . The effect of this quantum dissipation
appears as the dissipative action SD in Eq. (19), then it
suppresses the MQT escape rate. In Figs. 2(a) and 2(b), we
show the schematics of these two major roles of the JL mode.

IV. ESCAPE RATES WITH DIFFERENT
JUNCTION PARAMETERS

We now numerically evaluate the MQT escape rate (19).
In order to discuss the MQT in general two-band Josephson
junctions, we perform the calculations for different junction
parameter sets (αi, EJi), with fixed Ec/EJ (=0.002), γ (=0.9),
and α1 + α2 (=0.1). We use two parameters characterizing the
differences between the two tunneling channels,

δα = α1 − α2

α1 + α2
, δEJ = EJ1 − EJ2

EJ
. (23)

The former characterizes the density-of-states difference in
the vicinity of the interface, while the latter is the normalized
Josephson-energy difference. We examine � in the parameter
space (δα, δEJ).

Figure 3 shows the MQT escape rate as a function of δα and
δEJ , for Ein/EJ = 0.1. ωp = √

2ECEJ/� is the Josephson-
plasma frequency. The black mesh indicates the escape rate
with the JL mode, while the purple surface indicates the bare
escape rate �0, namely, � without the JL mode (i.e., Cint =
ε = 0). At the origin of the (δα, δEJ) space in which all band
parameters are equivalent, Cint becomes zero. Therefore, the
MQT suppression by quantum dissipation does not appear at
this point. The MQT in this ideal condition was studied by two
of the authors (Y.O. and M.M.) [21]. Figure 3 indicates that
the MQT escape rate is enhanced by the JL mode for various
hetero-Josephson junctions with two-band superconductors,
whereas the effect of MQT suppression is marginal.
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/
p)

J

-0.4 -0.2

0.4

0.40.2

0

0.4

0.8

1.2

0.20
-0.4 -0.2 0

[x 10-4]

0

FIG. 3. (Color online) Macroscopic quantum tunneling escape
rate vs the density-of-states difference δα and the Josephson-energy
difference δEJ between the two tunneling channels shown in Fig. 1.
ωp = √

2ECEJ/� is the Josephson-plasma frequency. The black mesh
surface (�) shows the escape rate with the interband fluctuations.
In contrast, the purple mesh surface (�0) indicates the escape rate
without the interband fluctuations.

224507-4



THEORY OF MACROSCOPIC QUANTUM TUNNELING WITH . . . PHYSICAL REVIEW B 89, 224507 (2014)

FIG. 4. (Color online) Ratio of the dissipative action to the
bounce action, SD/SB. The open square and triangle correspond to the
parameters for the iron-based superconductor BaFe2As2 and MgB2,
respectively.

The results in Fig. 3 indicates that the energy dissipation
is relatively small, compared to the energy of the bounce
motion of θ . To clarify this point, we calculate the ratio
of the dissipative action to the bounce action. Figure 4
shows the contour map of SD/SB, with different junction
parameters (δα, δEJ). The open square and the triangle in
Fig. 4 indicate the parameter sets (δα, δEJ) = (−0.126, 0.251)
and (−0.236, 0.447), respectively. The former is evaluated by
typical material parameters for BaFe2As2 [46,47], while the
latter for MgB2 [48]. We find that SD is much smaller than
SB. It is noteworthy that the environment ψ oscillates with
single angular frequency ωL. Thus, there is only one dissipation
channel in our system. This fact would lead to a small energy
dissipation.

Finally, for clarifying the dependence of � on the interband
Josephson energy, we calculate �, with different Ein/EJ .
Figure 5(a) shows � as a function of Ein/EJ. In this calculation,
we use again the typical material parameters for BaFe2As2 and
MgB2, as seen in Fig. 4. We find that � sharply increases with
decreasing Ein/EJ. In order to understand this behavior, we
plot ε and Cint as functions of Ein/EJ in Figs. 5(b) and 5(c).
The magnitude of the zero-point fluctuations of the JL mode
ε is large, with decreasing Ein/EJ. This behavior corresponds
to the fact that the JL angular frequency ωL decreases when
Ein decreases. Thus, the zero-point fluctuations �2 increase
for small Ein [see Eq. (11) as well]. Therefore, the reduction
of the tunneling barrier height is marked for small Ein. We
also find that the coupling strength of the quantum dissipation
Cint for the MgB2 parameter set is larger than the BaFe2As2

parameter set, as shown in Fig. 5(c). In contrast, we find little
difference in ε for these two parameter sets. Hence, the energy
dissipation of MgB2 is remarkable, compared to BaFe2As2.
As a result, the enhancement of the MQT rate for MgB2 is
smaller than that of BaFe2As2.

Let us now summarize our results. The MQT in
hetero-Josephson junctions with two-band superconductors
is strongly affected by the presence of the JP-JL coupling.

FIG. 5. (Color online) (a) Macroscopic quantum tunneling es-
cape rate, (b) parameter ε = g+�2 for the magnitude of the zero-point
fluctuations of the Josephson-Leggett mode [see Eq. (14)], and
(c) parameter Cint = EJg− cos θ0 for the coupling strength between
the tunneling particle θ and the environment ψ [see Eq. (15)], with
different interband Josephson couplings, Ein/EJ. The ε and |Cint|
contribute to the enhancement and the suppression of the quantum
tunneling, respectively. The horizontal solid line in (a) indicates
the escape rate without interband fluctuations. The open square and
the triangle indicate the results for (δα = −0.126, δEJ = 0.251) and
(δα = −0.236, δEJ = 0.447), respectively.

In other words, the MQT escape rate reflects the nature of
the JL mode characterized by the superconducting material
parameters, i.e., the density of states near the interfaces and
the interband Josephson energy.

V. CONCLUSION

We constructed a theory of macroscopic quantum tunnel-
ing (MQT) in Josephson junctions consisting of multiband
superconductors, and clarified the effect of interband phase
fluctuations, namely, the Josephson-Leggett (JL) mode on
the MQT. In order to discuss the essential effect of the
JL mode, we employed a minimal model of the multiband
Josephson junction: a hetero-Josephson junction consisting
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of a conventional single-gap superconductor and a two-gap
superconductor. We focused on the in-phase tunneling path
along the center-of-mass motion of the phase differences,
which is directly related to low-temperature switching events.
In the tunneling process along the in-phase path, the effect
of the JL mode is caused by the interaction between the
JP mode and the JL mode. We derived a Lagrangian which
explicitly includes the JL-JP coupling by using a mean-field
approximation. The derived Lagrangian is similar to that of
the Caldeira-Leggett model for dissipative quantum tunneling.
Based on the imaginary-time path-integral method, we derived
a formula for the escape rate from this Lagrangian.

In our junction, the JL mode plays two major roles which
are opposite to each other: (i) the enhancement of quan-
tum tunneling by lowering the tunneling barrier height and
(ii) the suppression of quantum tunneling by quantum dis-
sipation. We calculated the MQT escape rate, systematically
varying the junction parameters. We clarified that the enhance-
ment effect is dominant and that the MQT escape rate is
significantly enhanced by the JL mode. The amount of the

MQT enhancement depends on the properties of the JL mode
characterized by the superconducting material parameters,
such as the interband Josephson energy and the density of
states near the interfaces of the junctions. Therefore, a precise
analysis of the MQT would provide valuable information for
the JL mode in multiband superconductors.
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