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Terahertz transition radiation of bulk and surface electromagnetic waves by an electron
entering a layered superconductor
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We theoretically study the transition radiation of bulk and surface electromagnetic waves by an electron
crossing an interface between a layered superconductor and an isotropic dielectric. We assume that the direction
of the electron motion and the orientation of the superconducting layers are perpendicular to the interface. We
derive the analytical expressions for the strongly anisotropic radiation fields and for the time-integrated energy
fluxes of bulk and oblique surface electromagnetic waves (OSWs). We show that the OSWs with frequencies
close to the Josephson plasma frequency ωJ provide the main contribution to the OSWs energy flux. Moreover,
for frequencies close to the Josephson plasma frequency, the spectral density of the OSWs radiation diverges at
some critical value of the azimuth angle ϕ. At the angles ϕ = 0 and ϕ = 90o, the radiation field has a transverse
magnetic polarization. We have also studied the Cherenkov radiation by the electron escaping from the layered
superconductor and show that this radiation is almost monochromatic. A remarkable feature of the Cherenkov
radiation in a layered superconductor is that, contrary to the isotropic case, the Cherenkov radiation distinctly
manifests itself in the angular dependence of the radiation energy flux.
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I. INTRODUCTION

The transition radiation effect, i.e., the radiation of elec-
tromagnetic waves by a uniformly moving electron due to
its transition from one medium to another, was discovered
by Ginzburg and Frank in 1945 [1]. Since then, numerous
monographs and reviews have been written on this subject
(see, e.g., Refs. [2–6]). Nowadays a good deal of attention to
the transition radiation effect is caused by the large number
of its applications. For instance, the transition radiation is
used in high-energy physics for the detection of charged
particles [2,7,8]. The electron-bunch bombardment of solids
and transit of the bunches through diaphragms allow us to
generate short high-power pulses, which are widely used
for radiolocation [9]. The effect of transition radiation of
anharmonic nonstationary electromagnetic pulses in free space
and in a dispersive medium was investigated in Ref. [10]. In
particular, it was shown that the longitudinal profile of the
bunch density and the plasma parameters can be determined
from the values of the radiated fields and their derivatives near
the leading edge of the resulting signal. The transition radiation
of surface electromagnetic waves by a nonrelativistic electron
bunch, which crosses the vacuum-semiconductor interface or
a thin plate of a semiconductor, was studied in Ref. [11], and
now the radiation of modulated electron beams crossing a
boundary of a plasma-like medium becomes a very effective
method for generation of surface electromagnetic waves [12].

The properties of the transition radiation by the electrons
crossing anisotropic conducting interfaces, such as a wire
shield, have been studied in Ref. [13]. Specifically, the possi-
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bility of obtaining an elliptical polarization of electromagnetic
waves has been shown in this paper. Pafomov [14] predicted the
Cherenkov radiation of the electromagnetic waves with nega-
tive group velocity in media, which possesses simultaneously
negative permittivity and negative permeability (so-called left-
handed media). A similar effect occurs if an electron crosses
an interface between the vacuum and a uniaxial anisotropic
conducting medium (e.g., a layered superconductor) in the
case when the conducting layers are parallel to the interface
[15]. The electromagnetic waves in layered superconductors
(so-called Josephson plasma waves) belong to the terahertz
frequency range, which is very important for various ap-
plications but not easily accessible with modern electronic
and optical devices. This technological perspective provides a
strong motivation for studying these waves.

In this paper, we theoretically investigate the transition
radiation produced by an electron entering (or escaping
from) a layered superconductor with layers perpendicular
to the interface. We have studied in detail the strongly
anisotropic angular distribution of the radiation energy flux
and have shown that, in this geometry, unlike the results of
Ref. [15], the excitation of the electromagnetic waves with
negative group velocity is impossible. In other words, the
directions of the electron motion and of the energy flux in the
superconductor does not form an obtuse angle. A remarkable
feature of the Cherenkov radiation in a layered superconductor
is that, contrary to the isotropic case, the Cherenkov radiation
distinctly manifests itself in the angular dependence of the
radiation energy flux. We have found that the electron transit
from a dielectric to a layered superconductor results not only
in the generation of bulk Josephson plasma waves but also
in the excitation of oblique surface electromagnetic waves
(OSWs). We show that OSWs with frequencies close to the
Josephson plasma frequency ωJ provide the main contribution
to the OSWs energy flux. Moreover, for frequencies close to
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FIG. 1. (Color online) Geometry of the problem.

the Josephson plasma frequency, the spectral density of the
OSWs radiation diverges at some critical value of the azimuth
angle ϕ with respect to the crystallographic c axis.

II. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

We consider a dielectric with permittivity εd and a layered
superconductor with layers perpendicular to the interface (see
Fig. 1). Both media are assumed to be nonmagnetic. We define
our coordinate system so that the dielectric occupies the half-
space y < 0, the layered superconductor occupies the half-
space y > 0, and the z axis coincides with the crystallographic
c axis of the superconductor.

Let an electron move uniformly in the dielectric along the y

axis with velocity v � c (here c is the speed of light in vacuum)
and crosses the interface. The electron-charge density n(�r,t)
is determined by the formula

n(�r,t) = eδ(x)δ(y − vt)δ(z), (1)

where δ(x) is the Dirac δ function and e is the electron charge.
We consider the Maxwell equations:

rot �H = ε(y)

c

∂ �E
∂t

+ 4π

c
[ �j ind(�r,t) + �j ext(�r,t)], (2)

rot �E = −1

c

∂ �H
∂t

. (3)

Here, ε(y) = εd for y < 0, ε(y) = εs for y > 0, εs is the
interlayer dielectric constant of the superconductor, �j ind(�r,t)
is the current induced in the superconductor, and �j ext(�r,t) =
en(�r,t)v is the electron current. The current �j ind(�r,t) inside
the layered superconductor is determined by the distribution
of the gauge-invariant phase difference φ(�r,t) of the order pa-
rameter between neighboring layers. This phase difference is
described by a set of coupled sine-Gordon equations (see, e.g.,
Ref. [16] and references therein). In the continuum and linear
approximation, φ can be excluded from the set of equations for
the electromagnetic fields, and the electrodynamics of layered
superconductors can be described in terms of an anisotropic
frequency-dependent permittivity with components εc and εab

across and along the layers, respectively. Indeed, as was shown
in Ref. [17], the direct solution of the set of coupled sine-
Gordon equations in the continuum and linear approximations
is equivalent to solving the Maxwell equations for a uniform

anisotropic medium with

εab(ω) = εs

(
1 − γ 2ω2

J

ω2
+ iγ 2νab

ωJ

ω

)
, (4)

εc(ω) = εs

(
1 − ω2

J

ω2
+ iνc

ωJ

ω

)
. (5)

Here, ωJ = (8πeDJc/�εs)1/2 is the Josephson plasma fre-
quency, D is the period of the layered structure, Jc is the
maximal Josephson current density, γ = λc/λab � 1 is the
current-anisotropy parameter, λc and λab are the magnetic-field
penetration depths along and across the layers, respectively,
the relaxation frequencies νab = 4πσab/(εsωJ γ 2) and νc =
4πσc/(εsωJ ) are proportional to the averaged quasiparticle
conductivities σab (along the layers) and σc (across the layers),
respectively.

III. ELECTROMAGNETIC FIELD IN THE DIELECTRIC
AND IN THE LAYERED SUPERCONDUCTOR

The total electromagnetic field in each medium can be
presented as a sum of the so-called electron’s field and
radiation field. The first of them represents a particular solution
of the inhomogeneous Maxwell equations, while the latter
is the solution of the homogeneous set of equations. We
express the electromagnetic fields in both media in terms of
Fourier integrals over the coordinates x and z, and over time
t . For example, for the electric field �Ed,s(�r,t), we use the
Fourier-series expansion,

�Ed,s(�r,t) =
∫

�Ed,s(�κ,ω,y) exp[i(�κ �ρ − ωt)]d�κdω, (6)

where �κ = (kx,kz) is the wave vector in the plane of the
interface, �ρ = (x,z) is the radius vector in the xz plane, the
subscripts d and s denote the dielectric or superconductor
regions (y < 0 or y > 0), respectively.

A. Electron’s electromagnetic field

The Maxwell equations give the following expressions for
the electron’s electric �E(el)

d (�κ,ω,y) and magnetic �H (el)
d (�κ,ω,y)

fields in the dielectric:

�E(el)
d (�κ,ω,y) = ie

2π2v εd

ω�v
c2 εd − �k

k2 − ω2

c2 εd

exp

(
i
ω

v
y

)
, (7)

�H (el)
d (�κ,ω,y) = εd

c

[�v × �E(el)
d (�κ,ω,y)

]
. (8)

Here, the wave vector �k has the components (kx , ky = ω/v,
kz), k = |�k|.

The electron’s field components in the superconductor are
presented in Appendix A. In the next subsection, we consider
the second component of the electromagnetic field, namely,
the radiation field.

B. Radiation field

It is suitable to present the radiation field as a
sum of ordinary and extraordinary electromagnetic waves
with components (E(ord)

d,s x,E
(ord)
d,s y,0), (H (ord)

d,s x ,H
(ord)
d,s y ,H

(ord)
d,s z ) and

(E(ext)
d,s x,E

(ext)
d,s y,E

(ext)
d,s z), (H (ext)

d,s x,H
(ext)
d,s y,0), respectively. The ex-

pressions for the Fourier components of the electric and
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magnetic fields in the ordinary and extraordinary waves are
presented in Appendix B.

C. Total radiation field in the dielectric

From the continuity conditions for the tangential com-
ponents of the electric, [Ex(y = 0), Ez(y = 0)], and mag-
netic, [Hx(y = 0), Hz(y = 0)], fields at the interface, we
derive the expressions for four unknown Fourier amplitudes,
E

(ord)
d x (�κ,ω,y), E(ord)

s x (�κ,ω,y), E(ext)
d x (�κ,ω,y), and E(ext)

s x (�κ,ω,y).
Since the ordinary wave in the layered superconductor is
evanescent for frequencies ω � ωJ γ , the propagating field
with |Reks y | � |Imks y | in the superconductor is represented
by the extraordinary wave only. It is difficult to observe
the radiation field inside the layered superconductor, and,
therefore, below we analyze the electromagnetic fields only
in the dielectric (e.g., in the vacuum). The expressions for all
components of the total radiation field in the dielectric are
presented in Appendix C.

In order to derive the spatial and temporal dependencies of
the total electromagnetic fields in explicit form, we need to
integrate expressions (C1–C6) in Appendix C over kx and kz

by means of the stationary-phase method for double integrals
[18]. Using this method, we obtain the following quite clear
result for the stationary points:

kx0 = ω

c

√
εd sin ϑ sin ϕ, (9)

kz0 = ω

c

√
εd sin ϑ cos ϕ, (10)

where ϑ is the tilt angle with respect to the y axis (i.e., the angle
between the radius vector �R and the y axis), ϕ is the azimuth
angle in the interface plane (i.e., the angle between the radius
vector �ρ and the z axis) (see Fig. 1). The stationary-phase
method is applicable only for the long distances R between
the point where the electron crosses the interface and the
observation point; namely, when the following condition holds
true [19]:

R � c

ω sin2 ϑ
. (11)

In what follows, we assume that this condition is satisfied.
To calculate the energy losses of the electron due to

radiation into the dielectric, we find the energy flux of the
total electromagnetic wave in the dielectric across the remote
hemisphere using the time-integrated Poynting vector,

〈�S〉 = c

4π
Re

∫ ∞

−∞
dt[ �E(�r,t), �H ∗(�r,t)]. (12)

Eventually, we obtain the following expression for the spectral
density �(�,ϑ,ϕ) of the radiation energy flux (in units
of �0 = e2/c) per unit solid angle � (d� = sin ϑdϑdϕ)
integrated over the electron transit time:

�(�,ϑ,ϕ)

= 2π2εd�
2 cos2 ϑRe{[Ēd y(�,ϑ,ϕ)H̄ ∗

d z(�,ϑ,ϕ)

− Ēd z(�,ϑ,ϕ)H̄ ∗
d y(�,ϑ,ϕ)] sin ϑ sin ϕ

+ [Ēd x(�,ϑ,ϕ)H̄ ∗
d y(�,ϑ,ϕ)

− Ēd y(�,ϑ,ϕ)H̄ ∗
d x(�,ϑ,ϕ)] sin ϑ cos ϕ

− [Ēd z(�,ϑ,ϕ)H̄ ∗
d x(�,ϑ,ϕ)

− Ēd x(�,ϑ,ϕ)H̄ ∗
d z(�,ϑ,ϕ)] cos ϑ}, (13)

where Ēd i(�,ϑ,ϕ) and H̄d i(�,ϑ,ϕ) are dimensionless Fourier
components for the radiation fields (in units of e/ωJ ) given by
equations (C1)–(C6) in Appendix C and expressed in terms of
the dimensionless frequency � = ω/ωJ taking into account
Eqs. (9) and (10). It is important to emphasize that, for the
distances R satisfying inequality Eq. (11), the radiated waves
lose touch with the superconductor, and their spectral density
�(�,ϑ,ϕ) does not depend on R, even when accounting for
the losses in the superconductor.

IV. ANALYSIS OF THE RADIATION SPECTRUM OF BULK
ELECTROMAGNETIC WAVES

In this section, we perform the numerical analysis of the
dependence of the spectral density �(�,ϑ,ϕ) on the tilt angle
ϑ and the azimuth angle ϕ. Hereafter, we use the following
parameters for the adjacent media:

εd = 1, εs = 16, γ = 200, νab = 0, νc = 10−5. (14)

Figure 2 shows the dependence of � on the tilt angle ϑ for
different values of ϕ, at � = 0.7 and β = v/c = 0.3, for the
case when the electron enters from the dielectric into the
superconductor. As seen from Fig. 2, the maximum of
the spectral density is located at ϑ ≈ 90o and ϕ = 90o. In
other words, for ϕ ≈ 90o, the radiation energy flux is directed
at a grazing angle with respect to the interface. It is also seen
from Fig. 2 that the maximum of the spectral density decreases
and shifts towards lower angles ϑ when decreasing the angle
ϕ. Note that the radiation field has the transverse magnetic
(TM) polarization at angles ϕ ≈ 0 and ϕ ≈ 90o. At ϕ ≈ 0o,
the radiation field has components (0,Ed y,Ed z), (Hd x,0,0),
while at ϕ ≈ 90o it has components (Ed x,Ed y,0), (0,0,Hd z).

The dependence of � on the tilt angle ϑ for a number
of frequencies � at ϕ = 0 and β = 0.3 is shown in Fig. 3.
One can see that, for small frequencies, the maximum of the
spectral density is located at grazing angles ϑ ≈ 90o. When

FIG. 2. (Color online) Dependence of the dimensionless spectral
density �̃ = 103 �c/e2 of the radiation on the tilt angle ϑ for different
values of ϕ, at � = 0.7 and β = 0.3. Curves 1–4 correspond to ϕ =
90o, 60o, 30o, and ϕ = 0, respectively.
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FIG. 3. (Color online) Dependence of the dimensionless spectral
density �̃ = 103 �c/e2 of the radiation on the tilt angle ϑ for
a number of frequencies �, at ϕ = 0 and β = 0.3. Curves 1–7
correspond to � = 10−3, 0.1, 0.5, 0.8, 1, 2, and 10, respectively.

the frequency increases, the maximum of the spectral density
changes nonmonotonically. At first, it decreases and tends to
a certain minimum value at � = 1 (curve 5), but then the
maximum grows and tends to some limit value at � � 1
(curve 7). Figure 4 presents the analogous dependence for
ϕ = 90o and β = 0.3. The curves in this figure demonstrate
that, for all frequencies which have a physical meaning, the
maxima of the spectral density are observed for grazing tilt
angles ϑ close to 90o.

A. Cherenkov radiation by the electron escaping from the
layered superconductor

It is worthwhile to consider the Cherenkov radiation gener-
ated by the electron in the layered superconductor. Note first
that, according to Eq. (B10) in Appendix B, the y component
of the wave vector of ordinary Josephson plasma waves is
imaginary for all reasonable frequencies. This means that
ordinary waves cannot propagate in the superconductor along
the y axis: they are evanescent modes. Therefore, Cherenkov
radiation can be presented in the layered superconductor by
the extraordinary waves only. On the other hand, as was shown

FIG. 4. (Color online) Dependence of the dimensionless spectral
density �̃ = 103 �c/e2 of the radiation on the tilt angle ϑ for a
number of frequencies �, at ϕ = 90o and β = 0.3. Curves 1, 2, 3
correspond to � = 10−3, 2, and 10, respectively.

in Refs. [17,20], the y components of the wave vector and
the Poynting vector of an extraordinary Josephson plasma
wave have the same sign. In other words, for the geometry
considered in this paper, the Cherenkov radiation is oriented
in the same direction as the velocity of the moving electron,
contrary to the geometry with layers parallel to the interface,
considered in Ref. [15]. Such a result was obtained for the
Cherenkov radiation produced by a Josephson vortex moving
along the superconducting layers [21]. Hence, the orientation
of the superconducting layers with respect to the interface
plane plays a crucial role for the formation of the reversed
or nonreversed Cherenkov radiation. This means that, in
our geometry, the Cherenkov radiation can escape from the
superconductor only in the case when the electron moves
toward the interface. Therefore, in this section, we consider
the case of negative electron velocity, which corresponds to
the electron escaping from the superconductor.

As is well-known, the Cherenkov radiation can arise if the
electron velocity v coincides with the y component of the wave
phase velocity, v = ω/k(ext)

s y . A simple analysis shows that this
condition, with k(ext)

s y given by Eq. (B19) in Appendix B, can be
satisfied only in a narrow frequency interval near the frequency
ωCh ,

ωCh = ωJ [1 − (εsβ
2)−1]−1/2, β = v

c
, (15)

if the permittivity εd of the dielectric is small with respect
to the interlayer permittivity εs of the superconductor. Here
we assume that β2 > 1/εs . In other words, the Cherenkov
radiation appears to be almost monochromatic.

Figure 5 shows the dependence of the spectral density � of
the radiation on the tilt angle ϑ for several small values of the
azimuth angle ϕ at � = 1.87, νc = 5 × 10−5, and β = −0.3.
The sharp maxima in the curves correspond to the Cherenkov
radiation. It is important to note that, in the isotropic case, the
input of the Cherenkov radiation to the spectral density �(ϑ)
cannot be distinguished on the background of the spectral
density of the total transition radiation [3]. However, as seen in
Fig. 5, the input of the Cherenkov radiation to �(ϑ) distinctly
manifests itself in the anisotropic case. This is a remarkable
new feature of the Cherenkov radiation in anisotropic media.

FIG. 5. (Color online) Dependence of the dimensionless spectral
density �̃ = 103 �c/e2 of the radiation on the tilt angle ϑ for different
values of ϕ at � = 1.87 and β = −0.3. Curves 1, 2, 3 correspond to
ϕ = 35o, 38o, and 44o, respectively.
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V. TRANSITION RADIATION OF THE OBLIQUE SURFACE
ELECTROMAGNETIC WAVES

It is important to emphasize that the moving electron
excites not only the above-considered bulk electromagnetic
waves but also the so-called oblique surface electromagnetic
waves (OSWs) in the interface plane. The properties of the
OSWs have recently been investigated in Refs. [22,23]. Here
we consider the excitation of the OSWs due to the transition
radiation by the moving electron.

The factor �OSW in the denominators of Eqs. (C1)–(C6)
in Appendix C defines the dispersion relation for the OSWs,
�OSW = 0. The results for the OSWs fields calculation are
presented in Appendix D.

In order to calculate the integrated density �OSW of the
OSWs energy flux over the electron transit time, we use
Eq. (12). Since the OSWs are evanescent waves, the OSWs
Poynting vector is directed strictly along the interface, and the
features of the OSWs excitation cannot be seen in the spectral
density of the waves emitted into the upper hemisphere.
Therefore, to find the OSWs energy flux over the electron
transit time we should integrate 〈Sρ〉 = 〈Sx〉 sin ϕ + 〈Sz〉 cos ϕ

over the lateral surface of the semi-infinite circular cylinder
with radius ρ and with the axis parallel to the electron path
in the half-space y < 0. For calculation of 〈Sρ〉, we evaluate
the integrals (D1)–(D6) in Appendix D over ψ using the
stationary-phase method [24]. For the case of OSWs radiation,
the condition Eq. (11) of the method applicability should be
replaced by ρ � 1/κ0(ω,ψ), where κ0(ω,ψ) is the solution of
the dispersion relation �OSW = 0 (see Appendix D). Here we
analyze the dependence of �OSW [normalized to π3e2/(2c)] on
the azimuth angle ϕ and on the dimensionless frequency �. It
is worthwhile to note that, for the calculation of integrals over
the angle ψ by the stationary phase method, it is useful to use
the asymptotic solution of the dispersion relation �OSW = 0
for the OSWs,

κ̄ = �√
2 sin ψ

√
ζ +

√
ζ 2 − 4εd (εc − εd ) tan2 ψ, (16)

where κ̄ = cκ/ωJ and ζ = εc(ω) + [εc(ω) − εd ] tan2 ψ . This
asymptotic formula properly describes the dispersion relation
for 0 � ψ � π/2, 0 < � < �1 = √

εs/(εs − εd ), when the
following inequalities are satisfied:

�2|εab(ω)| � κ̄2,

∣∣∣∣ εc(ω)

εab(ω)

∣∣∣∣ � 1. (17)

Here, the frequency �1 is the frequency for the end-points of
the OSWs dispersion curves [22].

Figure 6 demonstrates the dependence of the spectral
density �OSW of the OSW radiation on the azimuth angle
ϕ for a number of frequencies � without regard to losses in
the superconductor (i.e., for νab = νc = 0) at εd = 1. Curves 1
and 2 in this figure show that, for relatively low frequencies,
the �OSW(ϕ) dependence is too weak and does not contain
maxima. As the frequency increases, pronounced maxima
appear (see curves 3, 4, and 5). Moreover, at frequencies higher
than some critical frequency �cr ≈ 0.991, the dependence
�OSW(ϕ) has a divergence at a certain value ϕcr of the azimuth
angle. This is demonstrated by curve 6, for which ϕcr ≈ 63.63o.
As the frequency � tends to one, the divergence occurs at larger

FIG. 6. (Color online) Dependence of the dimensionless spectral
density �̃OSW = �OSW2c/π 3e2 of the OSW radiation on the azimuth
angle ϕ for a number of frequencies � at εd = 1 and νab = νc = 0.
Curves 1–6 correspond to � = 0.5, 0.9, 0.96, 0.98, 0.985, and 0.991,
respectively. The frequency � = 0.991 matches the critical azimuth
angle ϕcr ≈ 63.63o.

angles ϕcr, and the critical value of the azimuth angle tends to
90o in the limit � → 1. Note that, in the isotropic case, when
the surface electromagnetic waves are radiated by an electron
crossing the interface between the vacuum and an isotropic
plasma-like medium, the spectral density has a divergence at
the frequency of surface electrostatic oscillations [3], and this
divergence occurs at the same frequency for any value of the
azimuth angle ϕ. Thus, the anisotropy of the interface causes
the dependence of the critical frequency �cr on the azimuth
angle ϕ.

The frequency dependence of the OSWs spectral density
�OSW of the OSW radiation for a number of values of ϕ

without regard to losses in the superconductor (i.e., for νab =
νc = 0) and at εd = 1 are presented in Fig. 7. As seen in this
figure, the OSWs spectral density increases with frequency
and reaches the maximum value for the frequency close to
Josephson plasma frequency. The larger angle ϕ, the larger
the value of the maximum. At angles ϕ larger than a certain
critical value and at frequencies close to the Josephson plasma

FIG. 7. (Color online) Frequency dependence of the dimension-
less OSWs spectral density �̃OSW = �OSW2c/π 3e2 for a number
of values of the azimuth angle ϕ, at εd = 1 and νab = νc = 0.
Curves 1–4 correspond to ϕ = 10o, 30o, 50o, and ϕ ≈ 63.63o. The
angle ϕ ≈ 63.63o matches the critical frequency �cr ≈ 0.991, which
is shown by the dashed line in the inset.
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frequency, the dependences �OSW(�) have divergences. The
closer the azimuth angle to 90o, the closer the critical frequency
�cr to one.

VI. CONCLUSION

In this paper, we have theoretically examined the problem
of the transition radiation by an electron moving along the
normal to the interface between an isotropic dielectric and
a layered superconductor. We have considered the geometry
where the orientation of the superconducting layers is per-
pendicular to the interface. The analytical expressions for
the strongly anisotropic radiation fields and for the spectral
density of the radiation energy flux have been derived. We
have found that the electron transit from a dielectric to a
layered superconductor results not only in the generation
of bulk Josephson plasma waves but also in the excitation
of oblique surface electromagnetic waves. We show that
the OSWs with frequencies close to the Josephson plasma
frequency ωJ provide the main contribution to the OSWs
energy flux. Moreover, for frequencies close to the Josephson
plasma frequency, the spectral density of the OSWs radiation
diverges at some critical value of the azimuth angle ϕ with
respect to the crystallographic c axis. We have also studied
the Cherenkov radiation by the electron escaping from the
layered superconductor and show that this radiation is almost
monochromatic. A remarkable feature of the Cherenkov
radiation in a layered superconductor is that, contrary to the
isotropic case, the Cherenkov radiation distinctly manifests
itself in the angular dependence of the radiation energy flux.

Here we describe the electromagnetic properties of the
layered superconductor by the effective permittivity tensor
Eqs. (4) and (5). A similar anisotropic permittivity tensor may
appear for other types of conducting lattices, e.g., in regular
semiconductor heterostructures. Nevertheless, we emphasize
that the above-mentioned effects are caused by the very strong
anisotropy of the current-carrying capability and are specific
for layered superconductors.
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APPENDIX A: THE ELECTRON’S ELECTROMAGNETIC
FIELD COMPONENTS IN THE SUPERCONDUCTOR

The electron’s field components in the superconductor are

E(el)
s x (�κ,ω,y) = − iekx�1

2π2v�(ord)�(ext)
exp

(
i
ω

v
y

)
, (A1)

E(el)
s y (�κ,ω,y) = − ie�2

2π2ω�(ord)�(ext)
exp

(
i
ω

v
y

)
, (A2)

E(el)
s z (�κ,ω,y) = − iekz

2π2v�(ext)
exp

(
i
ω

v
y

)
, (A3)

�H (el)
s (�κ,ω,y) = 1

c

[�v × �D(el)
s (�κ,ω,y)

]
, (A4)

where D(el)
s x (�κ,ω,y) = εab(ω)E(el)

s x (�κ,ω,y), D(el)
s y (�κ,ω,y) =

εab(ω)E(el)
s y (�κ,ω,y), D(el)

s z (�κ,ω,y) = εc(ω)E(el)
s z (�κ,ω,y),

�1 = k2 − ω2

c2
εc, (A5)

�2 =
(

k2
y − ω2

c2
εab

)(
k2 − ω2

c2
εc

)
− k2

z

ω2

c2
(εc − εab), (A6)

�(ord) = k2 − ω2

c2
εab, (A7)

�(ext) = k2
z εc + (

k2
x + k2

y

)
εab − ω2

c2
εabεc. (A8)

APPENDIX B: THE FIELD COMPONENTS FOR THE
ORDINARY AND EXTRAORDINARY WAVES

From the Maxwell equations, we obtain the relationships
between the Fourier components of the electric and magnetic
fields in the ordinary and extraordinary waves.

For the ordinary wave, all field components can be
expressed via the amplitude E

(ord)
d,s x of the x component of the

electric field. These expressions for the dielectric region are

E
(ord)
d y (�κ,ω,y) = − kx

kd y

E
(ord)
d x (�κ,ω,y), (B1)

H
(ord)
d x (�κ,ω,y) = ckxkz

ωkd y

E
(ord)
d x (�κ,ω,y), (B2)

H
(ord)
d y (�κ,ω,y) = ckz

ω
E

(ord)
d x (�κ,ω,y), (B3)

H
(ord)
d z (�κ,ω,y) = − c

ω

k2
x + k2

d y

kd y

E
(ord)
d x (�κ,ω,y). (B4)

The ordinary wave propagates in the dielectric with the y

component

kd y = −
√

(ω/c)2εd − κ2 (B5)

of the wave vector, i.e., all the amplitudes in Eqs. (B1)–(B4)
are proportional to exp(ikd yy).

For the superconducting region, we have

E(ord)
s y (�κ,ω,y) = − kx

k
(ord)
s y

E(ord)
s x (�κ,ω,y), (B6)

H (ord)
s x (�κ,ω,y) = ckxkz

ωk
(ord)
s y

E(ord)
s x (�κ,ω,y), (B7)

H (ord)
s y (�κ,ω,y) = ckz

ω
E(ord)

s x (�κ,ω,y), (B8)

H (ord)
s z (�κ,ω,y) = − c

ω

k2
x + (

k(ord)
s y

)2

k
(ord)
s y

E(ord)
s x (�κ,ω,y). (B9)
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The y component of the wave vector for the ordinary wave in
the superconductor is

k(ord)
s y =

√
ω2

c2
εab(ω) − κ2. (B10)

For the extraordinary wave, we obtain the following
relationships:

E
(ext)
d y (�κ,ω,y) = kd y

kx

E
(ext)
d x (�κ,ω,y), (B11)

E
(ext)
d z (�κ,ω,y) = −k2

x + k2
d y

kxkz

E
(ext)
d x (�κ,ω,y), (B12)

H
(ext)
d x (�κ,ω,y) = −ω

c

kd y

kxkz

εdE
(ext)
d x (�κ,ω,y), (B13)

H
(ext)
d y (�κ,ω,y) = ω

ckz

εdE
(ext)
d x (�κ,ω,y), (B14)

in the dielectric and

E(ext)
s y (�κ,ω,y) = k(ext)

s y

kx

E(ext)
s x (�κ,ω,y), (B15)

E(ext)
s z (�κ,ω,y) = −εab(ω)

εc(ω)

k2
x + (

k(ext)
s y

)2

kxkz

E(ext)
s x (�κ,ω,y), (B16)

H (ext)
s x (�κ,ω,y) = −ω

c

k(ext)
s y

kxkz

εab(ω)E(ext)
s x (�κ,ω,y), (B17)

H (ext)
s y (�κ,ω,y) = ω

ckz

εab(ω)E(ext)
s x (�κ,ω,y), (B18)

k(ext)
s y =

√
ω2

c2
εc(ω) − εc(ω)

εab(ω)
k2
z − k2

x (B19)

in the superconductor.

APPENDIX C: TOTAL RADIATION FIELD IN THE DIELECTRIC

Omitting the common multiplier exp[i(�κ �ρ + kd yy − ωt)], we can present the expressions for all components of the total
radiation electromagnetic field in the form,

Erad
d x (�κ,ω) = − iω

c

α1Q2 + α3Q1

�OSW
, (C1)

Erad
d y (�κ,ω) = iω

ckd y�OSW
[(α3kx + α2kz)Q1 + (α1kx − α4kz)Q2], (C2)

Erad
d z (�κ,ω) = iω

c

α4Q2 − α2Q1

�OSW
, (C3)

H rad
d x (�κ,ω) = c

α1kd yω
Ed x(�κ,ω)

[
α1kxkz − α4

(
k2
z + k2

d y

)] − i
k2
z + k2

d y

α1kd y

Q1, (C4)

H rad
d y (�κ,ω) = c

ω

(
kz + α4

α1
kx

)
Ed x(�κ,ω) + i

kx

α1
Q1, (C5)

H rad
d z (�κ,ω) = − c

α1kd yω
Ed x(�κ,ω)

[
α1

(
k2
x + k2

d y

) − α4kxkz

] + i
kxkz

α1kd y

Q1, (C6)

where

α1 = −kxkz

k(ord)
s y − kd y

kd yk
(ord)
s y

, α2 = −kxkz[εab(ω) − εd ], (C7)

α3 = k2
z [εab(ω) − εd ] + εab(ω)kd y

(
kd y − k(ext)

s y

)
, (C8)

α4 = 1

k
(ord)
s y

[
ω2

c2
εab(ω) − k2

z

]
− 1

kd y

(
ω2

c2
εd − k2

z

)
, (C9)

�OSW = α1α2 + α3α4, (C10)

Q1 = − eckx

2π2vωεdk
(ord)
s y �1�(ord)�(ext)

{[
�(ord)�(ext) − εd�1

(
k2 − ω2

c2
εc(ω)

)][
ω2

c2
εab(ω) − k2

z

]

− ωv

c2
k(ord)
s y εd

[
�(ord)�(ext) − εab(ω)�1

(
k2 − ω2

c2
εc(ω)

)]
+ k2

z�
(ord)(�(ext) − εd�1)

}
, (C11)
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Q2 = eckzkd y

2π2vω2�1�(ord)�(ext)

{
v�(ord)[�(ext) − εc(ω)�1]

[
ω2

c2
εab(ω) − k2

z

]
− vk2

x

[
�(ord)�(ext) − εab(ω)�1

(
k2 − ω2

c2
εc(ω)

)]

− ωεab(ω)

εd

k(ext)
s y �(ord)(�(ext) − εd�1)

}
, (C12)

�1 = k2 − ω2

c2
εd, k2 = κ2 + ω2

v2
. (C13)

APPENDIX D: RADIATION FIELD OF THE OBLIQUE SURFACE WAVES

In order to derive the spatial and temporal dependence of the OSWs fields in an explicit form, we need to integrate
Eqs. (C1)–(C6) over kx , kz, and ω, taking into account the poles of the integrands. As a result, we obtain the following
expressions:

Esw
d x(�r,t) = −π

c

∫ 2π

0
dψ

∫ ∞

−∞
dω

ω(α1Q2 + α3Q1)

�(ω,ψ)
exp{i[ρκ0 cos(ψ − ϕ) + kd yy − ωt]}, (D1)

Esw
d y(�r,t) = π

c

∫ 2π

0
dψ

∫ ∞

−∞
dω

ω

kd y�(ω,ψ)
[(kxα3 + kzα2)Q1 + (kxα1 − kzα4)Q2)] exp{i[ρκ0 cos(ψ − ϕ) + kd yy − ωt]},

(D2)

Esw
d z(�r,t) = π

c

∫ 2π

0
dψ

∫ ∞

−∞
dω

ω(α4Q2 − α2Q1)

�(ω,ψ)
exp{i[ρκ0 cos(ψ − ϕ) + kd yy − ωt]}, (D3)

H sw
d x(�r,t) = π

∫ 2π

0
dψ

∫ ∞

−∞
dω

(α1Q2 + α3Q1)

α1kd y�(ω,ψ)

[
α1kxkz − α4

(
k2
z + k2

d y

)]
exp{i[ρκ0 cos(ψ − ϕ) + kd yy − ωt]}, (D4)

H sw
d y(�r,t) = π

∫ 2π

0
dψ

∫ ∞

−∞
dω

(α1Q2 + α3Q1)

�(ω,ψ)

(
kz + kx

α4

α1

)
exp{i[ρκ0 cos(ψ − ϕ) + kd yy − ωt]}, (D5)

Hsw
d z (�r,t) = −π

∫ 2π

0
dψ

∫ ∞

−∞
dω

(α1Q2 + α3Q1)

α1kd y�(ω,ψ)

[
α1

(
k2
x + k2

d y

) − α4kxkz

]
exp{i[ρκ0 cos(ψ − ϕ) + kd yy − ωt]}, (D6)

�(ω,ψ) = kd y − k(ord)
s y

k
(ord)
sy

[
κ2 − 2k(ord)2

s y

k
(ord)
s y

[εab(ω) − εd ] cos2 ψ + εab(ω)

(
1

kd y

− Q3

k
(ext)
sy

) (
kd yk

(ord)
sy − κ2 sin2 ψ

)

+ εab

(
kd y − k(ext)

s y

) (
k(ord)
s y

kd y

+ kd y

k
(ord)
s y

+ 2 sin2 ψ

)]
, (D7)

where kx = κ0(ω,ψ) sin ψ , kz = κ0(ω,ψ) cos ψ , κ0(ω,ψ) is the solution of the dispersion relation �OSW = 0, ψ is the angle
between the wave vector �κ and the crystallographic c axis, and Q3 = (εc/εab) cos2 ψ + sin2 ψ . Recall that ϕ is the azimuth angle
between the radius vector �ρ and the crystallographic c axis (see Fig. 1).
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