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Massless collective excitations in frustrated multiband superconductors
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We study collective excitations in three- and four-band superconductors with interband frustration, which
causes neither 0 nor π interband phases in the superconducting state. Using a low-energy spin Hamiltonian
originating from a multiband tight-binding model, we find that mass reduction of a Leggett mode occurs in
a wide parameter region of this four-band system. As a limiting case, we have a massless Leggett mode.
This massless mode is related to the fact that the mean-field energy does not depend on a relative phase of
superconducting order parameters. In other words, we find a link of the massless mode with a degeneracy
between a time-reversal-symmetry-breaking state (neither 0 nor π phases) and a time-reversal-symmetric state
(either 0 or π phases). Therefore, the mass of collective modes characterizes well the time-reversal symmetry in
frustrated multiband superconductors.
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I. INTRODUCTION

Frustration leads to intriguing phenomena in different phys-
ical systems [1,2]. Multiband superconductors/superfluids,
such as iron-based materials [3,4] and multicomponent ultra-
cold atomic gases [5–7], can be frustrated many-body systems.
Frustration in these systems originates from competitive
interaction between different bands/components, not different
spatial sites. This curious interband frustration allows a time-
reversal-symmetry breaking (TRSB) superconducting state
[8–10].

Collective excitations characterize well an ordered state
in many-body quantum systems. The Leggett mode [11–17]
is a characteristic collective excitation in multiband super-
conductivity, as well as the Nambu-Goldstone (NG) mode
associated with U(1)-symmetry breaking, and has been studied
in multiband systems such as magnesium diboride [18],
iron-based materials [19], and atomic gases on a honeycomb
optical lattice [20,21]. The mass of the Leggett mode strongly
depends on interband couplings [12]. A recent striking result
[14] is that the mass in a three-band system vanishes at the
boundary between a time-reversal symmetric (TRS) state and
a TRSB state, changing the strength of the interband coupling.

In this paper, we study the connection between interband
frustration and the mass of collective excitations. To study
properties depending on the number of bands, we focus on two
cases, as seen in Fig. 1. First, we examine a three-band system
as a minimal model for showing the interband frustration.
Second, we study a four-band system as an example which
shows a feature different from the three-band system. Our
approach is to make a map from a multiband tight-binding
model to an effective frustrated spin Hamiltonian. An analogy
with a classical spin system is useful for examining multiband
superconductors [10].

A mean-field theory of the effective spin Hamiltonian
allows us to calculate the superconducting-phase configura-
tions and the collective excitations. Varying the strength of
the interband couplings, we obtain a phase diagram of the
superconducting state. The massless Leggett mode is found
at the phase boundaries between the TRSB and TRS states.

This result is consistent with the result by Lin and Hu [14].
The main result in this paper is that in the four-band system a
massless Leggett mode occurs in a parameter region other
than the TRSB-TRS phase boundaries. In this region, the
mean-field energy for a TRSB state is equal to the one for
a TRS state. Therefore, this massless behavior is related to the
degenerate superconducting states. Moreover, we characterize
this massless mode, from the viewpoint of interband symmetry.
Thus, we claim that the mass of collective excitations gives an
insight into spontaneous-symmetry breaking in the presence
of interband frustration.

This paper is organized as follows. The effective spin
Hamiltonian is derived from a multiband tight-binding model
in Sec. II. The formulas for calculating the superconducting
order parameter and the collective excitations are derived, with
mean-field approximation. In Sec. III, we solve the resultant
formulas in a spatially homogeneous case. We show that the
massless behaviors of the Leggett mode are associated with
energy degeneracy between the TRSB state and the TRS state.
Furthermore, we discuss an effect of quantum fluctuations on
the massless modes in Sec. IV. Section V is devoted to the
summary.

II. EFFECTIVE HAMILTONIAN WITH
ANTIFERROMAGNETIC XY INTERACTION

An effective Hamiltonian is derived from a multiband
tight-binding model, via the second order perturbation. This
effective model explicitly shows the presence of interband
frustration, in terms of antiferromagnetic XY interaction.
Using the mean-field approximation, we show the formulas
for calculating the superconducting order parameters and the
collective excitations in a spatially homogeneous case. We
also define a witness for the TRSB state, scalar chiral order
parameter. In the subsequent section, we will calculate these
equations numerically.

The Hamiltonian is

H =
∑

α

∑

σ=↑,↓
hα,σ +

∑

α,α′
vα,α′ , (1)
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FIG. 1. (Color online) Schematic diagrams of interband config-
urations in (a) three- and (b) four-band systems. Each large arrow
indicates the orientation of a pseudospin formed by a fermion-pair
particle on a band. Since interband couplings Wαα′ are repulsive, an
antiferromagnetic interaction occurs between the pseudospins. See
Eq. (4).

with

hα,σ = −
∑

<i, j>

tαc
†
α,σ,icα,σ, j −

∑

i

μc
†
α,σ,icα,σ,i , (2)

vα,α′ =
∑

i

Wαα′c
†
α,↑,ic

†
α,↓,icα′,↓,icα′,↑,i . (3)

The spatial site is i = (ix,iy,iz). The electron creation (an-
nihilation) operator is c

†
α,σ,i (cα,σ,i ) for the αth band on i .

The hopping matrix element and the chemical potential are,
respectively, tα and μ. The intraband coupling Wαα is negative
(attractive interaction), while the interband coupling Wαα′

(α �= α′) is positive (repulsive interaction).
Our approach for deriving an effective model from Eq. (1)

is the second-order Brillioun-Wigner perturbation. Since
strong intraband coupling produces condensates, our choice
of a free Hamiltonian is H0 = ∑

α vα,α . The attractive-
repulsive transformation [22] makes Eq. (1) a half-filled
system. This transformation is defined by cα,↑,i = c̄α,↑,i

and cα,↓,i = exp(−i q · xi ) c̄
†
α,↓,i , with a reciprocal vector q

satisfying exp[i q · (xi+1l
− xi )] = −1, for l = x,y,z, where

xi = ∑
l ilal and 1l = al/|al|. The lattice vector along the

l axis is al . The ground-state subspace of H0 is Hg =
⊗α,i {c̄†α,↑,i |0̄〉, c̄†α,↓,i |0̄〉}, and the excited-state subspace is

He = ⊗α,i {|0̄〉, c̄†α,↓,i c̄
†
α,↑,i |0̄〉}. The ket vector |0̄〉 is defined

by c̄α,σ,i |0̄〉 = 0. The effective Hamiltonian is Heff = PV P −
(PV Q)H−1

0 (QV P ), with V = H − H0. The projector onto
Hg (He) is P (Q).

Let us write Heff in terms of the pseudospin 1/2 op-
erators defined by S̄

(+)
α,i = c̄

†
α,↑,i c̄α,↓,i , S̄

(−)
α,i = [S̄(+)

α,i ]†, and

S̄
(z)
α,i = (c̄†α,↑,i c̄α,↑,i − c̄

†
α,↓,i c̄α,↓,i )/2. These operators represent

a fermion-pair particle. The second perturbation term leads
to the Heisenberg Hamiltonian with exchange interaction
Jα = 2t2

α/|Wαα|. The contribution from Wαα′ (α �= α′) appears
as the first perturbation term since Pvα,α′Q = 0 for α �= α′.
Thus,

Heff =
∑

α

∑

<i, j>

Jα

[
S̄

(z)
α,i S̄

(z)
α, j + S̄

(+)
α,i S̄

(−)
α, j

]

+
∑

α �=α′

∑

i

Wαα′ S̄
(+)
α,i S̄

(−)
α′,i −

∑

α,i

2μ̄αS̄
(z)
α,i , (4)

with μ̄α = μ + |Wαα|/2. The interband interaction is regarded
as an antiferromagnetic XY interaction.

We examine Eq. (4), using the mean-field approach with
spatial uniformity. Let us rewrite the pseudospin-1/2 op-
erators, in terms of bα,i , such that S̄

(+)
α,i = exp(−iq · xi )bα,i

and S̄
(z)
α,i = (1/2) − b

†
α,ibα,i . We find that [bα,i ,b

†
α′,i ′] = (1 −

b
†
α,ibα,i )δi i ′δαα′ and b2

α,i = 0. In the dilute limit 〈b†α,ibα,i 〉 	 1,
bα,i can be regarded as a standard bosonic operator. Using
〈bα,i 〉 = �α,i , we obtain the mean-field energy Ec as a function
of �α,i . For the uniform order parameters (�α,i = �α), �α is
determined by (∂Ec/∂�∗

α) = 0, namely,

− 2JαD(1 − 2|�α|2)�α +
∑

α′ �=α

Wαα′�α′ − να�α = 0, (5)

where να = 2DJα − 2μ̄α and D is the dimension of the
system. The collective excitations for momentum k are
calculated, combining the resultant gaps with the Bogolubov
de-Gennes equation

TkY k = ωkY k, (6)

with Tk = τz ⊗ L + τx ⊗ iImM + τy ⊗ iReM. Y k is a 2N -
complex vector, where N is the number of bands. The 2 × 2
Pauli matrices (τx,τy,τz) represent the so-called particle-hole
symmetry of the Bogoliubov-de Gennes equation. The N × N

matrices L and M are defined as

Lαα′ = −2δα,α′
∑

l

[εα,kl
− 2(εα,kl

− εα,0)|�α|2]

− δα,α′να + (1 − δα,α′ )Wαα′ , (7)

Mαα′ = δα,α′
∑

l

4εα,kl
�2

α. (8)

The coefficient εα,kl
is the Fourier-transformed hopping matrix

element εα,kl
= Jα cos(klal), with lattice constant al(=|al|).

The superconducting states are classified by the scalar chiral
order parameter [23,24]

χ =
∑

α1<α2<α3

|〈S̄α1 · (S̄α2 × S̄α3 )〉|. (9)

Under the mean-field approximation and the dilute limit, the
components of the pseudospin 1/2 vector S̄α are S̄α � 〈S̄α〉 =
t(�R

α ,�I
α,1/2 − |�α|2) � t(�R

α ,�I
α,1/2), where �R

α and �I
α

are, respectively, the real and the imaginary parts of �α .
The interband phases (e.g., �R

1 �I
2 − �I

1�
R
2 ) are important for

determining the TRSB state. We sum up such quantities over
all the band indices in Eq. (9). We note that χ = 0 when
�I

α = 0 for all α.

III. MASS REDUCTION OF A LEGGETT MODE
BY INTERBAND FRUSTRATION

We calculate the scalar chiral order parameter on a 2D
square lattice (D = 2 and al = a), numerically solving Eq. (5),
according to the imaginary-time evolution method [25,26]. We
also evaluate the collective modes by direct diagonalization of
Eq. (6). Here, we consider in a highly symmetric case tα = t

for simplicity and focus on a strong intraband interaction case,
Wαα/t = −6, to ensure the validity of Eq. (4). Throughout
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FIG. 2. (Color online) Density profiles of (a) a scalar chiral order
parameter and (b) Leggett-mode mass, in a three-band superconduc-
tor, varying interband couplings W13/W12 and W23/W12. In (a), the
arrows show typical superconducting-phase configurations.

this paper, we set Jα/t = J/t = 1/3. The condensate particle
density is also fixed as nc = ∑

α |�α|2 = 0.1. The number
of the collective modes depends on N . We will denote the
NG mode as ω1,k. The others correspond to the Leggett
modes.

First, we show the results for the three-band case.
Figure 2(a) shows the presence of different parameter regions.
In region I the TRS states occur (χ = 0), whereas in region II
the TRSB states occur (χ �= 0). In region I a sign change
(antiparallel arrangement of pseudospins) occurs between
the gaps. In region II a typical phase configuration is that
each relative superconducting phase is 2π/3. In other words,
each pseudospin directs from the center to the vertex of
an equilateral triangle. Figure 2(b) shows that the mass of
the Leggett mode (ω2,k=0) vanishes at the TRSB-TRS phase
boundaries. These results are consistent with the results of a
weak-coupling model [14]. The phase transition between the
TRS and the TRSB state is the second-order one, as shown
by Lin and Hu [14]. The fluctuation developed at the critical
point may lead to this massless behavior.

Now, let us show the four-band case. We change W13 and
W24, with fixed W12,W23,W34, and W14. From the viewpoint of
Fig. 1, the length of four sides in a tetrahedron is fixed. First,
we show similar features to the three-band case. Figure 3(a1)
shows the results for W12 = W34 = 0.23 and W23 = W14 =
0.2. The TRSB state appears in region II, whereas the TRS
states occur in the other regions. The phase configuration in
region II is similar to the three-band case, although two of the
pseudospins are aligned (0-phase shift). We also find that the
mass of the Leggett mode vanishes at the TRSB-TRS phase
boundaries, as seen in Fig. 3(b1). Changing the condition for
the fixed interband couplings, different features appear. Let us
consider the case of W12 = W23 = 0.23 and W34 = W14 = 0.2.
Figure 3(a2) shows the presence of a curious area (region III),
where the time-reversal symmetry is fully broken. In other
words, every relative phase is neither 0 nor π . Figure 3(b2)
shows that the mass of the Leggett mode is close to zero
inside this region. We can also find that ω2,k=0 and ω3,k=0

become zero near the phase boundaries between II and III
(no figure shown for ω3,k). A more exotic feature appears
in the identical interband interaction W12 = W23 = W34 =
W14 = 0.2. Figure 3(a3) shows that χ randomly changes in
region III [26]. ω2,k is massless in this wide area, not restricted
near the phase boundaries.

FIG. 3. (Color online) Density profiles of (a1,a2,a3) a scalar
chiral order parameter and (b1,b2,b3) Leggett-mode mass, in a
four-band superconductor, varying interband couplings W13 and
W24. The other interband couplings are fixed as W12 = W34 = 0.23,
W23 = W14 = 0.2 in (a1,b1), W12 = W23 = 0.23, W34 = W14 = 0.2
in (a2,b2), and W12 = W23 = W34 = W14 = 0.2 in (a3,b3). The
arrows in (a1,a2) show typical superconducting-phase configurations
like Fig. 2.

We examine region III in Fig. 3(a3) in detail. Since W13 >

W12, a π shift may occur between �1 and �3. Similarly, the
condition W24 > W12 means �4 = e±iπ�2. Moreover, since
W12 = W34, the relative phase between �1 and �2 should be
equal to the one between �3 and �4. Therefore, we construct
a solution of Eq. (5) in region III, with ansatz

� = (|�+|,eiφ|�−|,eiπ |�+|,ei(φ+π)|�−|). (10)

The global phase is fixed so that �1 is real. Substitut-
ing this expression into Eq. (5), we find that |�±| =
(1/2)

√
nc ± (W13 − W24)/2JD, but the relative phase is not

fixed. This result indicates that the mean-field energy for
Eq. (10) is independent of the continuous parameter φ, and
a degeneracy exists between the TRSB and the TRS states.
Thus, the massless behavior in region III is related to a
degeneracy. The occurrence of such an exotic massless mode
and a degeneracy between ground states were pointed out by
several authors [27–30].

A symmetry analysis of Eq. (6) leads to insights into
the massless Leggett mode. The identical interband cou-
plings (W12 = W23 = W34 = W14) and the order parameters
[Eq. (10)] indicate the presence of a symmetric property
in Eq. (6). We find that L = 1 ⊗ L0 + ηx ⊗ Lx and M =
1 ⊗ M0, with the x component of the 2 × 2 Pauli matrices,
ηx and complex 2 × 2 matrices L0, Lx , and M0. Hence, ηx

commutes with Tk. We mention that ηx corresponds to swap
between the upper 2-band and the lower 2-band blocks. After
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FIG. 4. (Color online) (a) Dispersion relations for collective excitations, with relative phases φ = 0,π/4,π/2. ω1,k and ω2,k are independent
of φ. (b) Zero-point energy of the collective excitations, varying φ. In both figures, interband couplings are set as W13/W12 = 1.2, W24/W12 =
1.3, and W12 = W23 = W34 = W14 = 0.2.

a permutation, we rewrite Tk as

Tk = 1 + ηx

2
⊗ T+,k + 1 − ηx

2
⊗ T−,k, (11)

with T±,k = trη[Tk(1 ± ηx)]/2. The symbol trη means the trace
over η basis. The characteristic polynomial of T−,k is written
by f (z) = ∑4

n=0 cn(k)z4−n, with c0 = 1. Since we can find
that the coefficients for n = 1, 2, 3 are zero when k = 0, Tk

has two zero modes, one of which is the NG mode, while the
other of which is the massless Leggett mode. Thus, the present
massless Leggett mode belongs to the same subspace as the
NG mode, and is regarded as a quasi-NG mode.

IV. DISCUSSION

We refer to an effect of quantum fluctuations on the
ground-state degeneracy. The simplest approach to take such
corrections is to add the zero-point energy of the collective
excitations to the mean-field energy. The correction can be
written as ωzero = ∑

α

∑
k ωα,k/I , with the total number I of

the spatial sites. Let us examine this correction in region III
of Fig. 3(a3). Figure 4(a) shows that ω3,k and ω4,k depend
on φ, whereas the others not so. Figure 4(b) shows ωzero

has minimum values at either 0 or π . In other words, the
massive collective modes in region III make a selection of a true
ground state. The TRS state is preferable in region III, owing
to ωzero.

The above consideration indicates that our quasi-NG mode
may obtain some mass originating from quantum fluctuations.
This point is also discussed in a different system, spinor Bose-
Einstein condensate [28]. Nevertheless, the mass of the Leggett
mode is a good indicator of interband frustration. Indeed, our
calculations show that the mass of the Leggett mode drastically
reduces (almost to zero) when there is strong competition
between the interband couplings, even though the ground-
state degeneracy is absent. See region III of Fig. 3(b2), for
example. In this region, only the TRSB state occurs; it means
that strong interband frustration appears. Thus, although the
Leggett mode does not become a complete massless mode

in the presence of quantum fluctuations, one may observe
a significant mass reducing behavior of a Leggett mode.
When the long-range Coulomb interaction exists, the situation
becomes much clearer. Typically, the NG mode obtains the
mass via the Anderson-Higgs mechanism; the massive plasma
excitations may appear. However, since the Leggett modes are
related to neutral superfluid-phase fluctuations [12], one may
observe low-energy excitations related to the Leggett mode
with tiny mass, whenever strong interband frustration exists.
Therefore, we expect that the mass reducing behavior of the
Leggett mode predicted by the present mean-field analysis is
robust against quantum fluctuations and the gauge field. A
more systematic study about different fluctuations will be an
interesting future work.

V. SUMMARY

We have examined the collective excitations in three-
and four-band superconductors. Using an effective spin
Hamiltonian, we showed that interband frustration induces
two kinds of massless Leggett modes, and clarified their
physical origin. The mass of a collective mode characterizes
well the time-reversal symmetry of frustrated multiband
superconductors.
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