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A mechanism for electronic phase separation in iron pnictides is proposed. It is based on the competition
between commensurate and incommensurate spin-density-wave phases in a system with an imperfect doping-
dependent nesting of a multisheeted Fermi surface. We model the Fermi surface by two elliptical electron pockets
and three circular hole pockets. The interaction between a charge carrier in a hole band and a carrier in an
electron band leads to the formation of spin-density-wave order. The commensurate spin density wave in the
parent compound transforms to the incommensurate phase when doping is introduced. We show that, for certain
parameter values, the uniform state is unstable with respect to phase separation. The resulting inhomogeneous state
consists of regions of commensurate and incommensurate spin-density-wave phases. Our results are in qualitative
agreement with recent observations of incommensurate spin density waves and electronic inhomogeneity in iron
pnictides.
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I. INTRODUCTION

Superconducting iron-based pnictides1 attract considerable
interest not only due to their high critical temperatures, but
also because of the rich physics of their electron subsys-
tem. The phase diagram in iron pnictides contains areas
of superconductivity, spin-density-wave (SDW) order,2 both
commensurate3 and incommensurate,4 and even a phase with
electronic nematicity.5

Moreover, these materials often demonstrate spin and
charge inhomogeneity, exhibiting characteristic features of
systems with electronic phase separation.2,6–10 The origin
of this phase separation is important for understanding the
mechanisms driving numerous phase transitions in the phase
diagram of iron pnictides.

The phase separation is quite ubiquitous, manifesting itself
in different situations where the itinerancy of charge carriers
competes with their tendency to localization. The latter is
often related to some specific type of magnetic ordering, e.g.,
antiferromagnetic in manganites or low-spin state in cobaltites.
The interplay between the localization-induced lowering of
the potential energy and metallicity, providing a gain in the
kinetic energy, favors an inhomogeneous ground state, such
as nanosize ferromagnetic droplets on an antiferromagnetic
insulating background. This type of phase separation has a
long history (beginning from the seminal work of Refs. 11
and 12) in the fields of magnetic semiconductors and doped
manganites. Electron correlations here also play an important
role enhancing the tendency to localization.13 Moreover, it can
be shown that in strongly correlated electron systems with
different types of charge carriers, phase separation can appear
even in the absence of any specific order parameter.14

In this paper, we discuss a very different mechanism of
phase separation, which is not directly related to electron
correlations and could be more relevant in the case of iron
pnictides. It is based on the imperfect nesting of different
pockets of the Fermi surface. Indeed, it has been known that
the SDW ground state in a model with two spherical Fermi

surfaces of unequal radius15 can be unstable with respect
to electronic phase separation.16–18 Variations of the latter
model have been used to describe SDW in chromium15 and
graphene bilayer with AA stacking.19 It is also analogous (but
not identical) to the commonly used model of iron pnictides
where one deals, roughly speaking, with elliptical rather than
spherical electron and hole sheets of the Fermi surface. One
can ask if a similar mechanism could apply to pnictides. In
this paper, we demonstrate that the answer to this question is
positive, and thus the charge inhomogeneity can result from a
purely electronic mechanism. This finding is important for the
interpretation of experimental data on charge inhomogeneity
and for understanding the nature of the coexistence of the order
parameters in iron pnictides.

For definiteness, we will focus here on iron pnictides,
although iron chalcogenides also exhibit phase separation.20,21

However, the physics related to the Fermi surface nesting may
not be directly applicable to iron chalcogenides, especially to
those containing alkaline atoms. Indeed, some chalcogenides
do not have hole pockets, but nevertheless exhibit antiferro-
magnetism with rather high Néel temperatures.22–24 Moreover,
the electron correlation effects in chalcogenides seem to be
more pronounced than in pnictides.2 Therefore, the case of
iron chalcogenides requires a separate consideration.

This paper is organized as follows. In Sec. II, we discuss
the choice of the model Hamiltonian. Section III deals with the
study of homogeneous SDW order in the mean-field approxi-
mation. The instability of the homogeneous state is proved in
Sec. IV, where the phase diagram is constructed as well. The
results are discussed in Sec. V. In Sec. VI, we summarize the
main conclusions of the paper, list the assumptions used, and
formulate possible tasks for future work.

II. MODEL

A. Kinetic energy

Unlike cuprates, which are believed to be in the strong
electron-electron interaction regime, iron pnictides may be
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FIG. 1. (Color online) Schematic illustration of the Fermi surface
of iron pnictides in the unfolded (a) and folded (b) Brillouin zone
(BZ). We have three hole pockets located near the center of the
folded BZ [shown by (blue) solid curves]. In the unfolded BZ, one of
the hole pockets moves to the corner of the BZ. For the unfolded BZ
(a), the electron pockets are elliptic [(red) dashed curves] and located
near the (0,π/a) and (π/a,0) points, while in the folded BZ, they are
represented by overlapping ellipses located at the corners. Arrows
show the possible nesting vectors between hole and electron pockets,
which give rise to the SDW order. (c) Illustration of the possible
nesting at different doping levels.

described by a weak-interaction model (see, e.g., the discus-
sion in Sec. III A of Ref. 25). In this approach, the shape of the
Fermi surface and the value of the Fermi velocity are the only
relevant single-electron band parameters. In the literature, the
Fermi surface of iron pnictides is typically described using two
related approaches, which we briefly describe in the following.
In Fig. 1(a), we plot the Fermi surface within the so-called
unfolded Brillouin zone,25–33 which corresponds to the square
lattice of iron atoms, with one Fe atom per unit cell and lattice
constant a. In this representation, two quasi-two-dimensional
nearly circular hole pockets are centered at the �(0,0) point,
another circular hole pocket is located near the �′ (π/a, π/a)
point, and two elliptical-shaped electron pockets are centered
at the M(0,π/a) and M(π/a,0) points [see Fig. 1(a)]. At the
same time, the actual unit cell of pnictides contains two Fe
atoms since in the crystal lattice the pnictogen atoms are
located in nonequivalent positions. The (folded) Brillouin
zone corresponding to this unit cell is obtained by folding
the Brillouin zone shown in Fig. 1(a) by dashed lines and
consequent rotation by 45◦. The Fermi surface in the folded
Brillouin zone is shown in Fig. 1(b). In this figure, all three
hole pockets are situated near the �(0,0) point, while electron
pockets represented by overlapping ellipses are located near
the M(±π/ā,π/ā) points, with ā = a

√
2. Formulating our

model, we will make several simplifications. First, we neglect
the effects associated with nonequivalent positions of the Fe
atoms. Consequently, the use of unfolded Brillouin zone is
sufficient. Second, we will neglect the three-dimensional (3D)
structure of the material and study only the 2D model.

Thus, the Hamiltonian of the model has the form

H = H0 + Hint, (1)

where the kinetic energy term H0 is given by

H0 =
∑
kλσ

εh
λka

†
kλσ akλσ +

∑
ksσ

εe
skb

†
ksσ bksσ . (2)

In this equation, a†
kλσ , akλσ (b†ksσ , bksσ ) are the creation and an-

nihilation operators for electrons in the holelike (electronlike)
bands λ = 1,2,3 (s = 1,2) with spectra εh

λk (εe
sk).

To simplify our formalism, we assume that near the
Fermi level the bands have quadratic dispersions. For circular
holelike bands, we have (h̄ = 1)

εh
1k = −vh

F k2

2kF

+ vh
F kF

2
− μ, (3)

εh
2k = −vh

2F k2

2kF

+ vh
2F kF

2
− �ε2 − μ, (4)

εh
3k+Q̄ = −vh

3F k2

2kF

+ vh
3 kF

2
− �ε3 − μ, (5)

where kF is the Fermi momentum, μ is the chemical potential,
vh

F and vh
2,3F are the Fermi velocities for the hole bands, and

Q̄ = (π/a,π/a). The energy shifts �ε2,3 in Eqs. (4) and (5)
determine the difference in radii of the hole pockets: for �εi >

0, the radius of the hole pocket i = 2,3 is smaller than that of
the hole pocket 1.

As mentioned above, the electron components of the Fermi
surface are elliptic. For these, the dispersion near the Fermi
surface is given by the following relations:

εe
1k+Q0

= ε(kx,ky), εe
2k+Q′

0
= ε(ky,kx), (6)

where the function ε is equal to

ε(kx,ky) = ve
F k2

2kF

− ve
F kF

2
+ αve

F

kF

(
k2
y − k2

x

) − μ. (7)

The centers of the elliptic bands are Q0 = (π/a,0) and
Q′

0 = (0,π/a), and ve
F is the Fermi velocity for the electron

bands averaged over the Fermi surface. Note that in general
vh

F �= vh
2F �= vh

3F �= ve
F . The parameter α defines the ellipticity

of the electron pockets. For the Fermi surface structure
corresponding to Figs. 1(a) and 1(b), α is positive. In this
case, the major axes of the ellipses are directed toward the �

point. For α < 0, the ellipses are rotated by 90◦ around their
centers.

B. Interaction Hamiltonian

Due to the multisheeted structure of the Fermi surface,
the interaction Hamiltonian Hint, in general, must include
a number of terms describing interactions between charge
carriers in different bands. However, since we are interested in
the SDW order, most of these terms may be omitted for they
do not contribute to SDW phase transition.15 For this reason,
we ignore the electron-electron and hole-hole interactions.

It is known2 that magnetic order in pnictides is “stripy.”
That is, the value of local magnetic moment oscillates along
one of the crystal axes, remaining constant along the other
axis. In the general case, each of the hole and electron bands
are coupled to each other. However, to reproduce the striped
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magnetic structure, it is sufficient to couple one electron and
one hole band.26 For example, the SDW with oscillations along
the x direction occurs if we couple electrons in the hole band
1 and electron band 1, or electrons in the hole band 3 and
electron band 2 [see the solid and dotted arrows in Figs. 1(a)
and 1(b)]. In both cases, the nesting vectors will be nearly the
same and equal approximately (exactly, for the commensurate
SDW state) to Q0 = (π/a,0). Here, we assume that only one
hole band and one electron band take part in the formation
of SDW order. For definiteness, assume that these are the
hole band εh

1 and the electron band εe
1 (although our results

remain the same for any pair of hole and electron bands).
Consequently, only the interaction between εh

1 and εe
1 is crucial

for the stabilization of the ordered phase. All other interaction
terms will be discarded. As we will show in the following, even
this simplified model allows us to explain the experimental
data on the commensurate and incommensurate SDW order as
well as the phase separation. How our results change if we go
beyond this simplification will be discussed in Sec. V.

Keeping these considerations in mind, we split the model
Hamiltonian into two parts, magnetic Hm and nonmagnetic
(“reservoir”) Hr:

H = Hm + Hr, (8)

Hm =
∑
kσ

[
εh

1ka
†
k1σ ak1σ + εe

1kb
†
k1σ bk1σ

]

+ V1

N
∑

kk′Kσσ ′
a
†
k+K1σ ak1σ b

†
k′−K1σ ′bk′1σ ′ , (9)

Hr =
∑
kσ

[ ∑
λ=2,3

εh
λka

†
kλσ akλσ + εe

2kb
†
k2σ bk2σ

]
. (10)

Here, N is the number of Fe atoms in a layer, V1 > 0 is
the coupling constant characterizing the Coulomb interaction
between the bands εh

1k and εe
1k. In the following, we will refer

to these bands as magnetic bands. The bands εh
2k, εh

3k, and εe
2k

will be called nonmagnetic since, in our model, they do not
contribute to the magnetic order parameter.

Model (8) is a generalization of the Rice model, proposed
in Ref. 15 for the description of the incommensurate SDW
order in chromium. The Hamiltonian of Ref. 15 has two
bands, which participate in the magnetic transition, and a
“reservoir” (nonmagnetic bands corresponding to Hr, where
the subscript “r” stands for “reservoir”). Unlike Eq. (8), the
bands responsible for magnetic ordering in the Rice model
have a spherical Fermi surface; therefore, at certain filling, the
nesting is perfect.

III. INCOMMENSURATE SDW ORDER

A. Mean-field equations

We now consider Hamiltonian (8) in the mean-field approx-
imation. As we pointed out above, the Coulomb interaction in
iron pnictides is weak, therefore, we assume below that

V1/εF � 1, (11)

where the Fermi energy εF is defined as

εF = ve
F + vh

F

2
kF ≡ vF kF . (12)

The weak-coupling condition (11) guarantees the applicability
of the mean-field approximation.

We will study the stability of the following SDW order
parameter:

� = V1

N
∑

k

〈a†
k1↑bk+Q1↓〉 = V1

N
∑

k

〈a†
k−q1↑bk+Q01↓〉, (13)

where the nesting vector Q is equal to

Q = Q0 + q. (14)

When q = 0, our SDW is commensurate, whereas if q is
small, but nonzero, it is incommensurate. Other types of order
parameter will be discussed in Sec. V.

Note here that different parts of each pocket of the Fermi
surface have different orbital composition.31,34,35 The pairing
is more favorable between those parts of the Fermi surfaces
which have similar orbital character. Within our approach,
such feature can be accounted by introducing a momentum-
dependent coupling V1. Such a generalization would lead
to a pronounced wave-vector dependence of the SDW order
parameter, and could affect the transition to the SDW state and
the structure of the incommensurate SDW phase. However,
the reliable calculation of the momentum-dependent V1 is
a complicated task going beyond the scope of this study.
Furthermore, unless the variations of V1 are extremely strong,
they do not affect phase separation qualitatively. Thus, we
choose to work with a momentum-independent coupling
constant.

The magnetization corresponding to the SDW order pa-
rameter � lies in the xy plane. For the commensurate SDW
case, in real space the “stripy” order is observed. Namely,
the magnetization direction remains constant when one moves
along the direction normal to Q0. However, when one moves
parallel to Q0, the magnetization reverses its direction from
one iron atom to the next iron atom. For incommensurate
SDW, this “stripy” pattern slowly rotates in the xy plane: the
local rotation angle φ(R) at the point R is equal to (qR) [see
Figs. 2(c) and 2(d)].

In the mean-field approximation, the magnetic Hamiltonian
Eq. (9) takes the form

H MF
m =

∑
kσ

[
εh

1k−qc
†
kσ ckσ + εe

1k+Q0
d
†
kσ dkσ

−�(c†kσ dk−σ + d
†
kσ ck−σ ) + �2/V1

]
, (15)

where we introduce the new operators c
†
kσ = a

†
k−q1σ , d

†
kσ =

b
†
k+Q01σ , and � is assumed to be real. Hamiltonian (15) can be

easily diagonalized. The quasiparticle energies are

E
(1,2)
k = εe

1k+Q0
+ εh

1k−q

2
∓

√
�2 + 1

4

(
εe

1k+Q0
− εh

1k−q

)2
.

(16)

The grand potential �m (per one Fe atom) corresponding to
H MF

m is (kB = 1)

�m = −2T
∑

s

∫
BZ

v0 d2k
(2π )2

ln
[
1 + e−E

(s)
k /T

] + 2�2

V1
, (17)
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FIG. 2. (Color online) Dependence of the normalized order pa-
rameter �/�0 and wave vector |q| on the doping x, for r = κ = 1. (a)
Here, ᾱ = 0.1. The transition from commensurate to incommensurate
SDW state is of first order: both � and |q| abruptly change at x = x∗

1 .
The dashed curves show the functions �(x) and |q(x)| corresponding
to the metastable state. (b) Here, ᾱ = 0.6. The transition from
commensurate to incommensurate SDW state is now of second order.
Panels (c) and (d) show schematics of the incommensurate SDW
spin structure. If α > 0, then panel (c) corresponds to hole doping
(x < 0) and (d) to electron doping (x > 0). If α < 0, then panel (c)
corresponds to electron doping, while panel (d) corresponds to hole
doping.

where v0 is the volume of the unit cell, and the integration is
performed over the 2D Brillouin zone. The SDW gap � and
the nesting vector Q are found from the minimization of �m:

∂�m

∂�
= 0,

∂�m

∂q
= 0. (18)

It will be shown in the following that in the weak-coupling
limit Eq. (11), the SDW order can exist only if the deviation
from the perfect nesting is small, that is,

|α| � 1. (19)

In addition, the gap � is small compared to εF , and the
deviation q of the nesting vector Q from the commensurate
value Q0 is also small:

|q| = |Q − Q0| ∼ �/vF � kF . (20)

Restricting ourselves to the limit of zero temperature, we
can write the first of Eqs. (18) in the following form:

1 = V1

2

∫
v0 d2k
(2π )2

1 − 
(
E

(1)
k

) − 
( − E

(2)
k

)
√

�2 + 1
4

(
εe

1k+Q0
− εh

1k−q

)2
, (21)

where (x) is the step function.
When the lower band E

(1)
k is filled, while the upper band E

(2)
k

is empty, the gap attains its maximum value �0. In this case,
(E(1)

k ) = (−E
(2)
k ) = 0 for any k, and Eq. (21) becomes

1 = V1

2

∫
dE

ρ̄(E)√
�2

0 + E2
, (22)

where the generalized density of states is defined as

ρ̄(E) =
∫

v0 d2k
(2π )2

δ

(
E − εe

1k+Q0
− εh

1k

2

)
. (23)

Evaluating ρ̄(E), we set q = 0, since taking into account
values of the order of |q| ∼ �/vF gives only second-order
corrections in Eq. (22).

If |E| � εF , the function ρ̄(E) can be calculated explicitly
using Eqs. (3) and (6) for the band spectra εe

1k+Q0
and εh

1k. As
a result, near the Fermi surface we obtain

ρ̄(E) ≈ ρ̄(0) = v0k
2
F

2πεF

, |E| � εF . (24)

When the energy E is of the order of the bandwidth, ρ̄(E)
vanishes. This makes the integral in Eq. (22) convergent, and
one can derive the usual BCS-type expression for the gap

�0 ≈ εF exp

(
− 2πεF

v0k
2
F V1

)
. (25)

If the sample is doped, then E
(1)
k > 0 or E

(2)
k < 0, for some

range of k, and the equation for the band gap becomes

ln
�0

�
=

∫
εF d2k

4πk2
F


(
E

(1)
k

) + 
( − E

(2)
k

)
√

�2 + 1
4

(
εe

1k+Q0
− εh

1k−q

)2
. (26)

Substituting Eqs. (3) and (6) into Eq. (26), and taking into
account Eqs. (19) and (20), after straightforward algebra we
derive the equation for the band gap in the form

ln
1

δ
=

∫ 2π

0

dϕ

2π
Re

{
cosh−1

[
ν0(p,ϕ) − ν

δ

]}
, (27)

where

ν0(p,ϕ) = px cos ϕ + py sin ϕ − ᾱ

2
cos 2ϕ, (28)

ᾱ = α κ εF

�0
, (29)

and we introduce the following dimensionless quantities:

κ =
2
√

ve
F vh

F

ve
F + vh

F

, δ = �

�0
, ν = μ

κ�0
, p = κvF q

2�0
.

(30)
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Transforming similarly the second of Eqs. (18), we obtain
the equation for the nesting vector Q = Q0 + 2�0p/vF κ:(

px

py

)
=

∫ 2π

0

dϕ

π

(
cos ϕ

sin ϕ

)
sgn [ν0(p,ϕ) − ν]

× Re
√

[ν0(p,ϕ) − ν]2 − δ2. (31)

Equations (27) and (31) determine the SDW band gap � and
the nesting vector Q as functions of μ. However, experiments
are performed at fixed doping, not chemical potential. Thus,
we have to relate the electron density and μ. The total number
of electrons per iron atom n(μ) is the sum of the number of
electrons in the nonmagnetic and the magnetic bands n(μ) =
nr(μ) + nm(μ), where

nr(μ) = 2

N
∑

k

[ ∑
λ=2,3


(−εh

λk

) + 
(−εe

2k

)]
,

(32)

nm(μ) = −∂�m

∂μ
.

The doping is defined by

x(μ) = n(μ) − n(0). (33)

Performing calculations similar to those described above, we
obtain for the doping level

x

x0
= rν −

∫ 2π

0

dϕ

2π
sgn[ν0(p,ϕ) − ν]

× Re
√

[ν0(p,ϕ) − ν]2 − δ2, (34)

where

x0 = 2v0k
2
F

πκ

�0

εF

, r =
(
vh

2F

)−1 + (
vh

3F

)−1 + (
ve

F

)−1(
vh

F

)−1 + (
ve

F

)−1 . (35)

The first (second) term in Eq. (34) is the nonmagnetic
(magnetic) contribution xr (xm) to the total doping x. The
parameters x0 and r in Eq. (35) have clear physical meanings:
x0 defines the characteristic scale of doping where SDW order
exists, while r is the ratio of the densities of states of electrons
in the nonmagnetic and magnetic bands. Equations (27), (31),
and (34) form a closed system of equations for the self-
consistent determination of �(x), Q(x), and μ(x).

B. Results: Homogeneous state

Our numerical analysis reveals that Eq. (27) has no solutions
if |ᾱ| > 2.0. Thus, the equality |ᾱ| = 2.0 determines the
critical value of the ellipticity parameter αc: for a given
coupling constant V1, the SDW ordering occurs only if

|α| < αc = 2�0

κεF

. (36)

Conversely, this condition (36) may be reformulated as
a requirement on the interaction strength: for given band
parameters (α, κ, etc.) the SDW is stable only if

V1 > Vc = 2πεF

v0k
2
F ln

(
2

|α|κ
) . (37)

It is seen from Eqs. (30) and (35) that the parameter κ only
renormalizes the dimensionless quantities ν, p, and x0. Thus,
at fixed ᾱ and r , it is enough to know the functions �(x),
q(x), and μ(x) for κ = 1. For κ �= 1 these functions are found
by simple rescaling as �(xκ), q(xκ)/κ, and κμ(xκ). For
this reason, below we study mumerically only the κ = 1 case.
Note that, typically, for a real material all Fermi velocities are
of the same order, thus κ ∼ 1.

The computed functions �(x) and q(x) are shown in
Figs. 2(a) and 2(b) for r = κ = 1 and two different values
of ᾱ. At low doping, |x| < x∗

1 , where the critical doping x∗
1

depends on model parameters, all the extra charge goes to
the nonmagnetic bands. As a result, the order parameter is
independent of x, �(x) = �0, q(x) = 0, and the chemical
potential increases linearly with x:

μ(x) = �0xκ

rx0
. (38)

In such a regime, the system exhibits a commensurate SDW
order.

When |x| = x∗
1 , the chemical potential touches the bottom

(top) of the upper (lower) magnetic band. Upon further doping,
electrons (holes) appear in the band E

(2)
k (E(1)

k ). The SDW order
becomes incommensurate,36 q �= 0. The order of the transition
into the incommensurate state depends on the parameters ᾱ and
r . If r < r1

∼= 0.38, the transition is of second order for any
ᾱ, while for larger r it becomes of first order if |ᾱ| < ᾱ1(r).
In the case of first-order transitions, both � and |q| abruptly
change at x = x∗

1 [see Fig. 2(a)].
Electron doping (x > 0) is in many respects similar to hole

doping (x < 0). Indeed, the functions �(x), μ(x), and |q(x)|
obey particle-hole symmetry relations

�(−x) = �(x), (39)

μ(−x) = −μ(x), (40)

|q(−x)| = |q(x)|. (41)

In addition, these functions are independent of the sign of α.
However, the direction of the vector q(x) depends on the sign
of α and on the type of doping. When α > 0, the vector q(x) is
parallel to the x axis for electron doping and to the y axis for
hole doping. The direction of q(x) is reversed if α < 0. Thus,
the nesting vector Q = (Qx,Qy) is given by the following
formulas:

Qx = π

a
+ 2�0p(|x|)

κvF

, Qy = 0, if αx > 0 (42)

Qx = π

a
, Qy = 2�0p(|x|)

κvF

, if αx < 0. (43)

What does the incommensurate SDW described by these
equations look like in real space? Let us introduce the
integer-valued vector n = (n,m). Then, the position of a given
iron atom is equal to Rn = an. For the order parameter �

[Eq. (13)], the SDW magnetization vector lies in the xy plane:
Sz

n = 0. The in-plane components can then be expressed as

Sn = S0(cos(aQ · n), sin(aQ · n)), (44)

where S0 = �/V1. Thus, we obtain

Sn = S0

{
(−1)n(cos φn, sin φn), αx > 0

(−1)n(cos φm, sin φm), αx < 0
(45)
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where φ = a|q|. These spin configurations are schematically
shown in Figs. 2(c) and 2(d) for hole and electron doping,
respectively. For positive (negative) α, panel (c) corresponds
to x < 0 (x > 0), and panel (d) corresponds to x > 0 (x < 0).

IV. PHASE SEPARATION

In the previous section, we assumed that the ground state of
the model is homogeneous. Here, we demonstrate that there is
a part of the phase diagram where homogeneous states are not
stable, and the true ground state is phase separated. To detect
this instability, the chemical potential must be calculated.

The computed dependence of the chemical potential μ on
doping x is shown in Fig. 3 for three different values of ᾱ and

FIG. 3. (Color online) Chemical potential μ(x) calculated at
ᾱ = 0.1 (a), ᾱ = 0.5 (b), and ᾱ = 1.2 (c). Here, r = κ = 1. (a),
(b) The homogeneous state is unstable toward phase separation if
x1 < x < x2. The dashed (red) curve corresponds to the μ0 found
using the Maxwell construction. The shaded areas above and below
μ0 are equal to each other. (c) μ(x) monotonically increases with
x, no phase separation appears. The homogeneous commensurate
(q = 0) and incommensurate (q �= 0) SDW, paramagnetic (PM), and
inhomogeneous commensurate-incommensurate SDW (PS) states are
separated by vertical dotted lines.

r = κ = 1 for electron doping (x > 0). The dependence μ(x)
for hole doping can be easily determined using particle-hole
symmetry, as discussed in the previous section.

The function μ(x) shown in Fig. 3 demonstrates sev-
eral peculiar features in the vicinity of the commensurate-
incommensurate phase transition point x∗

1 . Specifically, for
low ᾱ, the function μ(x) is nonmonotonic and multivalued
near x ≈ x∗

1 [see Fig. 3(a)]. At higher ᾱ, the multivalued-
ness disappears; however, the nonmonotonicity remains [see
Fig. 3(b)]. This feature vanishes at even higher values of ᾱ

[as in Fig. 3(c)].
We now observe that in Figs. 3(a) and 3(b) there are finite

ranges of doping where the chemical potential decreases as the
doping increases. This means that the compressibility of the
electronic system is negative and the homogeneous state is un-
stable with respect to separation into two phases.37 The phase
transitions between homogeneous commensurate and incom-
mensurate SDW phases, which we described in Sec. III B,
will be masked, at least partially, by the phase separation.

In the separated state there exist two phases, phase 1 and
phase 2, with electron density x1(< x∗

1 ) and x2(> x∗
1 ), and with

the volume fractions p1 and p2 satisfying the conditions p1 +
p2 = 1 and x1p1 + x2p2 = x. As one can see from Figs. 3(a)
and 3(b), the phase 1 is the commensurate and the phase 2
is the incommensurate SDW state. The concentrations x1 and
x2 are found from the equations37 μ(x1) = μ(x2) ≡ μ0 and
�1 = �2, where �1,2 are grand potentials in the phases 1
and 2. The latter condition means the equality of two shaded
areas shown in Figs. 3(a) and 3(b) (the so-called Maxwell
construction).

The range of doping x, where the phase separation exists, is
largest when α = 0. In this case, our model is identical to the
two-dimensional Rice model15 for which the presence of the
phase separation was shown in Refs. 16 and 17. The range of
the phase separation x1 < x < x2 shrinks if |ᾱ| increases, and
disappears at the critical value ᾱc

∼= 1.15. The phase-separated
state does not exist for |ᾱ| > ᾱc.

The obtained results are summarized in the phase diagram
in the (x,ᾱ) plane shown in Fig. 4. This phase diagram is
calculated for r = κ = 1. It remains qualitatively the same
if r �= 0. If the nonmagnetic bands are absent, r = 0, the
homogeneous commensurate SDW phase exists only when
x = 0. Consequently, the electronic concentration x1 in the
phase 1 is zero in the phase-separated state for any ᾱ.

Finally, we would like to draw the attention of the
reader to an unexpected feature of the phase diagram in
Fig. 4. Namely, the second-order incommensurate SDW-to-
paramagnet transition line bends to the right, while all other
transition curves in the phase diagram bend to the left. In
other words, the value of doping where the transition from
paramagnetic to incommensurate SDW phase occurs increases
when the ellipticity parameter α increases. Interpreting this
feature, however, one must keep in mind that the nesting
quality is controlled not only by α but also by μ (or x). The
parameter α controls the shape of the electron pocket, while
μ (or doping) controls the relative areas of electron and hole
pockets. Therefore, at larger doping levels, when the areas of
the electron and hole pockets differ substantially, the electron
and hole pockets could be better nested for larger ellipticity of
the electron pocket.
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FIG. 4. (Color online) The phase diagram of the model (8) in
the (x,ᾱ) plane, for r = κ = 1 and α,x > 0. It is symmetric with
respect to the replacement x → −x and/or α → −α. The boundary
between incommensurate SDW and paramagnetic (PM) states shown
by the dashed (red) curve corresponds to the first-order and by the
solid (red) curve to the second-order phase transition. Solid (blue)
lines indicate the boundaries of the phase-separated (PS) state. The
solid (black) curve (second-order transition) and dashed (black) curve
(first-order transition) show the boundaries between commensurate
(q = 0) and incommensurate (q �= 0) homogeneous SDW phases.
Note that phase separation partially masks the transition line between
the homogeneous SDW states.

V. DISCUSSION

The most important result obtained here is the prediction
of electronic phase separation in some range of doping. The
separated phase consists of a mixture of commensurate and in-
commensurate SDW phases with different electronic concen-
trations. The phase separation in iron-based superconductors
was observed in several experiments.6–9 For example, the inho-
mogeneous state with a commensurate antiferromagnetic and
nonmagnetic domains with characteristic sizes ∼65 nm was
observed in the hole-doped Ba1−xKxFe2As2 compound.6 Our
theory predicts that the second phase is an incommensurate
SDW rather than a nonmagnetic one. However, the proposed
mechanism of phase separation can, in general, be consistent
with the observations reported in Ref. 6. We found that the
thermodynamic potentials of the incommensurate SDW and
the metastable paramagnetic phases are very close to each
other in the doping range x > x2. The incommensurate SDW
phase can be destroyed by an additional reason not taken into
account in our model, e.g., by disorder. In this case, the phase
separation might occur between the commensurate SDW and
the paramagnetic phases. In addition, the incommensurate
SDW order parameter may be difficult to detect due to its
weakness.

The geometry of the emergent inhomogeneities and their
characteristic sizes are beyond the scope of this study. The
electron concentrations in separated phases are different;
hence, the inhomogeneities are charged and one should take
into consideration the electrostatic contribution to the total
energy. The characteristic sizes of the inhomogeneities are

controlled by the interplay between the long-range Coulomb
interaction and the energy of the surface between the phases.
In the simplest case, the structure of the inhomogeneous state
corresponds to the droplets of one phase embedded in the
matrix of another phase. However, depending on the properties
of the system, other geometries are possible, such as alternating
layers of different phases, stripes, etc.38 When disorder is
present in the sample, it also affects the structure of the
inhomogeneous phase.

In our study, we chose the order parameter � [Eq. (13)]. In
the literature, a different order parameter is also discussed.16,39

This order parameter is not homogeneous: SDW gap expe-
riences periodic modulations in real space. When the state
with such an order parameter is doped, the extra charges
go to the places where the gap locally vanishes. The latter
type of order may be more stable than Eq. (13). However,
for several reasons we decided to avoid such an option.
Specifically, analytical calculations with inhomogeneous gaps
become very complicated. Further, the choice of the order
parameter affects somewhat the phase diagram and, in par-
ticular, the region of the phase separation; however, the
inhomogeneous region does not disappear. In addition, we
must remember that the relative stability of different order
parameters is likely a nonuniversal quantity, which depends
on a variety of microscopic parameters (e.g., details of the
band structure, interaction, disorder). Therefore, the type of
suitable order parameter can not be deduced without input from
experiments.

It follows from the phase diagram in Fig. 4 that the smaller
effective ellipticity parameter ᾱ, the larger the region of the
phase separation. The SDW gap �0 increases with increasing
coupling potential V1. Therefore, a stronger coupling is more
favorable for phase separation since ᾱ ∝ α/�0 [see Eq. (29)].

Our mean-field approach is not applicable in the limit of
strong coupling, where the use of Hubbard-type models is more
appropriate. The phase separation in such models is a common
phenomenon.13,14,40–46 Thus, we expect that the existence of
phase separation in our model is not an exclusive feature of
the weak-coupling regime.

The model studied here predicts an incommensurate SDW
phase for both electron and hole doping in the range of dopant
concentrations scaled by the parameter x0 [Eq. (35)]. From the
latter equation, we conclude that x0 � 1 if the weak-coupling
condition (11) is met. Thus, we predict the existence of the
incommensurate SDW order for small doping x � 1.

The incommensurate SDW phase is characterized by the
vector q = Q − Q0. Our calculations show that there are only
two possible equilibrium directions of q: it can be either
parallel or perpendicular to Q0, depending on the type of
doping and the sign of the ellipticity parameter α [see Eqs. (42)
and (43)]. It is clear, however, that both the magnitude
and direction of q are sensitive to the shape of the Fermi
surface, which is simplified in the present calculations. In real
materials, the shape of the hole pockets deviates from perfect
circles. Moreover, the spectrum of the hole and electron bands
depend on the transverse momentum kz, which is completely
neglected in the model considered here. In particular, the
electron bands have corrugated structure,47,48 that is, the major
axes of the ellipses are rotated by 90◦ when kz varies from 0
to π . Nevertheless, we believe that the model studied here
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captures the main features of the incommensurate SDW state
in pnictides.

Indeed, the observation of the incommensurate SDW
phase with q perpendicular to Q0 in the electron-doped
Ba(Fe1−xCox)2As2 was recently reported in Ref. 4. The mea-
sured value of |q| was about 0.02–0.03 for the concentration
range 0.056 < x < 0.06. Such values of x and q, as well as the
direction of q (corresponding to α < 0), are consistent with
our theory.

The short-range incommensurate SDW phase was de-
scribed in Ref. 49 for the electron-doped BaFe2−xNixAs2. In
general, one must be cautious interpreting this experiment
using our model since the observed short-range SDW correla-
tions do not correspond to our long-range SDW order. How-
ever, we note that the measured vector q was perpendicular to
Q0, which is also consistent with a negative α.

We found no experimental work reporting the observation
of the incommensurate SDW phase in the hole-doped pnic-
tides. However, double-peaked spin fluctuations at Q = Q0 ±
q have been observed50,51 in the hole-doped Ba1−xKxFe2As2

compound in a wide doping range. In these measurements,50,51

the vector q was found to be parallel to Q0, which, again,
corresponds to α < 0 in our model.

Note that, in general, all electron and hole parts of the
Fermi surface interact with each other. Each ith pair of
these interacting electron-hole surfaces is characterized by
the nesting vector Qi , coupling constant Vi , and “denesting”
parameter αi . However, the ith interaction contributes to
the SDW order only if Vi exceeds some critical value (see
Sec. III B). All other charge carriers do not contribute to the
“magnetic” interaction and form a reservoir. It is quite probable
that among the various iron pnictides there exist systems with
such reservoirs. However, the existence of the reservoir is not
necessary for the nucleation of the incommensurate AFM order
or for phase separation.

We limit our consideration to only one type of interaction.
Even this simple case corresponds to the experimentally
observed SDW symmetry both for commensurate and incom-
mensurate phases. Also, “switching on” additional interactions
may be necessary in the future, if the incommensurate
AFM ordering with different symmetry would be observed.
However, let us emphasize that the qualitative results of our
work remain unchanged.

VI. CONCLUSIONS

We considered a model with imperfect nesting of the Fermi
surface suitable for the description of iron pnictides. We show
that an incommensurate SDW phase arises at finite doping.
We demonstrate that two spin configurations can arise in the
system depending on the model parameters. It was shown that
the homogeneous state is unstable toward phase separation into
commensurate and incommensurate SDW phases in a specific
doping range. These results are in qualitative agreement with
the recent experimental observation of the incommensurate
SDW order and phase separation in doped superconducting
pnictides.

The main achievement of this paper is the demonstration
that a simple model approximating the Fermi surface of
pnictides implies the existence of electronic phase separation

even in the weak-coupling regime, that is, in the absence
of strong electron correlations. This is an important finding
for the interpretation of the experimental data on phase
inhomogeneity of iron pnictides: it proves that a purely
electronic model with moderate interaction is sufficient to
explain the observed inhomogeneities.

There are several features of pnictides which we incorporate
into our approach. Let us briefly recall them.

First, we need a Fermi surface with sufficient nesting
(poor nesting implies no phase separation). The ARPES
data31 support the assumption that at least some sheets of the
Fermi surface nest adequately. Second, the interaction between
electrons in the nested bands must not be too weak: the ground
state of the parent compound should be the homogeneous
SDW state. There is plenty of experimental evidence that a
broad class of iron pnictides are in such a state at zero doping.
However, to make our Hamiltonian analytically tractable, we
discarded all interaction constants except one, V1. Further, V1

was assumed to be momentum independent. Third, following
Rice,15 we included nonmagnetic (“reservoir”) bands into our
model. This is a simple way to account for those sheets
of the Fermi surface which do not nest with some other
sheets. The Fermi surface pockets, which may serve as the
reservoir, are seen by ARPES (like “propellers,” see, e.g.,
Ref. 52). In addition, the finite conductivity of pnictides
even in the undoped SDW state may be easily explained
by nonmagnetic bands (although, other explanations are also
possible).

Clearly, our model, being quite simple and generic, can not
predict whether a particular material exhibits phase separation.
One can attempt devising a more elaborate model. For
example, instead of a single coupling constant V1, a set of
spin-dependent couplings V σσ ′

αβ , which describe the interaction
of electrons in the band α and the band β, may be introduced.
Other refinements, e.g., 3D structure of the material, orbital
content of the Fermi surface states34,35 (the latter introduces
a pronounced momentum dependence of the interaction), are
possible as well.

Yet, such a detailed investigation can be counterproductive.
Indeed, our analysis clearly shows that the phase separation
is a nonuniversal feature of the model. That is, its presence
depends on the parameters of the Hamiltonian. It is very likely
that a study of a more complex model, while being quite costly
in terms of effort, will bring up the same conclusion about
the nonuniversality of phase separation. Thus, in the situation
where accurate knowledge of the microscopic parameters is
absent, one would not be able to reliably establish the presence
of phase separation for a given material. Keeping these
circumstances in mind, we emphasize that the main purpose of
our study is to introduce the mechanism of phase separation in
iron pnictides. However, the problem regarding the instability
of the homogeneous state for a particular material has to be
solved on an individual basis by the analysis of the specific
feature of its electronic structure.
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