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Longitudinal magnetization reversal in ferromagnets with Heisenberg exchange and strong
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We analyze theoretically the novel pathway of ultrafast spin dynamics for ferromagnets with high enough
single-ion anisotropy. This longitudinal spin dynamics includes the coupled oscillations of the modulus of the
magnetization together with the quadrupolar spin variables, which are expressed through quantum expectation
values of operators bilinear on the spin components. Even for a simple single-element ferromagnet, such dynamics
can lead to a magnetization reversal under the action of an ultrashort laser pulse.
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I. INTRODUCTION

Which is the fastest way to reverse the magnetization of
either a magnetic particle or a small region of a magnetic
film? This question has attracted significant interest, both
fundamental and practical, for magnetic information storage.1

Intense laser pulses, with durations less than a hundred
femtoseconds, are able to excite the ultrafast evolution of the
total spin of a magnetically ordered system on a picosecond
time scale, see, e.g., the reviews.2–4 The limitations for the time
of magnetization reversal come from the characteristic features
of the spin evolution for a magnet with a concrete type of
magnetic order. The dynamical time cannot be shorter than the
characteristic period of spin oscillations T , T = 2π/ω0, where
ω0 is the magnetic resonance frequency. For ferromagnets,
the frequency of standard spin oscillations (precession) is
ω0,FM = γHr, where γ is the gyromagnetic ratio, and Hr is
an effective field of relativistic origin, like the anisotropy field,
which is usually less than a few Tesla. Thus, the dynamical time
for Heisenberg ferromagnets cannot be much shorter than 1
ns. For antiferromagnets, all the dynamical characteristics are
exchange enhanced, and ω0,AFM = γ

√
HexHr, where Hex is

the exchange field, Hex = J/2μB, J is the exchange integral,
and μB is the Bohr magneton, see Ref. 5. The excitation of ter-
ahertz spin oscillations has been experimentally demonstrated
for transparent antiferromagnets using the inverse Faraday
effect or the inverse Cotton-Mouton effect.6–11 The nonlinear
regimes of such dynamics include the inertia-driven dynamical
reorientation of spins on a picosecond time scale, which was
observed in orthoferrites.10,11

The exchange interaction is the strongest force in mag-
netism, and the exchange field Hex can be as strong as 103

T. The modulus of the magnetization is determined by the
exchange interaction, and the direction of the magnetization is
governed by relativistic interactions. It would be very tempting
to produce a magnetization reversal by changing the modulus
of the magnetization vector, i.e., via the longitudinal dynamics
of M. For such a process, dictated by the exchange interaction,
the characteristic times could be of the order of the exchange

time τex = 1/γHex, which is shorter than 1 ps. Nevertheless,
within the standard approach such dynamics is impossible. The
evolution of the modulus of the magnetization M = |M| within
the closed Landau-Lifshitz equation for the magnetization only
(or the set of such equations for the sublattice magnetizations
Mα) is purely dissipative.12 This feature could be explained
as follows: Two angular variables θ and ϕ describing the
direction of the vector M within the Landau-Lifshitz equation
determine the pair of conjugated Hamilton variables (cos θ

and ϕ are the momentum and coordinate, respectively). Also,
the evolution of the single remaining variable M = |M|,
governed by a first-order equation can be only dissipative;
see a more detailed discussion below. Moreover, the exchange
interaction conserves the total spin of the system, and the
relaxation of the total magnetic moment of any magnet can be
present only when accounting for relativistic effects. Thus the
relaxation time for the total magnetic moment is relativistic
but it is exchange enhanced, as was demonstrated within the
irreversible thermodynamics of the magnon gas.12 Note here
that the relaxation of the magnetization of a single sublattice
for multisublattice magnets can be of purely exchange origin.13

Recently, magnetization reversal on a picosecond time scale
has been experimentally demonstrated for the ferrimagnetic
alloy GdFeCo, see Refs. 13 and 14. These results can be ex-
plained within the concept of exchange relaxation, developed
by Baryakhtar,15 accounting for the purely exchange evolution
of the sublattice magnetization.16 Such an exchange relaxation
can be quite fast, but its characteristic time is again longer than
the expected “exchange time” τex = 1/γHex.

Thus, the ultrafast mechanisms of magnetization reversal
implemented so far are: the dynamical (inertial) switching pos-
sible for antiferromagnets,10,11 and the exchange longitudinal
evolution for ferrimagnets.13,14,16 These are both quite fast,
with a characteristic time of the order of picoseconds; but their
characteristic times are longer than the “ideal estimate”: the
exchange time τex.

In this work we present a theoretical study of the possibility
of the dynamical evolution of the modulus of the magnetization
for ferromagnets with high enough single-ion anisotropy that
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can be called longitudinal spin dynamics. For such a spin
evolution, a dynamical magnetization reversal is possible
even for a simple single-element ferromagnet. Longitudinal
dynamics does not exist in Heisenberg magnets, and this
dynamics cannot be described in terms of the Landau-Lifshitz
equation, or using the Heisenberg Hamiltonian, which is
bilinear over the components of spin operators for different
spins, see more details below in Sec. II. The key ingredient of
our theory is the inclusion of higher-order spin quadrupole
variables. It is known that for magnets with atomic spin
S > 1/2, allowing the presence of single-ion anisotropy,
the spin dynamics is not described by a closed equation
for spin dipolar variable 〈S〉 alone (or magnetization M =
−2μB〈S〉).17–24 Here and below 〈· · · 〉 means quantum and
(at finite temperature) thermal averaging. To be specific, we
choose the spin-one ferromagnet with single-ion anisotropy,
the simplest system allowing this effect. The full description
of these magnets requires taking into account the dynamics of
quadrupolarvariables Sik = (1/2)〈SiSk + SkSi〉 that represent
the quantum averages of the operators, bilinear in the spin com-
ponents. Such magnets are of significant interest, both from
the viewpoint of fundamental science and for applications, as
can be seen from the recent reviews.25,26 Our theory is based
on the consistent semiclassical description of a full set of spin
quantum expectation values (dipolar and quadrupolar) for the
spin-one system, which was investigated by many authors from
different viewpoints.17–24 As we will show, the longitudinal
dynamics of spin, including nonlinear regimes, can be excited
by a femtosecond laser pulse. With natural accounting for
the dissipation, the longitudinal spin dynamics can lead to
changing the sign of the total spin of the system (longitudinal
magnetization reversal).

II. MODEL DESCRIPTION

The Landau-Lifshitz equation was proposed many years
ago as a phenomenological equation, and it is widely used
for the description of various properties of ferromagnets.
Concerning its quantum and microscopic basis, it is worth
noting that this equation naturally arises using the so-called
spin coherent states.27,28 These states can be introduced for
any spin S as the state with the maximum value of the
spin projection on an arbitrary axis n. Such states can be
parametrized by a unit vector n; the direction of the latter
coincides with the quantum mean values for the spin operator
〈S〉 = Sn (dipolar variables). This property is quite convenient
for linking the quantum physics of spins to a phenomenological
Landau-Lifshitz equation. The use of spin coherent states is
most efficient when the Hamiltonian of the system is linear
with respect to the operators of the spin components. If an
initial state is described by a certain spin coherent state, its
quantum evolution will reduce to a variation of the parameters
of the state (namely, the direction of the unit vector n), which
are described by the classical Landau-Lifshitz equation. Thus,
spin coherent states are a convenient tool for the analysis
of spin Hamiltonians containing only operators linear on
the spin components or their products on different sites.
An important example is the bilinear Heisenberg exchange
interaction, described by the first term in Eq. (1) below.

In contrast to the cases above, for the full description of
spin-S states, one needs to introduce SU(2S + 1) generalized
coherent states.21–24 The analysis shows that spin coherent
states are less natural for the description of magnets whose
Hamiltonian contains products of the spin component oper-
ators at a single site. Such terms are present for magnets
with single-ion anisotropy or a biquadratic exchange inter-
action. For such magnets, some nontrivial features, absent for
Heisenberg magnets, are known. Among them we note the
possibility of so-called quantum spin reduction; namely the
possibility to have the value of |〈S〉| less than its nominal
value |〈S〉| < S, even for pure states at zero temperature.
This was mentioned by Moriya,29 as early as 1960. As an
extreme realization of the effect of quantum spin reduction,
we note the existence of the so-called spin nematic phases
with a zero mean value of the spin in the ground state at
zero temperature. In the last two decades, the interest on
such states has been considerable, motivated by studies of
multicomponent Bose-Einstein condensates of atoms with
nonzero spin.30–33

A significant manifestation of quantum spin reduction is
the appearance of an additional branch of the spin oscillations,
which is characterized by the dynamics (oscillations) of the
length of the mean value of spin without spin precession.17,19–24

The characteristic frequency of this mode can be quite high
(of the order of the exchange integral). For this reason,
for a description of resonance properties or thermodynamic
behavior of magnets, this mode is usually neglected, and
the common impression is that the dynamics of magnetic
materials with constant single-ion anisotropy K < (0.2–0.3)J
is fully described by the standard phenomenological theory.
However, for an ultrafast evolution of the spin system under a
femtosecond laser pulse, one can expect a lively demonstration
of this longitudinal high-frequency mode. Thus, it is important
to explore the possible manifestations of the effects of quantum
spin reduction in the dynamic properties of ferromagnets.

The simplest model allowing spin dynamics with effects of
quantum spin reduction is described by the Hamiltonian

H = −1

2

∑
n,�

J̄SnSn+� + K

2

∑
n

(Sn,x)2, (1)

where Sn is the spin-one operator at the site n; J̄ > 0 is the
exchange constant for nearest-neighbors �, and K > 0 is
the constant of the easy-plane anisotropy with the plane yz

as the easy plane. The quantization axis can be chosen parallel
to the z axis and 〈S〉 = 〈Sz〉ez. For the full description of spin
S = 1 states, let us introduce SU(3) coherent states21–24

|u,v〉 =
∑

j=x,y,z

(uj + ivj )|ψj 〉, (2)

where the states |ψj 〉 determine the Cartesian states for
S = 1 and are expressed in terms of the ordinary states
{|±1〉, |0〉} with given projections ±1, 0 of the operator
Sz by means of the relations |ψx〉 = (|−1〉 − |+1〉)/√2,
|ψy〉 = i(|−1〉 + |+1〉)/√2, |ψz〉 = |0〉, with the real vectors
u and v subject to the constraints u2 + v2 = 1, u · v = 0.
All irreducible spin averages, which include the dipolar
variable 〈S〉 (average value of the spin) and quadrupole
averages Sik , bilinear over the spin components, can be written
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through u and v as follows:

〈S〉 = 2(u × v),

Sik = 1

2
〈SiSk + SkSi〉 = δik − uiuk − vivk. (3)

At zero temperature and within the mean-field approximation,
the spin dynamics is described by the Lagrangian24

L = −2h̄
∑

n

vn(∂un/∂t) − W (u,v), (4)

where W (u,v) = 〈u,v|H |u,v〉 is the energy of the system.
We are interested in spin oscillations which are uniform in

space, and hence we assume that the discrete variables u and
v have the same values for all spins and are only dependent
on time. The frequency spectrum of linear excitations, which
consists of two branches, can be easily obtained on the basis of
the linearized version of the Lagrangian (4). In the general case,
the system of independent equations for u and v, taking into
account the aforementioned constrains u2 + v2 = 1, u · v = 0,
consists of four nonlinear equations, describing two different
regimes of spin dynamics. One regime is similar to that
for an ordinary spin dynamics treated on the basis of the
Landau-Lifshitz equation; it corresponds to oscillations of the
spin direction. The second regime corresponds to oscillations
of the modulus of the magnetization 〈S〉 = S(t)ez, with the
vectors u and v rotating in the xy plane perpendicular
to 〈S〉. This mode of the spin oscillations corresponds to
the longitudinal spin dynamics. It is convenient to consider
these two types of dynamics separately. Particular nonlinear
longitudinal solutions, with 〈S〉 = s(t)ez and uz = 0, vz = 0,
were found in Refs. 34 and 35. Note here that the longitudinal
dynamics is much faster than the standard transversal one, and
the standard spin precession (described by the Landau-Lifshitz
equation) at a picosecond time scale just cannot develop.
Therefore, these two regimes, longitudinal and transverse, can
be treated independently, and we limit ourselves only to the
longitudinal dynamics with 〈S〉 = s(t)ez and uz = 0, vz = 0.

III. LONGITUDINAL SPIN DYNAMICS

To describe the longitudinal spin dynamics, it is convenient
to introduce new variables: the spin modulus s = 2|u||v| =
2uv and angular variable γ , with

u = u(ex cos γ − ey sin γ ), v = v(ex sin γ + ey cos γ ).

(5)

In this representation 〈Sz〉 = s, and the nontrivial quadrupolar
variables are

〈SxSy + SySx〉 =
√

1 − s2 sin 2γ,
〈
S2

y − S2
x

〉 =
√

1 − s2 cos 2γ, (6)

with all other quantum averages being either zero (as the
transverse spin components 〈Sx,y〉 or Sxz, Syz) or trivial,
independent on s and γ , as 〈S2

z 〉 = 1. The mean-field energy,
written per one spin through the variables s, γ , takes the form

W (s,γ ) = −J

2
s2 − K

4

√
1 − s2 cos 2γ, (7)

FIG. 1. (Color online) The ground state parameters 〈S2
x 〉 and 〈S2

y 〉
(blue dash-dot line) and s̄ = 〈Sz〉 (red solid line) as the function of
κ . In the lower part of the figure the graphic presentation of the
variables 〈S2

x 〉 and 〈S2
y 〉 showing the shape of the cross section of the

quadrupolar ellipsoid in the xy plane for four values of κ; from left
to right κ = 0, 0.25, 0.5, and 0.75.

where J = J̄Z, Z is the number of nearest neighbors. The
ground state at

√
1 − s2 > 0 corresponds to cos 2γ = 1, with

the mean value of the spin s = ±s̄, s̄ = √
1 − κ2 < 1, that

is a manifestation of quantum spin reduction at nonzero
anisotropy. Here we introduce the dimensionless parameter
κ = K/4J .

The values of the variables in the ground state are the
following:

〈Sz
2〉 = 1, 〈Sx

2〉 = 1

2
(1 + κ), 〈Sy

2〉 = 1

2
(1 − κ). (8)

The dependencies on κ for the ground state parameters 〈S2
x 〉,

〈S2
y 〉, and 〈Sz〉, together with the schematic graphic image of

the xy cross section of the quadrupolar ellipsoid are shown in
Fig. 1. The quadrupolar variables can be graphically illustrated
by using a quadrupolar ellipsoid, which is a three-axial
ellipsoid with the directions of the main axis (chosen to have
〈S1S2〉 = 0): e3 = ez and e1, e2 and with the half-axes of the
ellipsoid equal to 〈S2

1 〉, 〈S2
2 〉, and 〈S2

3〉 = 〈S2
z 〉 = 1. This is a

typical picture of ferro-quadrupolar ordering, known for many
magnets,25 and we are dealing with the coupled dynamics of
spin dipolar variables and quadrupolar variables. For κ � 1,
the state with zero magnetization (quadrupolar state), and with
the values 〈Sz

2〉 = 〈Sx
2〉 = 1 and 〈Sy

2〉 = 0, is realized.
For the variables s and γ , the Lagrangian can be written as

L = h̄s
∂γ

∂t
− W (s,γ ), (9)

and h̄s and γ play the role of canonical momentum and
coordinate, respectively, with the Hamilton function W (s,γ ).
The physical meaning of the above formal definitions is quite
clear: The angular variable γ describes the transformation of
the quadrupolar variables under rotation around the z axis,
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with h̄s being the projection of the angular momentum on this
axis. The Hamiltonian equations are

h̄
∂γ

∂t
= ∂W (s,γ )

∂s
, h̄

∂s

∂t
= −∂W (s,γ )

∂γ
. (10)

The possible stationary solutions of the dynamical equations
(10) (s = const, γ = const) are determined by the station-
ary points of the energy function, i.e., by the conditions
∂W (s,γ )/∂s = 0 and ∂W (s,γ )/∂γ = 0. The minimum of the
energy corresponds to the ground state of the system. Note the
presence of other stationary solutions, at s = 1, cos 2γ = 0;
and at s = 0, sin 2γ = 0, which are unstable. These stationary
points of the energy manifest themselves in the phase plane as
saddle points and as singular phase trajectories at s = 1.

A. Small oscillations

Let us now start with the description of the dynamics of
small-amplitude oscillations. After the linearization around
the ground state, the equation leads to a simple formula for the
frequency of longitudinal oscillations

h̄ωl = 2J s̄ = 2J
√

1 − κ2, (11)

which are in fact coupled oscillations of the projection of the
spin and quadrupolar variables, see Fig. 2.

FIG. 2. (Color online) Graphic presentation of the variables s and
γ and their evolution. The thick red arrow represents the mean value
of the spin. The quadrupolar variables are shown by the quadrupolar
ellipsoid, see the text, drawn in blue. (a) The ground state and (b)
the standard transverse dynamics, i.e., the spin precession. (c)–(e)
Transient values of the variables for longitudinal oscillations. (c) and
(e) Correspond to the longest and shortest length of the spin, and at
the moment depicted in (d) the spin length equals to its equilibrium
value, but the quadrupolar ellipsoid is turned on the angle γ with
respect to the x axis. (c)–(e) The shape of the unperturbed ellipsoid
is shown in light gray.

One can see that, for a wide range of values of the anisotropy
constant, like κ < 0.2–0.8, this frequency ωl is of the order of
(1.8–1.2)J/h̄, i.e., ωl is comparable to the exchange frequency
J/h̄. Thus the longitudinal spin dynamics is expected to be
quite fast. In contrast, standard transversal oscillations for a
purely easy-plane model (1) are gapless (they acquire a finite
gap when accounting for a magnetic anisotropy in the easy
plane, which is usually small). Thus the essential difference in
the frequencies of these two dynamical regimes is clearly seen.

At a first glance, there is a contradiction between the con-
cept of longitudinal dynamics caused by single-ion anisotropy
and the result present in Eq. (11): The value of ωl is still finite
for vanishing anisotropy constant K; and it is even growing to
the value 2J/h̄ when κ → 0. This can be explained as follows:
In the limit κ → 0 the spin-quadrupole moment is simply zero
according to the formula (6). Hence the free rotation of the
quadrupole ellipsoid is a free rotation of a quantity of zero
size, and the actual resonance does not exist in this limit.
More formally, on a phase plane with coordinates (s,γ ) this
dynamics is depicted by vertical straight lines parallel to the
γ axis, and the mean value of spin does not change, as can be
seen by comparing Figs. 3(a) and 3(c) below. We will discuss
this feature in more detail later with the analysis of nonlinear
oscillations.

B. Nonlinear dynamics and phase plane analysis

Before considering damped oscillations, it is instructive to
discuss dissipationless nonlinear longitudinal oscillations. It is
convenient to present an image of the dynamics as a “phase
portrait” on the plane momentum-coordinate (s, γ ), which
shows the behavior of the system for arbitrary initial condi-
tions. The phase trajectories in the plane without dissipation
can be found from the condition W (s,γ ) = const.

The energy (7) has an infinite set of minima, with s = ±s̄

and γ = πn, with equal energies (green ellipses in Fig. 3),
and an infinite set of maxima at s = 0 and γ = π/2 + πn (red
ellipses in Fig. 3), here n is an integer. Only the minima with
s = s̄ and s = −s̄ are physically different; equivalent extremes
with different values of n correspond to the equal values of the
observables and are completely equivalent. The minima on the
phase plane correspond to foci with two physically different
equilibrium states with antiparallel orientation of spin s = ±s̄,
and 〈S2

y − S2
x〉 = √

1 − s̄2, 〈S2
z 〉 = 1, 〈SxSy + SySx〉 = 0. The

saddle points are located at the values s = 0 and γ = πn.
The lines with s = ±1 are singular; these correspond to
degenerate motion with γ linear in time γ = ±tJ/h̄; the points
at these lines where dγ /dt change sign can be treated as
nonstandard saddle points.

The shape of the phase trajectories, i.e., the characteristic
features of oscillations, varies when changing the anisotropy
parameter κ . Note first the general trend, the relative amplitude
of the changes of the spin and γ depends on κ: The bigger
κ is, the larger values of the change of spin are observed.
The topology of the phase trajectories change at the critical
value of the anisotropy parameter κ . At small κ < 1/2,
the trajectories with infinite growing γ are present, and
the standard separatrix trajectories connect together different
saddle points, see Fig. 3(c). As mentioned above; only such
trajectories are present at the limit κ → 0, but, in fact, even for
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FIG. 3. (Color online) Phase plane representations for dissipation-free nonlinear longitudinal spin oscillations for different values of the
parameter κ; κ = 0.6, 0.5, and 0.2 for (a), (b), and (c), respectively. The green and red ellipses present the minima and maxima, respectively; the
standard saddle points are depicted by red rectangles, while the standard separatrix trajectories are drawn by red lines. The singular trajectories
with s = ±1 and the separatrix trajectories entering the nonstandard saddle points on these lines s = ±1 are shown by blue lines in (a) and
(c). For the critical value κ = 0.5, all the separatrix trajectories and the singular trajectories with s = ±1 organize a common net; and on the
corresponding frame (b) all of them are presented by red lines.

the small value of κ = 0.2 used in Fig. 2(c), the main part of the
plane is occupied by the trajectories that change the spin. At
the critical value κ = 1/2, the separatrix trajectories connect
the saddle points at s = 0, γ = 0 and the degenerated saddle
points at the singular lines with s = ±1. At larger anisotropy
κ > 1/2, as in Fig. 3(a), the only separatrix loops entering the
same saddle point are present.

The minima, saddle point, and the separatrix are the key
ingredients for the switching between the ground states with
s = s̄ and s = −s̄. The case of large anisotropy κ > 1/2 looks
like the standard one for the switching phenomena, whereas
for small anisotropy the situation is more complicated.

C. Damped longitudinal motion

Damping is a crucial ingredient for the dynamical switch-
ing between different, but equivalent in energy, states. The
high-frequency mode of longitudinal oscillations have high-
enough relative damping; as was found from microscopic
calculations,34 the decrement of the longitudinal mode  =
λωl , where λ ∼ 0.2. To account for the damping in the
dynamic equations for s and γ , it is useful to consider a
different parametrization of the longitudinal dynamics. Let
us now introduce a unit vector σ = σ1e1 + σ2e2 + σ3e3 with
components

σ3 = s, σ1 = 〈S2
y − S2

x〉, σ2 = 〈S1S2 + S2S1〉. (12)

Being written through σ , the equation of motion takes the form
of the familiar Landau-Lifshitz equation

h̄
∂σ

∂t
= [σ × heff] + R, heff = −∂W

∂σ
, (13)

where heff can be treated as an effective field for longitudinal
dynamics, and the relaxation term R is added. The equation of
motion with R = 0 is fully equivalent to the Hamilton form of
the equation found from (9), but the form of the dissipation is

more straightforward in unit-vector presentation. The choice
of the damping term in a standard equation for the motion
of the transverse spin is still under debate.15,36 But here the
damping term can be written in the simplest form, as in the
original paper of Landau and Lifshitz, R = λ[heff − σ (heffσ )].
The arguments are as follows: (i) this form gives the correct
value of the decrement of linear oscillations  = λωl ; and (ii)
it is convenient for analysis, because it keeps the condition
σ 2 = 1. Finally, the equations of motion with the dissipation
term of the aforementioned form are

h̄
ds

dt
= −∂W

∂γ
− λ(1 − s2)

∂W

∂s
,

(14)

h̄
dγ

dt
= ∂W

∂s
− λ

(1 − s2)

∂W

∂γ
.

These equations describe the damped counterpart of the
nonlinear longitudinal oscillations discussed in the previous
subsection and present as phase portraits in Fig. 3. The
character of the motion at not-too-large λ can be qualitatively
understood from energy arguments. The trajectories of damped
oscillations in any point of the phase plane approximately fol-
low the nondamped [described by equation W (s,γ ) = const]
ones, but cross them passing from larger to smaller values of
W , see Figs. 4 and 6. It happens that for the case of interest, the
dynamics is caused by the time-dependent stimulus. An action
of the stimulus on the system can be described by adding the
corresponding time-dependent interaction energy �W to the
system Hamiltonian W → W (s,γ ) + �W (s,γ,t). Within this
dynamical picture, �W produces an “external force” driving
the system far from equilibrium.

The analysis is essentially simplified for a pulselike stimu-
lus of a short duration �t (much shorter than the period of mo-
tion ωl�t � 1). In this case, the role of the pulse is reduced to
the creation of some nonequilibrium state, which then evolves
as some damped nonlinear oscillations described by the “free”
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FIG. 4. (Color online) Phase plane representation of damped
longitudinal spin oscillations for κ = 0.6. Here and in Fig. 6,
the dashed lines (obtained analytically before) represent the phase
trajectories without dissipation, while the full lines are trajectories
for dissipation constant λ = 0.2, found numerically. The separatrix
lines are drawn by red curves.

Eqs. (14) with �W = 0. The phase plane method, which shows
the behavior of the system for arbitrary initial conditions, is
the best tool for the description of such an evolution.

First, let us start with the analysis for high-enough
anisotropy. The corresponding phase portrait is present in
Fig. 4. The general property of the phase plane is that the
phase trajectories cannot cross each other; they can only
merge at the saddle points. Thus the trajectories coming to
different minima are stretched between two separatrix lines
entering the same saddle point from different directions, as
shown in Fig. 4. From this it follows that any initial state with
arbitrary nonequilibrium values of spin s(+0), but without
deviation of γ from its equilibrium value, evolve to the state
with the same sign of the spin as for s(+0), and no switching
occurs. However, if the initial condition is above the separatrix
trajectory, entering the saddle point, the evolution will move
the system to the equivalent minimum with the sign of the spin
opposite to the initial one s(+0), realizing the switching.

The switching can be realized for different initial condi-
tions, which correspond to a high enough deviation from the
initial state. The smaller deviation of s is present, the larger
deviation of γ is necessary. For the case of high anisotropy
κ > κC = 1/2, even if the initial value of s equals to its
equilibrium value s(0) = s̄ = √

1 − κ2, the switching can be
observed, but for quite large values of γ (0). However, the
“minimal” deviation of the ground state corresponds to both
s(0) < s̄ and γ (0) �= 0. Note that, except some short initial
stage, t < (2–4)tex, the behavior of damped oscillations is very
common for these two regimes. The time evolution for two
characteristic initial conditions are shown in Fig. 5.

FIG. 5. (Color online) Time evolution of the spin s and quadrupo-
lar variables σ1,2, see Eq. (6), describing the switching for the magnet
with κ = 0.6. The data for two characteristic initial conditions,
corresponding, to relatively small (or large) initial deviation of s

and relatively large and (or small) initial deviation of γ are present
by full and dash-dot lines, respectively. For concrete calculations,
the values s(0) = 0.5, γ (0) = 0.1π and s(0) = 0.1, γ (0) = 0.03π

are used in these cases. The dash lines demonstrate the switching
for the equilibrium initial value of spin s(0) = √

1 − κ2 = 0.8 and
large enough γ (0) = 0.19π . The values of spin s (red lines) and
σ1 = 〈S2

y − S2
x 〉 (blue lines) are going to their finite equilibrium values

−√
1 − κ2 and κ = 0.6, whereas σ2 → 0 (green lines).

Figure 6 shows the phase plane for Eqs. (14) for the more
complicated case of low anisotropy κ < κC = 0.5, demon-
strating several possible scenarios of the switching of the
sign of the spin value during such dynamics. Note once more
the qualitative difference from the case of small anisotropy:
When the anisotropy constant is lower than the critical value
κC = 0.5, the initial deviation of s is necessary for switching,
which can be seen comparing Figs. 4 and 6. Here the separatrix
trajectories for the damped motion can be monitored from their
maxima, and the full picture of the behavior can be understood
only when including a few equivalent foci with γ = 0, ±
π, ± 2π , etc., with different, but equivalent in energy, values
of the spin s = ±s̄, s̄ = √

1 − κ2, and different saddle points,
located at γ = 0, ± π, ± 2π . As for high anisotropy, the
trajectories evolving to different minima are located between
two branches of the separatrix lines, but now this “separatrix
corridor” is organized by separatrix lines entering different
saddle points. The switching phenomenon is also possible, but
the process involves a few full turns of the variable γ .

The general rule for any anisotropy can be formulated as
follows: For realizing spin switching, one needs to start from
the states just above the separatrix line entering the saddle
point from positive values of s. The larger is the deviation of
the initial value of the spin from the equilibrium, the smaller
value of γ (0) would realize the switching. The asymptotic
behavior of the separatrix trajectories at γ,s → 0, is important
for this analysis, and can be easily found analytically as

(γ

s

)
separ

= Rsepar

= 1

8κ
[λ(1 + 3κ) +

√
λ2(1 + 3κ)2 + 16κ(1 − κ)].

(15)
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FIG. 6. (Color online) Phase plane for the damped spin evolutions for low anisotropy κ = 0.2. The central frame shows the full diagram;
left and right panels demonstrate the details of the behavior near the equilibrium values s = −s̄ and s = s̄, respectively. On this frame, the
regions colored by green and yellow correspond to different basins of attraction with initial values leading to the equilibrium states with s = s̄

and s = −s̄, respectively.

From the asymptotic equation (15), the corresponding
ratio Rsepar = γ (0)/m(0) is smaller for small values of λ;
but even when λ → 0, it exceeds the value Rsepar(λ = 0) =
0.5

√
(1 − κ)/κ . However, for finite damping and small κ → 0,

the value of Rsepar = λ/4κ → ∞, when κ → 0. The separatrix
becomes almost vertical in this limit, and the reversal is
basically prohibited. Thus, the switching could occur for
nonzero values of κ > λ ∼ 0.2.

IV. INTERACTION OF THE LIGHT PULSE ON THE
SPIN SYSTEM: CREATION OF THE INITIAL STATE

FOR SWITCHING

Let us now consider the longitudinal spin evolution caused
by a specific stimulus: a femtosecond laser pulse. As men-

FIG. 7. (Color online) The same as in Fig. 5, but for small
anisotropy κ = 0.2. Here the full and dash-dot lines show the behavior
for minimal deviation s(0) = 0.55, with the large value of γ (0) =
0.4π and the small values s(0) = 0.2, γ (0) = 0.1π , respectively. Note
here much larger amplitude of the sign-alternating oscillations of σ1

within the initial stage of evolution, that corresponds with the change
of γ on π , see Fig. 6.

tioned above, the optimal initial state for the switching should
include the deviation of the spin value, “spin quenching,”
and, simultaneously, a nonzero deviation of the quadrupolar
variable γ . We now briefly discuss how both conditions could
be realized.

A. Spin quenching

In the literature, the laser-induced ultrafast quenching of the
magnetic moment is mainly associated with transition metals
or their alloys.13,37–39 Moreover, the microscopic scenario of
this effect is based on d-shell itinerant electrons.40 (Note here
the recent work41 where a scenario for such a quenching has
been proposed for rare-earth metals.) However, the theory
developed here can be applied to different materials, either
conducting or insulating. The quenching of the magnetic
order is known for many nonmetallic compounds, insulators,
and semiconductors. Note the observation of this effect for
a number of spinel-type chromium chalcogenides,42 either
metallic or insulating, e.g., insulating ferrimagnetic FeCr2S4,
CoCr2S4, and insulating ferromagnetic CdCr2S4. It has been
mentioned that the quenching becomes faster for magnets with
high anisotropy, which are interesting for our consideration.
Femtosecond demagnetization has also been found for fer-
romagnetic semiconductors InMnAs and GaMnAs.43,44 The
large magneto-optic response, witnessing a drastic change of
the order parameter within the first few hundreds of femtosec-
onds, has been observed for insulating antiferromagnets nickel
oxide nickel NiO (Ref. 8) and Cr2O3.45 A fast (over a time
scale of 300 fs) and strong suppression of the magnetic order
under the action of a femtosecond laser pulse has been found
recently in copper oxide CuO.46 Whereas the mechanisms
of these effects is not as clear as for transition metals, their
existence for different compounds is undoubtful. Note as
well the recent observation of femtosecond suppression of
the antiferromagnetic order in manganite Pr0.7Ca0.3MnO3,
exhibiting colossal magnetoresistance.47
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B. Control of quadrupolar variables

The next nontrivial question is: How can we create a
deviation of the quadrupolar variable γ from its equilibrium
value? To find out how to do this, let us consider possible
mechanisms of light interaction with quadrupolar variables of
the magnets with nonsmall single-ion anisotropy.

The interaction of the spin system of magnetically ordered
media and light is described by the Hamiltonian (as above,
written per spin) �W = ε̄ij v0Ei(t)E∗

j (t)/16π , where v0 is the
volume per spin, Ei(t) is the time-dependent amplitude of
the light in the pulse, ε̄ij = d(ωε

(spin)
ij )/dω, ε

(spin)
ij is the spin-

dependent part of the dielectric permittivity tensor, and ω is the
frequency of light. For the longitudinal dynamics considered
here, circularly polarized light propagating along the z axis
acts on the z component of the spin via the standard inverse
Faraday effect, with the antisymmetric part of ε̄

(a)
ij as ε̄(a)

xy =
−ε̄(a)

xy = sαF, giving an interaction of the form

�Wcircular = s
αFv0

16π
|Ecirc|2σ, (16)

where Ecirc is the (complex) amplitude, and σ describes
the pulse helicity: σ = ±1 for right-handed and left-handed
circularly polarized laser pulses. To describe qualitatively the
result of the action of the light pulse, let us now assume that
the pulse duration τpulse is the shortest time of the problem. If
the pulse duration is shorter than the period of spin oscillations,
the real pulse shape can be replaced by the Dirac δ function
|Ecirc|2 → E2

pτpulseδ(t), where E2
p = ∫ |Ecirc|2dt/τpulse char-

acterizes the pulse intensity. (Note that this approximation
is still qualitatively valid even for any comparable values of
τpulse and 2π/ω.) Then, using Eqs. (14) one can find the effect
produced by the pulse. Within this approximation, the action
of a pulse leads to an instantaneous deviation of the variable γ

from its equilibrium value, which then evolves following the
nonperturbed equations of motion (14). Keeping in mind that
before the pulse action the system is in equilibrium, s(−0) = s̄

and γ (−0) = 0, it is straightforward to find the values of these
variables (s and γ ) after the action of the pulse s(+0) and
γ (+0). For our purposes, the nonequilibrium value of the
quadrupolar variable γ is important:

γ (+0) = − αF

16πh̄
E2

pv0τpulseσ. (17)

The cumulative action of the circularly polarized pulse,
including an essential reduction of the spin value (caused either
by thermal or nonthermal mechanisms) and the deviation of γ

described by (17) could lead to the evolution we are interested
here, switching the spin of the system. Note that the effective
field associated with the inverse Faraday effect for transparent
insulating magnets reaches a few Tesla.2 The theory of the
ultrafast inverse Faraday effect for metals has been developed
by Popova and coauthors48 and the experiment shows huge
values, up to 10 T for GdFeCo, see Fig. 2 of Ref. 49.
Note here that, for standard spin reduction, the polarization
of the light pulse is not essential,37–39 whereas the values
of γ (+0) are opposite for right- and left-handed circularly
polarized pulses. These features are characteristic of the effect
described here. Note the recent experiment where the role of
circular polarization in spin switching for GdFeCo alloy was

mentioned, but the authors49 have attributed it to magnetic
circular dichroism.

V. CONCLUDING REMARKS

First, let us now compare the approach developed in this
article with previous results on subpicosecond spin evolution.
The first experimental observation of demagnetization for
ferromagnetic metals under femtosecond laser pulses shows
that the magnetic moment can be quenched very fast to
small values, much faster than 1 ps.37–39 These effects are
associated with a new domain of the physics of magnets,
femtomagnetism,50 and its analysis is based on the micro-
scopic consideration of spins of atomic electrons,51,52 or
itinerant electrons.40 Not discussing this fairly promising and
fruitful domain of magnetism, note that, to the best of our
knowledge, no effects of magnetization reversal during this
“femtomagnetic stage” has been reported in the literature (see,
however, the recent article47). For example, the subpicosecond
quenching processes for the ferromagnetic alloy GdFeCo are
responsible for the creation of a far-from-equilibrium state,
but the evolution of this state, giving the spin reversal, can be
described within the standard set of equations for the sublattice
magnetizations.16

In contrast, here we propose some pathway to switch the
sign of the magnetic moment during extremely short times, of
the order of the exchange time. It is shown here that the spin
dynamics for magnets with nonsmall single-ion anisotropy can
lead to the switching of the sign of the magnetic moment via
the longitudinal evolution of the spin modulus together with
quadrupolar variables (concretely, the quantum expectation
values of the operators bilinear over the spin components Sx

and Sy). It is worth to stress here that the “restoring force” for
this dynamics is the exchange interaction, and the characteris-
tic time is the exchange time. However, to realize this scenario,
one needs to have a significant coupling of the spin dipole
variable s and spin quadrupole variables. Obviously this effect
is going beyond the standard picture of spin dynamics based on
any closed set of equations for the spin dipolar variables alone.
Note that our approach based on the full set of variables for the
atomic spin is “more macroscopic” than the “femtomagnetic”
approach,40,51,52 dealing with electronic states.

We have found this type of switching within the concrete
model (1) with spin one, Heisenberg exchange, and strong
enough single-ion anisotropy. Such an anisotropy is known
for the numerous magnets based on anisotropic ions of
transition elements such as Ni2+, Cr2+, Fe2+. Note the first
spin-one system CsNiF3 investigated thoroughly with respect
to its nonlinear properties,53 with the ratio of the anisotropy
(estimated with quantum corrections) to exchange integral
as high as 0.3. A better candidate is nickel fluosilicate hex-
ahydrate NiSiF6·6H2O, with spin-one Ni2+ ions, coupled by
the isotropic ferromagnetic exchange interaction and subject
to high single-ion anisotropy. For this compound, the strong
effect of the quantum spin reduction is known, with its strength
dependent on the pressure: The value of K/J is growing with
the pressure P resulting in the value 〈S〉 = 0.6 at P = 6 kbar
and leading to the transition to the nonmagnetic state with
〈S〉 = 0 at P ∼ 10 kbar.54,55 Other necessary conditions are the
following: The possible materials should be very susceptible
to magnetization quenching, as well as they should have a
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sizable Faraday effect. Unfortunately, we are not aware of the
corresponding properties for the aforementioned materials.

A number of recent experiments were done with rare-earth
transition-metals alloys.13,14,49,56 Note here a rich variety
of nonlinear spin dynamics observed for thin films of the
FeTb alloy under the action of femtosecond laser pulses.56

However, the theory developed here for a simple one-sublattice
ferromagnet cannot be directly applied for the description of
such compounds. Ferromagnetic order with high easy-plane
anisotropy is present for many heavy rare-earth elements, such
as Tb and Dy at low temperatures.57 This feature is known both
for bulk monocrystals,57 and for thin layers and superlattices,
see Ref. 58 and references wherein. Rare-earth metals have
nonzero values of both spin and orbital momentum, forming
the total angular momentum of the ion, and for their description
the theory needs some modifications.

We conclude this article with some discussions of possible
generalizations of the model and also pointing out some other
magnets which probably could be used for realizing such
kind of dynamics. Note first that our model neglects some
physical interactions, for example, magnetoelastic coupling,
which can be strong for magnets with high anisotropy. The
detailed discussion of such effects is far beyond the scope
of our article. Note only that many of the previous theories
(either numerical or analytical) describing the laser-induced
spin reorientation for GdFeCo alloys also do not consider
this interaction,13,14,16,41 whereas the rare-earth compounds
are associated with giant magnetostriction.57 In this work
only spin-one ferromagnets with high single-ion anisotropy
were considered. Nevertheless, we believe that the switching
pathway presented here is more general than the concrete
model discussed in this work

Going beyond the concrete model (1), let us stress that
the main necessary conditions for the realization of this
type of dynamics is the presence of both nonsaturated value
of spin (quantum spin reduction) and significant values of
nondipolar (quadrupolar) variables in the ground state, which
are coupled. As a consequence of their coupling, the longi-
tudinal dynamical mode with an exchange “restoring force”
appears. All of the above features are characteristics of the
so-called ferromagnetic-quadrupolar states, known for many
rare-earth and actinide compounds with nonconventional
magnetic order, see the review articles.25,26 The cause of such
states and modes cannot only be single-ion anisotropy, but non-
Heisenberg exchange interaction as well. Such interactions

include biquadratic exchange (�S1 · �S2)2, and for higher spins
S > 1 the terms (�S1 · �S2)n, with 2 < n � 2S can be present
as well. All these interactions could lead to spin reduction
and the formation of ferromagnetic-quadrupolar states. They
also couple the spin dipole and multipole variables, giving
rise to longitudinal modes. The above features are known
for either integer spin-two models,59 or half-odd three-halves
spin models.20,33 Moreover, the Hamilton structure of the
dynamical equations for these coupled variables is expected
to be the same as for spin-one systems (10) [of course, the
form of the Hamiltonian can differ from the one in Eq. (9)].
The reason is the following: From both classical and quantum
mechanics it is known that the angular momentum and the
angle of rotation around its direction are Hamilton-conjugated
variables. Thus one can expect the possibility of the mode
with coupled rotation of the quadrupolar ellipsoid around its
principal axis, coinciding with the spin direction, and the
oscillation of the spin value along this direction. Of course,
this is only a qualitative argument. A detailed analysis of
concrete models with spin S > 1 is of interest, but it is far
beyond the scope of this article. The effects of spin switching
caused by dipolar-quadrupolar longitudinal spin dynamics can
be present for magnets with high values of the atomic angular
momentum, which are in ferromagnetic-quadrupolar states. It
is difficult to identify the best candidate for the realization
of these effects of spin switching among the large variety of
nonconventional magnets. A possible candidate could be the
intriguing URu2Si2, which has been a puzzle for decades.26

This material has a phase transition from a magnetic phase
to a phase with so-called hidden order,60 and a mode with
longitudinal spin oscillations in the vicinity of this transition.61
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L. J. Sham, Phys. Rev. Lett. 95, 167401 (2005).
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