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We derive a general expression of the quantum Fisher information for a Mach-Zehnder interferometer, with the
port inputs of an arbitrary pure state and a squeezed thermal state. We find that the standard quantum limit can be
beaten, when even or odd states are applied to the pure-state port. In particular, when the squeezed thermal state
becomes a thermal state, all the even or odd states have the same quantum Fisher information for given photon
numbers. For a squeezed thermal state, optimal even or odd states are needed to approach the Heisenberg limit.
As examples, we consider several common even or odd states: Fock states, even or odd coherent states, squeezed
vacuum states, and single-photon-subtracted squeezed vacuum states. We also demonstrate that superprecision
can be realized by implementing the parity measurement for these states.
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I. INTRODUCTION

Interferometers are extremely useful and precise measuring
tools, which have been widely used to estimate very small
phase changes in quantum metrology [1–13]. In general, the
sensitivity of phase estimation within these settings crucially
depends on the input states as well as the detection schemes.
For a Mach-Zehnder interferometer (MZI) with classical-light
inputs, the phase sensitivity is bounded by the standard
quantum limit (SQL) (also called shot-noise limit), i.e.,
1/

√
nT , where nT is the total photon number [14,15]. To go

beyond the SQL in MZI, entangled states (the states after
the first beam splitter) are usually needed to carry the phase
information.

It has been shown that, with parity measurements [16–25],
the Heisenberg limit (HL), i.e., 1/nT , can be achieved in
lossless interferometers by using maximally path-entangled
states, such as NOON states [26–29] and entangled coherent
states [17,30,31] (here the first beam splitter of the MZI
should be replaced by devices to generate the entangled
states). However, from the viewpoint of current experimental
technology, it is a hard task to produce these entangled states
involving a large number of photons. Due to restrictions in
the photon numbers which can be reached, the estimation
precision with maximally entangled states is even possibly
worse than that obtained with high-intensity classical light
sources [32,33]. Given this situation, finding optimal high-
intensity states as inputs of MZIs is of practical relevance.

As an example of how to enhance the phase sensitivity
with high-intensity input states, Caves [1] considered the
inputs of a high-intensity coherent state and a low-intensity
squeezed vacuum state. Since then, many theoretical and
experimental studies have focused on this topic [23,33–36].
More recently, an alternative method to reach a sub-shot-noise
phase uncertainty with high-intensity states has been studied
in Ref. [37]. They [37] considered the configuration where the
MZI is fed by a Fock state in one port and a high-intensity state,
either a coherent state or a thermal state, in the other port. We
note that, in these two cases, the separated-input states will be
entangled to carry the phase by the first beam splitter of the
MZI.

Here, we consider a more general case, in which the input
state of the MZI is

ρin = |ψ〉a a〈ψ | ⊗ ρb, (1)

where |ψ〉a is an arbitrary pure state and ρb is a squeezed
thermal state [38],

ρb =
∞∑

n=0

n̄n
th

(n̄th + 1)n+1
Sb(ξ )|n〉b b〈n|S†

b(ξ ), (2)

with the average thermal photon number n̄th. The squeezing
operator is defined by Sb(ξ ) = exp[(−ξb†2 + ξ ∗b2)/2], with
the squeezing factor ξ = reiθ (hereafter we choose θ = 0). The
squeezed thermal state ρb can be generated by either injecting
a thermal field to a squeezing device or passing a squeezed
vacuum state through a thermal noise channel. Mathematically,
the scenario under consideration covers several special cases
of significance. (i) When n̄th = 0, ρb is a squeezed vacuum
state. If we further choose |ψ〉a as a coherent state, then the
state ρin is reduced to the input state in Ref. [1]. (ii) When
r = 0, the squeezed thermal state is reduced to a thermal state;
if we now choose |ψ〉a as a Fock state, then this produces a
special case of the state discussed in Ref. [37].

We note that the quantum Fisher information (QFI), which
is related to the quantum Cramér-Rao bound (CRB) [39],
has been widely used in quantum metrology [20,30–37]. For
example, the QFI has been used to characterize the phase
sensitivity when the MZI is fed by a two-mode squeezed
vacuum state [20], an entangled coherent state after the first
beam splitter [30,31], and a coherent state together with a
squeezed vacuum state [33,36]. In this work, we will also
describe the phase sensitivity with the QFI. By calculating
the QFI, we find that, if |ψ〉a is composed of either only-
even or only-odd number states, the SQL for the phase-shift
measurement can be beaten even when there is no squeezing
in the thermal state. If there is squeezing in the thermal state,
the HL can be approached for certain even and odd states.
As examples, we consider Fock states, even or odd coherent
states, squeezed vacuum states, and single-photon-subtracted
squeezed vacuum states. Furthermore, we consider the photon-
number parity measurement [16–25], which was introduced
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FIG. 1. (Color online) Schematic diagram of a balanced MZI,
which is composed of two 50:50 beam splitters (shown in green)
and two phase shifters (orange). The input state of the two ports
is |ψ〉a a〈ψ | ⊗ ρb, where |ψ〉a is an arbitrary pure state and ρb is a
squeezed thermal state.

into optical interferometry in Refs. [16,17]. Recently, it was
shown in Ref. [23] that, in two-path optical interferometry,
the photon-number parity measurement achieves the quantum
CRB of phase sensitivity for all proposed pure states in the field
of sub-shot-noise phase sensitivity. In this work, our results
indicate that, for the even and odd states considered here, the
quantum CRB can also be reached by implementing the parity
measurement.

II. QUANTUM FISHER INFORMATION
IN MZ INTERFEROMETERS

The balanced MZI considered here is formed by two 50:50
beam splitters and two phase shifters, as shown in Fig. 1. The
two input ports are fed by the state ρin given in Eq. (1). If
we denote the bosonic-mode annihilation operators of the two
ports as a and b, then the unitary transformation associated
with this interferometer can be written as

U (φ) = e−i(π/2)Jx eiφJzei(π/2)Jx = exp(−iφJy), (3)

where φ is the phase to be estimated. The operators

Jx = 1

2
(a†b + b†a), (4a)

Jy = − i

2
(a†b − b†a), (4b)

Jz = 1

2
(a†a − b†b) (4c)

are the usual angular momentum operators in the Schwinger
representation. These satisfy the commutation relations
[Jx,Jy] = iJz, [Jy,Jz] = iJx , and [Jz,Jx] = iJy .

Before addressing the case of our input state ρin, we first
give the QFI for a general separable-state input: ρa ⊗ ρb, where
ρa and ρb could be either pure states or mixed states. For this
input state, the output state is ρout = U (φ)ρa ⊗ ρbU

†(φ), and
the ultimate limit of phase sensitivity is given by the quantum
CRB [39],

�φmin = 1/
√
F, F = Tr(ρoutG

2), (5)

where F is the QFI, with G the optimal phase estimator. The
symmetric logarithmic derivation G of the density matrix ρout

is defined by the operator relation

∂ρout

∂φ
= 1

2
(ρoutG + Gρout). (6)

Utilizing the spectral decompositions ρa = ∑
j pj |ψj 〉a a〈ψj |

and ρb = ∑
m qm|ϕm〉b b〈ϕm|, the QFI can be obtained

as [14,15,40,41]

F =
∑

k

4Qk〈φk|J 2
y |φk〉 −

∑
kk′

8QkQk′

Qk + Qk′
|〈φk|Jy |φk′ 〉|2, (7)

where Qk = pjqm, and {|φk〉 = |ψj 〉a ⊗ |ϕm〉b} is a complete-
set basis in the two-mode Hilbert space. We should point out
that the F does not depend on the parameter φ. For the pure-
state case, Eq. (7) is reduced to F = 4(〈J 2

y 〉in − 〈Jy〉2
in).

When the input states on ports a and b are an arbitrary pure
state |ψ〉a and a squeezed thermal state ρb, respectively, the
QFI can be obtained as

F|ψ〉a = n̄a + n̄b + 2n̄an̄b + �|ψ〉a , (8)

where n̄a = a〈ψ |a†a|ψ〉a and

n̄b = (2n̄th + 1) sinh2(r) + n̄th, (9)

are the average photon numbers for modes a and b, respec-
tively. The �|ψ〉a in Eq. (8) is given by

�|ψ〉a = sinh(2r)(2n̄th + 1)Re[〈a2〉] − 4n̄th(n̄th + 1)

2n̄th + 1

× [cosh(2r) + cos(2ϕ0) sinh(2r)]|〈a〉|2, (10)

where ϕ0 is defined by 〈a〉 = |〈a〉|eiϕ0 , and the expectation
values 〈a〉 and 〈a2〉 are taken over the state |ψ〉a . Equations (8)
and (10) show that the QFI depends not only on the average
photon numbers of the two modes, but also on the statistical
properties of the annihilation operator: 〈a〉 and 〈a2〉.

Based on Eqs. (5) and (8), we can determine the QFIs
corresponding to the SQL and HL. For an ideal MZI, the total
photon number operator a†a + b†b is a conserved quantity. If
we denote the total photon number as nT ≡ n̄a + n̄b, then the
SQL and HL are defined by

�φSQL = 1/
√

nT , �φHL = 1/nT . (11)

In these two limits, the corresponding QFIs are

FSQL = nT , FHL = n2
T . (12)

Comparing FSQL and F HL with Eq. (8), we can obtain these
results: To surpass the SQL, the condition �|ψ〉a > −2n̄an̄b

needs to be satisfied; while to approach the HL, the input state
should impose that �|ψ〉a → n̄2

a + n̄2
b − (n̄a + n̄b).

For a fixed nT , we expect to obtain a large F|ψ〉a , namely
a small �φmin, by choosing a proper state |ψ〉a . When n̄a and
n̄b are fixed, this means that we need to find some input states
to make �|ψ〉a as large as possible. In general, it is difficult
to know how the value of �|ψ〉a depends on the statistics of
mode a. However, in the following special case, we can obtain
a non-negative �|ψ〉a : under the condition of either 〈a〉 = 0
or n̄th = 0, the second term in Eq. (10) disappears, and then
we always have �|ψ〉a � 0. We can check that all even or odd
states satisfy this condition 〈a〉 = 0. This means that even or
odd states can be used as a resource to enhance the QFI.

III. PHASE SENSITIVITY AND PARITY MEASUREMENT
FOR EVEN OR ODD STATES

The state ρb in Eq. (2) has two variables: the squeezing
factor r and the thermal photon number n̄th. When r = 0,
the squeezed thermal state is reduced to a thermal state. In
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this case, to surpass the SQL, a quantum state on port a

is needed. Recall that for the quasiclassical (coherent) state
|ψ〉a = |α0〉a , we always have �|α0〉a = −2n̄an̄b(n̄b + 1)(n̄b +
1/2)−1 � −2n̄an̄b. In particular, when |ψ〉a is an even or odd
state, regardless of its form, the QFI is

Fe/o = n̄a + n̄b + 2n̄an̄b, (13)

where n̄b = n̄th. This result means that we can obtain a
sub-shot-noise uncertainty just by mixing a thermal light
with an arbitrary even or odd state in a MZI. In particular,
when n̄a ∼ n̄b ∼ nT /2 � 1, we have the approximate relation
Fe/o ∝ n2

T /2, which is of the same scale of FHL = n2
T . The

situation for r > 0 is more complicated. The QFI in this case
depends on the form of |ψ〉a . Below we will consider several
common even or odd states: the Fock state |N〉a , even or odd
coherent states |α0±〉a , the squeezed vacuum state |ξ0〉a , and
the single-photon-subtracted squeezed vacuum state |ζ (1)〉a .
To see the advantages of even or odd states, we first consider
the coherent state |α0〉a as a reference.

A. Coherent state |α0〉a

Suppose that the port a is fed by a coherent state |α0〉a with
α0 = |α0|eiθc . When θc = 0 the QFI can be obtained from
Eqs. (8) and (10) as

F|α0〉a = e2r

2n̄th + 1
n̄a + n̄b, (14)

where n̄a = n̄|α0〉a = |α0|2 and n̄b = (2n̄th + 1) sinh2(r) + n̄th.
We note that Eq. (14) has been used to analyze the effects of lin-
ear photon losses with inputs of coherent states and squeezed
vacuum states [1,33,36], and the quantum CRB can be obtained
by measuring a symmetric logarithmic derivative [34]. When
0 � n̄th < (e2r − 1)/2, we have F|α0〉a > FSQL, then the SQL
is surpassed. By analyzing the function

�|α0〉a = |α0|2
[

sinh(2r) − 4n̄th(n̄th + 1) cosh(2r)

2n̄th + 1

]
, (15)

we find �|α0〉a > 0 under the condition 0 � n̄th <

(
√

1 + tanh(2r) − 1)/2. This relation shows that, in the small
thermal photon regime, the input with coherent state and
squeezed thermal state can surpass the QFI Fe/o. However,
a disadvantage in this case is that we cannot increase the total
photon number by adding the thermal photon number.

B. Fock state |N〉a

In the case of the Fock state |N〉a , the average photon
number in mode a is N . In this case, we have

�|N〉a = 0, (16)

and the QFI is [37]

F|N〉a = N + n̄b + 2Nn̄b, (17)

which is independent of the values of r , for a fixed average
photon number n̄b. This means that the Fock state input can
naturally surpass the SQL. In particular, we haveF|N〉a >F|α0〉a
when n̄th > (

√
1 + tanh(2r) − 1)/2. Therefore, for a suffi-

ciently large thermal photon number n̄th, the Fock state is better

than coherent states for the estimation of phase uncertainty in
our case.

The quantum CRB �φmin can be reached in this case by
detecting the photon number parity on one of the output modes.
For mode a, the photon-number parity operator is

�a = (−1)a
†a. (18)

We can obtain the expectation value of the parity operator by
calculating the Wigner function of the output state [23]. For
the input state |N〉a a〈N | ⊗ ρb, the Wigner function is

Win(α,β) = W|N〉a (α) Wρb
(β). (19)

Here W|N〉a (α) and Wρb
(β) are, respectively, the Wigner

functions for the Fock state and the squeezed thermal state
(θ = 0) [42]:

W|N〉a (α) = 2

π
(−1)N exp(−2 |α|2)LN (4 |α|2), (20a)

Wρb
(β) = 2

π (2n̄th + 1)
exp

[
−2

(
e2rβ2

r + e−2rβ2
i

)
2n̄th + 1

]
, (20b)

where LN (x) is the Laguerre polynomial of the N th order, βr

and βi are the real and imaginary parts of β, respectively. By
making the replacements

α → α̃ = α cos(φ/2) + β sin(φ/2), (21a)

β → β̃ = −α sin(φ/2) + β cos(φ/2), (21b)

in Win(α,β), we obtain the Wigner function of the output state
as (see the Appendix for details)

Wout(α,β) = Win(α̃,β̃). (22)

The expectation value of the parity operator can be written
as

〈�a〉|N〉a = π

2

∫ ∞

−∞
Wout(0,β) d2β, (23)

where the Wigner function at the origin of the phase space for
mode a is found to be

Wout(0,β) = 4(−1)N

π2(2n̄th + 1)
exp

(−Aβ2
r − Bβ2

i

)
×LN (4 sin2(φ/2)|β|2) (24)

with

A = 2

[
e2r

2n̄th + 1
cos2 (φ/2) + sin2 (φ/2)

]
, (25a)

B = 2

[
e−2r

2n̄th + 1
cos2 (φ/2) + sin2 (φ/2)

]
. (25b)

It is a difficult task to write out the explicit form of Eq. (23)
for general N . However, for small N , the explicit form is
accessible. When N = 0,1,2, we have

〈�a〉|0〉a = 2

(2n̄th + 1)
√

AB
, (26a)

〈�a〉|1〉a = 2 [(A + B)(1 − cos φ) − AB]

(2n̄th + 1)(AB)3/2
, (26b)

〈�a〉|2〉a = 2�

(2n̄th + 1)(AB)5/2
, (26c)
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where

� = AB[AB − 2(A + B)(1 − cos φ)]

+ 2 sin4 (φ/2) (3A2 + 2AB + 3B2). (27)

Using the result of 〈�a〉, we can obtain the fluctuation of the
parity operator as ��a = √〈�2

a〉 − 〈�a〉2 =
√

1 − 〈�a〉2.
According to the error propagation formula

�φmin = min

[
��a

|d〈�a〉/dφ|
]

, (28)

we can analytically show that the quantum CRB �φmin = 1/√
F|N〉a (for N = 0,1,2) can be reached in the limit φ → 0.

This result indicates that the quantum CRB can be reached by
implementing the parity measurement. We also numerically
checked that the quantum CRB can be reached with parity
measurement for larger values of N .

C. Even or odd coherent states |α0±〉a

We now turn to the case of even or odd coherent states (also
called Schrödinger’s cat states). The definition of even or odd
coherent states is

|α0±〉a = N α0± (|α0〉 ± |−α0〉), (29)

whereN α0± = 1/[2(1 ± e−2|α0|2 )]1/2 are the normalization con-
stants. Without loss of generality, hereafter we assume that α0

is real. According to Eq. (10), we obtain

�|α0±〉a = α2
0(2n̄th + 1) sinh(2r). (30)

The corresponding QFIs are then given by

F|α0±〉a = (2n̄th + 1)
[
α2

0 sinh(2r) + n̄|α0±〉a cosh(2r)
] + n̄b,

(31)

where the average photon numbers are

n̄|α0+〉a = α2
0 tanh

(
α2

0

)
, (32a)

n̄|α0−〉a = α2
0 coth

(
α2

0

)
. (32b)

When α0 � 2, we have the approximate relation n̄|α0+〉a �
n̄|α0−〉a � α2

0, and then the QFIs are approximately reduced
to

F ′
|α0+〉a � F ′

|α0−〉a � e2r (2n̄th + 1)n̄|α0±〉a + n̄b, (33)

We see from F ′
|α0±〉a that a sub-shot-noise uncertainty can be

obtained as long as r and n̄th are not simultaneously zero.
Furthermore, the HL can be approached, if n̄th satisfies the
relation

n̄a(2n̄th + 1) sinh(2r) = n̄2
a + n̄2

b − (n̄a + n̄b). (34)

According to F ′
|α0±〉a , we can obtain a large QFI by increasing

the average thermal photon number n̄th for a fixed squeezing
parameter r . This point is different from the coherent-state case
[Eq. (14)], in which a large n̄th may lead to F|α0〉a < FSQL.
It should be pointed out that these states are difficult to be
created with high photon numbers under current experimental
conditions, but this might be possible in the future. The Wigner

function of the even or odd coherent state is [43]

W|α0±〉a (α) = e−2|α|2

π (1 ± e−2α2
0 )

[e−2α2
0+4αrα0 + e−2α2

0−4αrα0

± 2 cos(4αiα0)], (35)

where αr and αi are the real and imaginary parts of α,
respectively. In terms of Eq. (35), we can obtain the expectation
value of the parity operator, with the same method in the above
section, as

〈�a〉|α0±〉a = 2
[
e−2α2

0 exp
(

C2

4A

) ± exp
(− C2

4B

)]
(2n̄th + 1)(1 ± e−2α2

0 )
√

AB
, (36)

where A and B have been given in Eq. (25), and

C = 4α0 sin (φ/2) . (37)

Using Eqs. (28) and (36), we can check that the quantum
CRB can be achieved when φ → 0, i.e., �φmin = 1/

√
F|α0±〉a .

Similar analysis can be done for finite-dimensional even and
odd coherent states [44].

D. Squeezed vacuum state |ξ0〉a

When the input state on port a is a squeezed vacuum state
|ξ0〉a = Sa(ξ0)|0〉a , with ξ0 = Reiθ0 , which is an even state. The
average photon number for this state is n̄a = n̄|ξ0〉a = sinh2(R).
Based on the optimal phase-matching condition θ0 = π [41],
we obtain

�|ξ0〉a = (n̄th + 1/2) sinh(2R) sinh(2r). (38)

The QFI in this case is

F|ξ0〉a = (n̄th + 1/2) cosh[2(R + r)] − 1/2. (39)

When n̄a � 1, Eq. (39) is approximately reduced to

F ′
|ξ0〉a � e2r (2n̄th + 1)n̄|ξ0〉a + n̄b, (40)

which has a similar form as in Eq. (33).
Using the Wigner function of the squeezed vacuum

state [42]

W|ξ0〉a (α) = 2

π
exp

[−2
(
e−2Rα2

r + e2Rα2
i

)]
, (41)

the expected signal of the parity measurement can be obtained
as

〈�a〉|ξ0〉a = 2

(2n̄th + 1)
√

A1B1
, (42)

where we introduce

A1 = 2e2r

2n̄th + 1
cos2(φ/2) + 2e−2R sin2(φ/2), (43a)

B1 = 2e−2r

2n̄th + 1
cos2(φ/2) + 2e2R sin2(φ/2). (43b)

Based on Eqs. (28) and (42), we obtain the quantum CRB for
phase estimation �φmin = 1/

√
F|ξ0〉a in the limit φ → 0.
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E. Single-photon-subtracted squeezed vacuum state |ζ (1)〉a

The single-photon-subtracted squeezed vacuum state is
defined by

|ζ (1)〉a = N1aSa(ζ )|0〉a, (44)

where ζ = R′eiθ ′
, and N1 = 1/ sinh(R′) is the normalization

constant. Up to a trivial phase factor, the state |ζ (1)〉a is
equivalent to the squeezed single-photon state Sa(ζ )|1〉a ,
which has almost unit fidelity to a superposed coherent state of
small amplitude [45]. We note that a state-input with squeezed
single-photon state and coherent state has been studied in
Ref. [46]. When θ ′ = π , we have

�|ζ (1)〉a = 3(n̄th + 1/2) sinh(2R′) sinh(2r), (45)

and the average photon number n̄a = n̄|ζ (1)〉a = 1 +
3 sinh2(R′). According to Eq. (8), the QFI can be obtained as

F|ζ (1)〉a = 3(n̄th + 1/2) cosh[2(R′ + r)] − 1/2, (46)

and the quantum CRB is �φmin = 1/
√
F|ζ (1)〉a . When

implementing the parity detection, we obtain

〈�a〉|ζ (1)〉a = 2

(2n̄th + 1)
√

A1B1

(
A2

2A1
+ B2

2B1
− 1

)
, (47)

where A1 and B1 are given by Eq. (43) with the replacement
R → R′, A2 and B2 are defined by

A2 = 4e−2R′
sin2(φ/2), B2 = 4e2R′

sin2(φ/2). (48)

In the derivation of Eq. (47), we have used the Wigner function
of the single-photon-subtracted squeezed vacuum state [47]

W|ζ (1)〉a (α) = 2

π
exp

[−2
(
e−2R′

α2
r + e2R′

α2
i

)]
×[

4
(
e−2R′

α2
r + e2R′

α2
i

) − 1
]
. (49)

In terms of Eqs. (28) and (47), we find that the best phase
sensitivity, i.e., the quantum CRB �φmin = 1/

√
F|ζ (1)〉a , can

be reached in the limit φ → 0.

F. Quantum CRB versus the thermal photon number n̄th

We now have obtained the phase sensitivity for a MZI,
which is fed by various even or odd states in mode a and a
squeezed thermal state in mode b. To better show these results.
Table 1 lists the average photon number, the function �|ψ〉a ,
and the quantum Fisher information F|ψ〉a for various even or
odd states: Fock states, even or odd coherent states, squeezed
vacuum states, and single-photon-subtracted squeezed vacuum

states. The phase uncertainties can be obtained by �φmin = 1/√
F|ψ〉a . For the states considered here, the SQL can be

surpassed because of F|ψ〉a > nT , and the phase sensitivity
�φmin can be reached with the parity measurement.

To clearly see the behaviors of the phase sensitivity for
various input states, in Fig. 2 we plot the quantum CRB
�φmin = 1/

√
F|ψ〉a as a function of n̄th. Here we fix the average

photon number in mode a: n̄a � 4. Even or odd states used
here with this photon number are accessible with current
or near-future experiments. For the Fock state |N〉a , n̄a � 4
means N = 4. In experiments, Fock states with up to two [48]
and three [49] running photons in optics have recently been
generated. For even or odd coherent states |α0±〉a , n̄a � 4 cor-
responds to α0 � 2, which is very close to current experimental
realizations. A recent experiment [50] reported the generation
of an optical coherent-state superposition with α0 � √

2.6.
For squeezed vacuum and single-photon states, we have
R � 1.45 and R′ � 0.94, satisfying the relation sinh2(R) =
1 + 3 sinh2(R′) or cosh(2R) = 3 cosh(2R′). The squeezing
factor R = 1.45 corresponds to a squeezing of 12.6 dB, which
can be realized with current experimental techniques [51].

As shown in Fig. 2, when increasing n̄th, the phase uncer-
tainties for even- or odd-state inputs decrease monotonically.
In some parameters, the phase uncertainties can approach the
HL. However, for the coherent-state case, the phase uncertainty
first increases and then gradually decreases, and it ultimately
approaches the SQL when increasing n̄th. When r = 0 (ρb

becomes the thermal state), we can see from Fig. 2(a) that
the values of the optimal phase estimation (corresponding to
the quantum CRB) satisfy �φ|α0±〉a = �φ|ξ0〉a = �φ|ζ (1)〉a �
�φ|α〉a , where the last equality takes place if and only if n̄th = 0
(i.e., ρb is a vacuum state). When ρb is a thermal state, the
values of the optimal phase estimation for all even or odd states
are the same, which can beat the SQL. This point can be seen
from the expression of Fe/o. However, the phase sensitivity
for a coherent-state input cannot beat the SQL, because two
classical states cannot be entangled by a beam splitter [52].

When r > 0, as shown in Figs. 2(b) and 2(c), the phase
sensitivities for all even or odd states always beat the SQL, and
approach the HL when n̄b ∼ n̄a . In the coherent state case, the
phase sensitivity can beat the SQL when n̄th is not too large.
This is because F|α0〉a > FSQL when 0 � n̄th < (e2r − 1)/2.
In addition, for a given state in Fig. 2 panels, from top to
bottom, the values of the corresponding points with the same
n̄th decrease because the squeezing part will increase the total
photon number.

TABLE I. The average photon number n̄a in mode a, the function �|ψ〉a , and the QFI F|ψ〉a for the MZI, when the two input ports are fed
by an even or odd state |ψ〉a in mode a and a squeezed thermal state ρb in mode b. Here, the |ψ〉a could be either a Fock state |N〉a , even or
odd coherent states |α0±〉a (here we assume α0 is real), squeezed vacuum state |ξ0〉a with ξ0 = −R, or a single-photon-subtracted squeezed
vacuum state |ζ (1)〉a with ζ = −R′. The average photon number in mode b is n̄b = (2n̄th + 1) sinh2(r) + n̄th, and the total photon number
is nT = n̄a + n̄b. The phase uncertainties can be obtained by �φmin = 1/

√
F|ψ〉a . For the states considered here, the SQL can be surpassed

because of F|ψ〉a > nT , and the phase sensitivity �φmin can be reached with the parity measurement.

Input states |ψ〉a n̄a �|ψ〉a F|ψ〉a

|N〉a N 0 N + (2N + 1)[(2n̄th + 1) sinh2(r) + n̄th] > nT

|α0±〉a α2
0 for α0 � 2 α2

0(2n̄th + 1) sinh(2r) α2
0(2n̄th + 1) sinh(2r) > nT

|ξ0〉a with ξ0 = −R sinh2(R) (n̄th + 1/2) sinh(2R) sinh(2r) (n̄th + 1/2) cosh[2(R + r)] − 1/2 > nT

|ζ (1)〉a with ζ = −R′ 1 + 3 sinh2(R′) 3(n̄th + 1/2) sinh(2R′) sinh(2r) 3(n̄th + 1/2) cosh[2(R′ + r)] − 1/2 > nT
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FIG. 2. (Color online) The quantum CRB �φmin ≡ (F|ψ〉a )−1/2

as a function of the thermal photon number n̄th for various input
states in mode a: coherent state |α0〉a (blue dashed curve), Fock state
|N〉a (cadet blue dotted curve), even or odd coherent states |α0±〉a

(magenta dash-dotted curve), squeezed vacuum state |ξ0〉a (purple
short-dashed curve), and single-photon-subtracted squeezed vacuum
state |ζ (1)〉a (green dash-dot-dotted curve). Here, the average photon
number for mode a is n̄a � 4, the mode b is in the squeezed thermal
state ρb with the squeezing factor (a) r = 0, (b) r = 1, (c) r = 1.5.
The HL (black solid curve) and SQL (red solid curve) are shown
for comparison. Note that the curves for the last four states exactly
overlap with each other in panel (a), and the curves for the last three
states approximately overlap with each other in panels (b) and (c).

IV. CONCLUSION

In summary, we have studied the QFI for a MZI, which is
fed by an arbitrary pure state and a squeezed thermal state.
We have shown that, when the input pure state is an even or
odd state, the phase sensitivity can be drastically improved.
By mixing the even or odd states and a high-intensity thermal
light, a sub-shot-noise phase uncertainty can be obtained, and
this uncertainty only depends on the total photon number,
regardless of the form of the even or odd states. For the
case of a squeezed thermal state, the sensitivity can be further
improved even approaching the HL when the pure-state port
is fed by an even or odd state. As examples, we considered

Fock states, even or odd coherent states, squeezed vacuum
states, and single-photon-subtracted squeezed vacuum states.
Furthermore, we have demonstrated that the superprecision
given by the quantum CRB can be realized by implementing
the parity measurement.
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APPENDIX: DERIVATION OF EQ. (22)

In this Appendix, we present a detailed derivation of
Eq. (22). The Wigner function of the input state ρin is defined
by

Win(α,β) = 4

π2
Tr[ρinDb(β)Da(α)(−1)a

†a+b†bD†
a(α)D†

b(β)],

(A1)

where the displacement operators are defined by
Da(α) = eαa†−α∗a and Db(β) = eβb†−β∗b.

For the input state ρin, the output state is ρout =
U (φ)ρinU

†(φ), where U (φ) = e−iφJy is the unitary evolution
operator of the MZI. The Wigner function of the output state is

Wout(α,β) = 4

π2
Tr[ρoutDb(β)Da(α)(−1)a

†a+b†bD†
a(α)D†

b(β)]

= 4

π2
Tr[ρin�(φ,α,β)(−1)a

†a+b†b�†(φ,α,β)]

(A2)

with

�(φ,α,β) = U †(φ)Db(β)Da(α)U (φ). (A3)

In Eq. (A2), we have used the commutation relation
[a†a + b†b,Jy] = 0.

In terms of the relations

U †(φ)aU (φ) = a cos(φ/2) − b sin(φ/2), (A4a)

U †(φ)bU (φ) = a sin(φ/2) + b cos(φ/2), (A4b)

we obtain

�(φ,α,β) = Da(α̃)Db(β̃), (A5)

where we introduce

α̃ = α cos(φ/2) + β sin(φ/2), (A6a)

β̃ = −α sin(φ/2) + β cos(φ/2). (A6b)

Therefore, the Wigner function of the output state can be
expressed as Wout(α,β) = Win(α̃,β̃).
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[47] A. Kenfack and K. Życzkowski, J. Opt. B: Quantum

Semiclassical Opt. 6, 396 (2004).
[48] A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, Phys. Rev.

Lett. 96, 213601 (2006).
[49] M. Cooper, L. J. Wright, C. Söller, and B. J. Smith, Opt. Express
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