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From blockade to transparency: Controllable photon transmission through a circuit-QED system

Yu-xi Liu,1,2,3,* Xun-Wei Xu,1 Adam Miranowicz,3,4 and Franco Nori3,5

1Institute of Microelectronics, Tsinghua University, Beijing 100084, China
2Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, China

3CEMS, RIKEN, Saitama 351-0198, Japan
4Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
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A strong photon-photon nonlinear interaction is a necessary condition for a photon blockade. Moreover, this
nonlinearity can also result in a bistable behavior in the cavity field. We analyze the relation between the detecting
field and the photon blockade in a superconducting circuit-QED system, and show that a photon blockade cannot
occur when the detecting field is in the bistable regime. This photon blockade is the microwave-photonics analog
of the Coulomb blockade. We further demonstrate that the photon transmission through such a system can be
controlled (from photon blockade to transparency) by the detecting field. Numerical calculations show that our
proposal is experimentally realizable with current technology.
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I. INTRODUCTION

Superconducting circuit quantum electrodynamics (QED)
allows one to study the interaction between superconducting
qubits (or superconducting artificial atoms) and quantized
microwave fields (see, e.g., the reviews in Refs. [1–3]).
The coupling strengths have been explored from the strong-
coupling regime to the ultrastrong one [4–7]. It is well known
that the equally spaced energy structure of the quantized
microwave field can be changed to an anharmonic one,
including dressed states [8–10]. The nonlinear energy splitting
in a circuit-QED system has been experimentally shown by the
Rabi frequencies for different numbers of microwave quanta
inside the cavity [11]. Moreover, the experimental spectrum
with the square root of the photon-number nonlinearity was
reported [12]. Furthermore, the nonlinear response of the
vacuum Rabi resonance was demonstrated [13].

Current experimental data indicate that the nonlinearity of
the microwave photons can be many orders of magnitude larger
than that of macroscopic media. These experiments [9–12]
lay a solid foundation for developing microwave nonlinear
interactions, which might be used to improve qubit readout
[14,15], and open the door to further studies of microwave
nonlinear quantum optics at the level of single artificial atoms
and single microwave photons. For example, the photon
blockade phenomenon [16–19], where subsequent photons
are prevented from resonantly entering a cavity, has recently
been observed in circuit-QED systems with resonant [20] and
dispersive [21] qubit-cavity-field interactions.

The photon blockade originates from the anharmonic
energy-level structure of the light field when the strong photon-
photon interaction is induced by the nonlinear medium [16,19].
In circuit-QED systems in resonance, the anharmonicity of the
microwave field is from a highly hybridization of the qubit and
the microwave cavity field [20]. However, for the nonresonant
case, the qubit can induce the photon-photon interaction when
the qubit degrees of freedom are adiabatically eliminated [21].
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This photon blockade is the analog of the Coulomb blockade
[22], where single-electron transport, through a small metallic
or semiconductor island sandwiched by two tunnel junctions
in electron devices, occurs one by one due to the Coulomb
interaction. Therefore, similar to the single-electron devices
using the Coulomb blockade, the photon blockade could be
used as a single-photon source or single-photon transistor.

One of the basic conditions for a photon blockade is that
the decay rate of the cavity field should be less than the
photon-photon interacting strength. However, the decay of the
photon-number states is very different from that of coherent
states [23,24]; thus, a photon blockade might not be observed
when the photon number inside the cavity is extremely large. In
addition, bistability is one of the basic properties of nonlinear
systems, but there is a lack of studies on the effect of bistability
on the photon blockade. Here we will study the relation
between bistability and the photon blockade and explore the
possibility of unblocking the photon of the detecting field by
using electromagnetically induced transparency [25,26].

In our paper, we will first describe the model Hamiltonian in
Sec. II, and also give a detailed comparison between the photon
and the Coulomb blockades. Then in Sec. III we will study the
relation between the bistability and the photon blockade. In
Sec. IV we will discuss the effect of the driving field on the
photon blockade. In Sec. V we will study how the photon
blockade can be lifted and thus the system would become
transparent. Finally, we summarize our results in Sec. VI.

II. MODEL HAMILTONIAN

As schematically shown in the black dashed box of Fig. 1,
we study a circuit-QED system in which the microwave cavity
field with frequency ω0 inside the transmission line resonator
and the superconducting charge qubit with frequency ωq are
coupled to each other with the coupling strength g. We make
the following assumptions:

(i) The cavity field and the qubit satisfy the large-detuning
condition |ω0 − ωq | � g. That is, they are in the dispersive
interaction regime. Without loss of generality, hereafter we
also assume � ≡ ω0 − ωq > 0.

1050-2947/2014/89(4)/043818(7) 043818-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.043818


LIU, XU, MIRANOWICZ, AND NORI PHYSICAL REVIEW A 89, 043818 (2014)

S 

driving field

E(t)
ain(t) 

aout(t) 

vacuum noise

FIG. 1. (Color online) Schematic diagram for the circuit-QED
system of a superconducting charge qubit (denoted by the small
purple square) coupled to a transmission line resonator, indicated
by the black dashed box. The input (output) is denoted by the arrows
going to (the arrow leaving from) the black dashed box. We assume
that the input field, including the classical driving field E(t) and the
vacuum noise ain(t), is applied to the cavity at the left port. The output
field is measured at the right port.

(ii) The rotating-wave approximation can be used. In this
case, the dynamics of the interaction Hamiltonian between the
cavity field and the qubit can be easily solved.

(iii) Other upper levels of the qubit system are far from
the first excited energy level, and the transition frequency
between the first and second excited states is much bigger
than the frequency of the cavity field. Thus, the cavity field
only interacts with the qubit.

(iv) The circuit-QED system is in the bad-cavity limit, i.e.,
the decay rate of the microwave cavity field is much higher
than that of the qubit.

The above conditions can be satisfied in circuit-QED
systems [1,3] by well-chosen sample design and fabrication.
The interaction between the cavity field and the external
environment, including the classical driving field and the
vacuum noise, can be described via the input-output theory
[27].

Let us first neglect the quantum noise of a weak driving field
ε(t) that is applied to the cavity. We note that the neglected
quantum noise applied to the cavity field due to the driving
field can usually be described by coupling the cavity field
to many harmonic oscillators. Thus, the driven Hamiltonian
without the quantum noise,

H̃ = �ω0a
†a + �

ωq

2
σz + �g(a†σ− + aσ+)

+ �[ε(t)a† + H.c.], (1)

under the rotating-wave approximation, can be transformed to
an effective Hamiltonian H = T †H̃T with

H = �ω0a
†a + �

2
[ω0 − E(N )]σz + �[ε(t)a† + ε∗(t)a] (2)

in the dispersive qubit-cavity-field interaction regime by
applying a canonical transformation [28]

T = exp

[
− θ√

4N
(aσ+ − a†σ−)

]
, (3)

with tan θ = −2g
√

N/� and

E(N ) =
√

�2 + 4g2N. (4)

Here the total number operator N of excitations of the qubit
and the cavity field is given by

N = a†a + 1
2 (σz + 1). (5)

a†and a are the creation and annihilation operators of the cavity
field, respectively; σz is Pauli’s operator, and σ+ (σ−) is the
qubit raising (lowering) operator. In the derivation of Eq. (2),
the terms proportional to O(N−1/2) are neglected.

The excited and ground states of the qubit with sign ± for
σz in the effective Hamiltonian in Eq. (2) are considered as the
attractive and repulsive photon-photon interactions for � > 0.
Although we analyze in detail only the case when � > 0,
it is worth mentioning that the opposite case � < 0 would
also correspond to the repulsive and attractive photon-photon
interactions.

We also assume that the cavity field and the qubit are in
the strong-dispersive bad-cavity regime as in Refs. [21,29].
That is, the decay rate κ of the microwave cavity field is much
higher than the decay γ and dephasing γφ rates of the qubit,
and also satisfies the condition

γ,γφ � κ � g2

�
� g � �. (6)

Thus, the environmental effect on the qubit can be neglected
in our following discussions.

If a monochromatic driving field with frequency ωd is
applied to the cavity mode, then the Hamiltonian in Eq. (2) with
ε(t) = 
e−iωd t can be used to describe the photon blockade
[16,25] when the coupling strength 
 between the driving field
and the cavity field is much smaller than the photon-photon
coupling constant χ given below. Moreover, the decay rate
κ of the cavity field should also be much smaller than χ to
experimentally observe a photon blockade. In the dispersive
regime, the single two-level atom-induced photon blockade
can be understood by expanding the Hamiltonian in Eq. (2),
up to third order in the parameter g/�, as

Heff = �χ (n − nc)2 + �(
a† + 
∗a), (7)

with n = a†a in the rotating reference frame with the fre-
quency ωd for the driving field. Here, χ = g4/�3 denotes the
photon-photon interaction strength, and nc = (χ − �d )/(2χ )
is the rescaled detuning �d = ω0 − ωd between the driving
and the cavity fields. We notice that an effective Hamiltonian as
in Eq. (7) can also be derived for the case when the cavity field
interacts with multilevel superconducting quantum systems.
The detailed derivations are given in Ref. [15].

In the derivation of Eq. (7), we have used the weak-
excitation condition � > 2g〈N〉 for the photon blockade; also
several constant terms and the qubit state-dependent cavity-
frequency shift have been neglected with the assumption
σz = 1. That is, the qubit is in its excited state. Actually, the
sign of the effective Hamiltonian in Eq. (7), derived from the
Hamiltonian in Eq. (2), depends both on the qubit state and the
detuning � between the qubit frequency ωq and the cavity-field
frequency ωq . In the following numerical discussions, we use
our assumption � = ω0 − ωq > 0 and σz = 1 (the qubit is
in the excited state). These selections are only used for the
numerical calculations. These assumptions are equivalent to
the case � < 0 and σz = −1 (when the qubit is in the ground
state).

Equation (7) shows that the Kerr energy �χ corresponds
to the charging energy Ec, while the driving field frequency
ωd (or, equivalently, the rescaled detuning nc) corresponds to
the gate voltage Vg in single-electron devices for a Coulomb
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TABLE I. Equivalence between the photon and Coulomb block-
ades (or similarity between the photon blockade and superconducting
charge qubits).

Quanta Photons Electrons

Characteristic energy Kerr energy �χ Charging energy Ec

Energy offset control Driving field of Gate voltage Vg

frequency ωd

Detecting method Driving field E(t) Bias voltage Vb

Measurement of output Photon number 〈n〉 Electron current I

Tunneling energy Coupling Josephson energy EJ

energy �|
|

blockade (see Table I). Equation (7) also shows that the
parameters χ , ωd (or nc), and |
| play similar functions as the
charging energy, the gate voltage, and the Josephson energy
of the charge qubit, respectively. For resonant driving, �d = 0
and nc = 0.5, the photon states |0〉 and |1〉 are degenerate for
the free Hamiltonian �χ (n − 0.5)2. As shown in Fig. 2(a),
this degeneracy can be lifted by the coupling strength |
|.
Figures 2(b) and 2(c) show the variations of the eigenenergies
and the mean photon number 〈n〉 of the ground state for
the Hamiltonian in Eq. (7) as functions of the parameter
nc. Variations for both the eigenenergy and the mean photon
number are the same as those for the eigenenergy and mean
charge number of charge qubits or single-electron devices for
a Coulomb blockade. The staircase shape for the mean photon
number was experimentally demonstrated in a circuit-QED
system [21]. Moreover, Fig. 2(a) also shows that a large ratio
χ/|
| corresponds to a sharper step. Namely, a weak driving
field and strong photon-photon interaction are more useful for
detecting a photon blockade.

III. BISTABILITY AND BLOCKADE

We know that driven nonlinear photonic systems can exhibit
bistability. To study the relation between bistability and the
photon blockade, we now write the equation of motion, using
the driven Hamiltonian in Eq. (2) with ε(t) = 
e−iωd t , as

∂a

∂t
= −

[
iω0 + κ − i

g2σz

E(N )

]
a − i
e−iωd t −

√
2κain(t),

(8)

by using the relation [a,f (a,a†)] = ∂f (a,a†)/∂a† between the
operator a and the function f (a,a†) of the operators a and a†.
For example, we have the following relation:

[a,
√

�2 + 4g2N ] = 2g2a√
�2 + 4g2N

. (9)

Here, we have neglected the detailed derivation of the decay
rate κ and the quantum fluctuation ain of the cavity field
and phenomenologically added them to Eq. (8) according
to Ref. [27]. We note that the second term in Eq. (8) is a
scalar, thus formally it should be understood that this term
is multiplied by an infinite-dimensional identity operator. As
schematically shown in Fig. 1, we notice that the input includes
both the quantum fluctuations ain and the driving field E(t).
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FIG. 2. (Color online) (a) Eigenvalues Ek(nc) (green curves) of
the free Hamiltonian �χ (n − nc) in Eq. (7) vs the rescaled detuning
nc = (χ − �d )/(2χ ) for the photon numbers n = 0 and n = 1
inside the cavity, in energy units of �χ . Blue curves denote the
eigenvalues E0(nc) and E1(nc) of the ground and first excited states
for the Hamiltonian in Eq. (7) vs the rescaled detuning nc near the
point nc = 0.5, with an effective Hamiltonian �χ (nc − 0.5)(|1〉〈1| −
|0〉〈0|) + �(
|1〉〈0| + 
∗|0〉〈1|), when the external field is included.
The degeneracy of the two eigenvalues in the free Hamiltonian is
lifted at the point nc = 0.5, with distance �|
|, by the external
field. All dotted-dashed curves mean nc > 0.5, however, solid curves
mean nc < 0.5. (b) Several eigenvalues Ek(nc) (up to four) of the
Hamiltonian in Eq. (7) vs the detuning nc for the ratio χ/|
| = 10.
(c) The mean photon number in the ground state |ψ0〉 of the
Hamiltonian in Eq. (7) vs the detuning nc for χ/|
| = 1 (green
dashed-dotted curve), 10 (red dashed curve), and 100 (blue solid
curve). This is the photon analog of the Coulomb staircase.
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We assume that the quantum fluctuations ain due to the vacuum
field are Gaussian and have a zero mean value 〈ain(t)〉 = 0 and
satisfy the Markov correlation

〈ain(t)a†
in(t ′)〉 = δ(t − t ′). (10)

If we denote a(t) = A(t)e−iωd t , then the steady-state solution
As ≡ 〈A〉s for the cavity field becomes

As = −i



κ + i[�d − g2σz/E(N )]
, (11)

by setting (∂a/∂t) = 0 in Eq. (8) and using the mean-field
approximation, e.g., 〈a†a〉s = 〈a†〉s〈a〉s . We note in Eq. (11)
and hereafter, although the operator σz still remains in many
equations, the operator σz is actually set to σz ≡ 1 in all
numerical calculations by assuming that the qubit is always
in its excited state. In this case, the qubit, which is in the
ground state, can also be easily discussed by setting σz ≡ −1.
We also note that E(N ) in Eq. (11) is the expression of E(N )
when replacing the operator a†a = N by the steady-state value
N = |As |2, i.e.,

E(N ) =
√

�2 + 4g2
[|As |2 + 1

2 (1 + σz)
]
. (12)

Equation (11) shows that the cavity-field amplitude |As |2 has
two stable states when �d satisfies the condition

�− < �d < �+, (13)

with

�± = g2

E(N )
−

2g4|As |2 ∓
√

4g8|As |4 − κ2E6(N )

E3(N )
. (14)

Equation (11) also clearly shows when the qubit is decoupled
from the cavity field (i.e., g = 0) or when the driving field
makes |As |2 extremely large, such that gσz/E(N ) ≈ 0, then
the response of the system is the same as that of the harmonic
oscillator. However, when g �= 0, the resonant peak of |As |2
will move to ωd = ω0 − gσz/E(N ). That is, when the cavity
contains |As |2 photons, the frequency ωd of the driving field
should be increased an amount −gσz/E(N ) to overcome the
photon blockade [16]. The upper-bound photon number inside
the cavity for the photon blockade is

Nup ∼ g4

�3κ
= χ

κ
(15)

in the dispersive regime, as discussed in Ref. [29].
In Fig. 3, the steady state |As | versus the input |
| is plotted

for several different detunings �d and other experimentally
accessible parameters [21]. Figure 3 clearly shows that
the bistability disappears for either �d > �+ or �d < �−.
Figure 3 also shows that most values for |As | are smaller
than the upper-bound value

√
Nup for some values of �d in

the bistable regime, e.g., values in the region near �d/2π =
37 MHz, as shown in Fig. 3(b). However, as shown in
Fig. 3(a) for other parameter regimes of �d , we find that the
upper-bound value

√
Nup can be smaller than some values

of |As | corresponding to the lower branch of the bistable
curve. Therefore, Fig. 3 tells us that Nup is a necessary but not
sufficient condition for a photon blockade. Because one input
corresponds to two stable outputs in the hysteresis region, thus
the photon blockade is not well defined in such a region.

FIG. 3. (Color online) Logarithm log(|As |) of the steady-state
solution |As | vs the strength of the driving field |
|, for different
detunings �d/2π equal to (a) −1 MHz (solid black), 0 MHz (dashed
red), and 1 MHz (dotted-dashed green), and (b) 36 MHz (solid black),
37 MHz (dashed red), and 38 MHz (dotted-dashed green curves).
Here, Nup (double-dotted-dashed blue lines) is the upper-bound
photon number for the photon blockade, �/2π = 1 GHz, κ/2π =
0.1 MHz, and g/2π = 200 MHz. For the above given parameters,
|As | has two stable states when 9.1 kHz < �d < 36.95 MHz.

IV. DEPENDENCE OF PHOTON BLOCKADE ON
DETUNING �d AND DRIVING STRENGTH �

To show the effect of the driving field on the photon
blockade, let us now study the statistical properties of the
cavity field when the input ain of the vacuum fields in Eq. (8)
is considered. We assume that the vacuum fields ain in Eq. (8)
result in a small fluctuation Af (t) of the cavity field near its
stable steady state As by writing the cavity operator as

A(t) = As + Af (t). (16)

In addition to the steady-state solution as in Eq. (11), with
the input ain(t) = Ain(t)e−iωd t , we can obtain an equation of
motion for the fluctuation operator Af (t) as

∂Af (t)

∂t
= −[i�̃d (N ) + κ]Af (t)

− iα(N )A†
f (t) −

√
2κAin(t), (17)

with

�̃d (N) = �d − δω(N ), (18)

α(N ) = 2
g4A2

s σz

E3(N )
, (19)
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and

δω(N ) = g2σz

E3(N )
[E2(N ) − 2g2|As |2]. (20)

Here the terms with higher orders of Af (t) and A
†
f (t), e.g.,

the term Af (t)Af (t), have been neglected. By applying the
Fourier transform

Af (t) =
∫ ∞

−∞

dω√
2π

exp(−iωt)Af (ω) (21)

and also using the conjugate of Eq. (17) with A
†
f (ω) ≡

[Af (−ω)]†, we obtain the solution of the fluctuation as

Af (ω) = i
√

2κ

d(ω)
[(�̃d − ω + iκ)Ain(ω) + α(N )A†

in(ω)], (22)

with the denominator factor

d(ω) = (iω + κ)2 + �̃2
d − |α(N )|2. (23)

The statistical properties of the cavity field can be described
via the second-order degree of coherence g(2)(τ ). Because
we assume that the vacuum input is Gaussian and satisfies
the Markov correlation, thus g(2)(τ ) can be obtained by just
calculating the correlation function with two operators using
Wick’s theorem, that is,

g(2)(τ ) = 2 Re
[
A2

s 〈A†
f (t)A†

f (t ′)〉 + |As |2〈A†
f (t)Af (t ′)〉]

(|As |2 + 〈nf (t)〉)2

+ |〈A†
f (t)A†

f (t ′)〉|2 + |〈A†
f (t ′)Af (t)〉|2

(|As |2 + 〈nf (t)〉)2
+ 1 (24)

with t ′ = t + τ and 〈nf (t)〉 = 〈A†
f (t)Af (t)〉.

It is easy to obtain g(2)(τ ) straightforwardly by calculating
all correlation functions in Eq. (24) using Eq. (22) and
[Af (−ω)]†. The second-order degrees of coherence g(2)(0) and
g(2)(τ ) are plotted in Figs. 4(a) and 4(b) using experimentally
accessible parameters, e.g., in Ref. [21]. Figures 4(a) and 4(b)
show that the cavity field tends to the classical behavior when
increasing the strength 
. In this case, the photons might not be
blockaded and can transparently pass through the circuit-QED
system. To explore the effect of the frequency of the driving
field, g(2)(0) is plotted as a function of the detuning �d in
Figs. 4(c) and 4(d) for different coupling strengths between
the qubit and the cavity field with other parameters given in
the caption of Fig. 4. Figures 4(c) and 4(d) clearly demonstrate
that the nonclassical behavior of the cavity field is out of the
bistable regime for detuning �d . For example, Fig. 4(c) shows
g(2)(0) � 1 when �d/2π � 9.85 MHz, which is larger than
the upper-bound value 9.627 MHz of �d for the bistabilility,
and thus the photon blockade cannot occur in the bistable
regime.

V. PHOTON BLOCKADE AND TRANSPARENCY

To further discuss properties of the light field transmission
when the photons are blockaded, we now study the response
of the circuit-QED system to the vacuum input field, which
can be considered as a weak detecting field. According to the

FIG. 4. (Color online) (a) Coherence g(2)(0) vs the driving field
strength |
|. (b) g(2)(τ ) vs the delay time τ , where the solid
black and dashed red curves correspond to the driving strengths
|
|/2π = 0.01 and 1 MHz, respectively. Also, �d = 38.5 MHz,
�/2π = 1 GHz, g/2π = 200 MHz, and κ/2π = 0.1 MHz. Also,
g(2)(0) vs the detuning �d in (c) for g/2π = 100 MHz and
(d) for g/2π = 200 MHz, with �/2π = 1 GHz, |
|/2π =
0.01 MHz, and κ/2π = 0.1 MHz. For the parameters given in (c) and
(d), the condition of the stable states for the driving field is 18 kHz <

�d < 9.627 MHz and 9.1 kHz < �d < 36.95 MHz, respectively.
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FIG. 5. (Color online) The real AR(ω′) and imaginary AI(ω′)
parts Ain(ω′)/ξ as a function of ω′ = ωd − ω are plotted in (a) and (b),
respectively, for the detuning �d/2π equal to 9.74 MHz (solid black
curves) and 9.96 MHz (dashed red curves) assuming �/2π = 1 GHz,
g/2π = 100 MHz, and κ/2π = |
|/2π = 0.1 MHz.

input-output theory [27], the output field can be expressed as

aout(t) =
√

2κa(t) + ain(t) + i

√
2κ

exp(−iωdt) (25)

by using the cavity field and the input fields. From the former
study, we know

a(t) = A(t) exp(−iωdt) = [As + Af (t)] exp(−iωdt). (26)

Thus, the Fourier components of the output field can be written
as

aout(ω) = Ain(ω′) +
√

2κAf (ω′) +
[

2κAs + i
√
2κ

]
δ(ω′), (27)

with ω′ = ω + ωd and Af (ω) given in Eq. (22). The physical
meaning becomes clear if the vacuum input ain(t) is assumed
as a single-mode field ain(t) = ξ exp(−iωt) with the real
parameter ξ � |
|; that is, this weak detecting field does
not change the statistical properties of the cavity field. In
this case, ω′ in Eq. (27) is changed to ω′ = ωd − ω, and the
terms Ain(ω′) and δ(ω′) in Eq. (27) denote the response of the
system to the input vacuum field and the classical driving field,
respectively. However, the term with A

†
in(ω′) exhibits four-

wave mixing with frequency ω − 2ωd , which will be studied
elsewhere.

The coefficient of Ain(ω′) for the output in Eq. (27)
corresponds to that of Ain(ω′) in the expression Af (ω′) of
Eq. (22) plus one. Thus, in Figs. 5(a) and 5(b), the real AR(ω′)
and imaginary AI(ω′) parts for the normalized coefficient
of Ain(ω′)/ξ in Eq. (22) for Ain(t) = ξ exp[−i(ω − ωd )t]
are plotted using the same parameters as in Fig. 4(c), with
�d ≈ 9.96 MHz and �d ≈ 9.74 MHz. These two values
correspond to the minimum (photon blockade) and the max-
imum (classical case) of g(2)(0) in Fig. 4(c). As expected,
we find that the response of the circuit-QED system to the
input field (or, say, the weak detecting field) has a Lorentzian
shape, which is the same as the decay spectrum of the single
photon, when the photon is blockaded. However, the weak
detecting field shows transparency windows to the circuit-QED
system when the driving field is changed such that the
cavity field is in the classical regime (or the photon is not
blockaded). Thus, we can control the photon (from blockade
to transparency) by changing the applied classical field.

Here, we note that we analyze the transparency of the sys-
tem in terms of its response to the vacuum fluctuations, which
is a standard approach to studying electromagnetically induced
transparency (EIT) [30]. A deeper analysis, including the study
of the response of this system to incoming other nonvacuum
fields (such as single-photon, coherent, and squeezed states),
will be presented elsewhere.

VI. CONCLUSIONS

In summary, we have studied the tunable transmission
from the photon blockade to the photon transparency in
superconducting circuit-QED systems when the interaction
between the qubit and the cavity field is in the dispersive
regime. We analyze the effect of the driving field on the
photon blockade. We also show the relation between the optical
bistability and the photon blockade. We find that the photon
blockade can be controlled by a classical driving field, that is,
the photon blockade strongly depends on the properties of the
driving field. We also find that the circuit-QED system can be
used to generate a four-wave mixing signal. All parameters
in our numerical calculations are taken from experimentally
available data. Therefore, our study should be experimentally
realizable with current technology. We finally point out that
the similarity between the photon blockade and Coulomb
blockade (or superconducting charge qubit) makes it possible
to simulate the electron behavior (or Josephson effect) using
photonic devices.
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