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Single-photon router: Coherent control of multichannel scattering for single photons
with quantum interferences
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We propose a single-photon router using a single atom with an inversion center coupled to quantum
multichannels made of coupled-resonator waveguides. We show that the spontaneous emission of the atom
can direct single photons from one quantum channel into another. The on-demand classical field perfectly
switches off the single-photon routing due to the quantum interference in the atomic amplitudes of optical
transitions. Total reflections in the incident channel are due to the photonic bound state in the continuum. Two
virtual channels, named the scatter-free and controllable channels, are found, which are coherent superpositions
of quantum channels. Any incident photon in the scatter-free channel is totally transmitted. The propagating states
of the controllable channel are orthogonal to those of the scatter-free channel. Single photons in the controllable
channel can be perfectly reflected or transmitted by the atom.
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I. INTRODUCTION

A quantum network [1] consists of quantum channels
and nodes, which are provided by waveguides and quantum
emitters, respectively. The flying qubits in quantum channels
serve to distribute quantum information. The static qubits in
local nodes generate, process, and route quantum information.
Photons are ideal carriers in quantum channels because they
are fast, robust, and readily available. Although it is easy to
control photons in linear optical systems [2–5], waveguides
are more promising, as the technology proceeds to smaller on
chip structures. Currently, considerable attention has been paid
to photon transport in one-dimensional (1D) waveguides with
a quantum emitter both in theory [6–22] and in experiments
[23–30]. The waveguide confines photons in low dimensions
and has a dispersion relation different from photons in free
space, giving rise to new physical phenomena, e.g., the
total reflection in Refs. [6] and [7]. The coupled-resonator
waveguide (CRW) [31] is an important waveguide for studying
waveguide QED due to the following advantages: (1) strong
coupling between light and matter; (2) wider bandwidths; (3)
scalability (e.g., ultrahigh-Q coupled nanocavity arrays with
N > 100 have been realized in photonic crystals [32]); (4)
easy addressability; and (5) ability to simulate the behavior
of single particles in the short- and long-wavelength regimes.
The discreteness of CRW offers a rich variety of properties
and possibilities that do not exist in the bulk, e.g., bound
states outside the band [33]. Currently, many photonic devices
(see, e.g., [7–11], and references therein) based on using
single atoms in a 1D CRW have been proposed. Most of
the theoretical work focuses on controlling photons in one
continuum of propagating states. Recently, a cyclic three-level
system embedded in multiple quantum channels formed with
1D CRWs has been proposed as a quantum router [9], where
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single photons are routed from one continuum to another by
the cyclic system with the help of a classical control field.
However, the experimental realization of this proposal faces
the challenge that cyclic transitions are forbidden for natural
atoms, as these possess an inversion center [34]. One should
use either chiral systems [35] or atoms whose symmetry
is broken artificially [36,37]. These bring complexities to a
possible realization. A router using natural atoms will certainly
contribute to the studies on quantum networks and routers and
facilitate their experimental realization.

In this work, we propose a single-photon routing scheme
using systems with an inversion center. The two continua
of propagating states are constructed by two 1D CRWs. To
control the transfer of propagating states from one continuum
to the other, we explore quantum coherence and interference
effects, such as the electromagnetically induced transparency
in a system of a three-level � atom embedded inside the two
1D CRWs. Here the � atom plays the role of a quantum
node for routing. One transition of the � atom is coupled
to the photonic modes of two CRWs. The other transition is
driven by a classical field. Differently from the routers [38,39]
based on designing a time-dependent classical field acting on
a large area of the considered system, here, a classical field
is applied to individually address the atom. The scattering
process is studied when a single photon is incident from
one CRW. We find that the quantum node indeed works as
a multichannel quantum router, and the classical field selects
the channel to which single photons are directed or transferred.
The multichannel effect is taken into account by studying the
single-photon scattering process with waves incident from two
CRWs. A controllable channel and a scattering-free channel
[13] are found when both CRWs are identical.

This paper is organized as follows: In Sec. II, we introduce
our model, which consists of a three-level � atom embedded
in two CRWs. In Sec. III, we employ the discrete-coordinate
scattering approach to study the scattering process of single
photons and give the expressions for scattering amplitudes. We
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discuss the function of the three-level atom in Sec. IV using the
eigenstates for the total system. Here, two band configurations
of the two CRWs are studied, and the underlying physics for
controlling single-photon routing are discussed. In Sec. V, we
study the possibility of a three-level atom acting as a perfect
mirror or a transparent medium for single photons with waves
incident from two CRWs. Finally, we conclude with a brief
summary of the results, with accompanying discussion.

II. MODEL SETUP

As shown in Fig. 1, our hybrid system consists of two 1D
CRWs and a three-level system. The cavity modes of the two
1D CRWs are described by the annihilation operators aj and
bj , respectively, and subscript j = −∞, . . . , + ∞. The atom
located at j = 0 is characterized by the ground state |g〉, one
intermediate state |s〉, and an excited state |e〉. The transition
|g〉 ↔ |e〉 is dipole-coupled to the cavity modes a0 and b0,
with coupling strengths ga and gb, respectively. Obviously,
the cavity-driven transition builds a bridge between these two
CRWs. A classical field with frequency ν drives the atomic
transition |s〉 ↔ |e〉 with Rabi frequency �. The transition
between the ground and the intermediate states is forbidden.

Once a photon is inside one cavity of the CRW, it propagates
along the CRW and is also scattered by the atoms. The
total Hamiltonian of this hybrid system H = HC + H ′

A + HCA

contains three parts: The Hamiltonian HC describes the two
CRWs, H ′

A is the free Hamiltonian of the �-type three-level
atom, and HCA describes the interactions among the cavity
modes, the classical field, and the atom. The two CRWs
are modeled as two independent linear chains of sites with
a nearest-neighbor interaction, which are described by the
Hamiltonian

HC =
∑

j

[ωaa
†
j aj − ξa(a†

j aj+1 + H.c.)]

+
∑

j

[ωbb
†
j bj − ξb(b†j bj+1 + H.c.)]. (1)

For simplicity, we assume that all resonators in CRW-a
(CRW-b) have the same frequency ωa (ωb), and the hopping
energies ξa (ξb) between any two nearest-neighbor cavities
in CRW-a (CRW-b) are the same. By introducing the Fourier
transform dk = 1√

2π
dj e

ikd j , d = a,b, we see that each bare
CRW supports plane waves with the dispersion relation

E
[a]
k = ωa − 2ξa cos ka , (2a)

E
[b]
k = ωb − 2ξb cos kb, (2b)

which indicates that each CRW possesses an energy band
with bandwidth 4ξa and 4ξa , respectively. Consequently, two
continua are formed. In Fig. 1, all the resonators connected
by the red (blue) line form photonic channel a (b), which is
referred to as CRW-a (CRW-b) hereafter. We note that the
central cavity with the atom comprises two cavities (see Fig. 1):
one lies on the red line, which is described by the bosonic
destruction operator a0; the other lies on the green line, which
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FIG. 1. (Color online) Schematic routing of single photons in
two channels made of two CRWs. The three-level atom characterized
by |g〉, |e〉, and |s〉 is placed at the cross point j = 0. CRW-a (CRW-b)
couples to the atom through the transition |g〉 ↔ |e〉 with strength ga

(gb), and a classical field with Rabi frequency � is applied to drive
the |e〉 ↔ |s〉 transition. An incoming wave from the left side of the
CRW-a will be reflected, transmitted, or transferred to the CRW-b.

is described by the bosonic destruction operator b0. The
Hamiltonian for the free �-type three-level atom reads

H ′
A = ωE|e〉〈e| + ω′

S |s〉〈s|, (3)

where we have chosen the energy of the ground state |g〉 as
the energy reference. The interaction Hamiltonian

HCA = |e〉 〈g| (gaa0 + gbb0) + � |e〉 〈s| e−iνt + H.c. (4)

is written under the rotating-wave approximation. We note
here that the classical field only acts on the atom. To remove
the time-dependent factor of the Hamiltonian, we rewrite
the Hamiltonian in a rotating frame of reference, which is
defined by the unitary transformation U = exp (iνt |s〉 〈s|).
The Hamiltonian HR ≡ U †HU − iU †∂tU in this rotating
frame still consists of three parts. The part for the CRWs
remains the same. The free �-type atom transforms to

HA = ωE|e〉〈e| + ωS |s〉〈s|, (5)

where ωS = ω′
S + ν is the frequency sum of the intermediate

state and the classical light field. The time-dependent
interaction Hamiltonian becomes

HI = |e〉 〈g| (gaa0 + gbb0) + � |e〉 〈s| + H.c., (6)

which is independent of time. Hereafter, we study the
single-photon scattering in this rotating frame. We note that
when a classical field is absent, i.e., � = 0, this system
becomes a two-level atom embedded in two CRWs.

III. COHERENT SCATTERING OF SINGLE PHOTONS

It can be found that the operator

N =
∑

j

(a†
j aj + b

†
j bj ) + |e〉 〈e| + |s〉 〈s| (7)
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commutes with the Hamiltonian HR . Since the number of
quanta is conserved in this hybrid system, three mutually
exclusive possibilities are involved in the one-quantum sub-
space: (i) The particle freely propagates in the two CRWs; (ii)
the particle is absorbed by the atom, consequently, the atom
is populated in its excited state; and (iii) the classical field
stimulates the atom into its intermediate state. This implies
the stationary eigenstate

|E〉 =
∑

j

α (j ) a
†
j |g0〉 +

∑
j

β (j ) b
†
j |g0〉

+ ue |e0〉 + us |s0〉 , (8)

where |0〉 is the vacuum state of the two CRWs. Here, α(j )
and β(j ) are the probability amplitudes of single-photon states
in the j th cavity of CRW-a and CRW-b, respectively. Also, ue

and us are the probability amplitudes of the three-level system
in its excited and intermediate states, respectively.

The eigenequation gives rise to a series of coupled station-
ary equations for all amplitudes,

(E − ωE) ue = �us + gaα (0) + gbβ (0) ,

(E − ωS) us = �∗ue,

(E − ωa) α (j ) = −ξa [α (j − 1) + α (j + 1)] + δj0gaue,

(E − ωb) β (j ) = −ξb [β (j − 1) + β (j + 1)] + δj0gbue,

where δmn = 1 (0) for m = n (m 
= n). Removing the atomic
amplitudes in the above equation leads to the discrete-
scattering equation of single photons,

(E − ωa)α(j ) = −ξa[α(j − 1)+α(j + 1)] + δj0α (j ) Va (E)

+ δj0β (j ) G (E) , (9a)

(E − ωb)β(j ) = −ξb[β(j − 1)+β(j + 1)] + δj0α (j ) G (E)

+ δj0β (j ) Vb (E) , (9b)

where we have introduced the energy-dependent δ-like poten-
tials Vd (E) ≡ g2

d V (E), with

V (E) ≡ (E − ωS)

(E − ωE)(E − ωS) − |�|2 , (10)

and the effective dispersive coupling strength

G(E) ≡ gagbV (E) (11)

between cavity mode a0 and cavity mode b0. It should be
pointed out that the energy of the incident photon indirectly
determines whether a repulsive or an attractive potential is
localized at j = 0, as well as the magnitude of the δ-like
potentials and effective coupling strengths. Since Vd (E) and
G (E) are induced by the atom, we rewrite Eq. (10) as

V (E) = A+
E − ω+

+ A−
E − ω−

(12)

to capture the effect of the atomic quantum interference,
with frequencies ω± = (ωS + ωE ± μ) /2 and numerators
A± = [1 ± (ωE − δS) μ−1]/2 with

μ =
√

(ωE − ωS)2 + 4 |�|2. (13)

A. Dressed states

Equation (12) indicates that a classical field dresses the
atom to form doubly excited states with energies ω± (called
dressed states). The parameter μ denotes the energy splitting
between the two dressed states. At E = ω±, infinite δ poten-
tials are formed at j = 0 in both CRWs. It seems that the
δ potential would prevent the propagation of single photons.
However, the effective coupling strength G (E) also becomes
infinite at E = ω±, which may enable the transfer of the
photon from one CRW to the other. When the energy of the
incident photon satisfies the two-photon resonance condition
E = ωS , both Vd (E) and G (E) vanish, and the two CRWs
are decoupled. When the Rabi frequency � → 0, ω+ → ωE

and ω− → ωS . However, A+ → 1, A− → 0; i.e., our hybrid
system becomes two CRWs coupled to a two-level system
(TLS) in the absence of a classical field. Infinite δ potentials
and an infinite effective coupling strength between the two
CRWs can also be obtained when the energy of the incident
photon is resonant with the TLS. Consequently, it is still
possible for the photon to be transferred from one CRW to the
other. However, it is impossible to decouple the two CRWs.

B. How the router works

An incident wave impinging upon the left side of one CRW
(e.g., a) will result in reflected, transmitted, and transfer waves
with the same energy. The wave functions in the asymptotic
regions are given by

α(j ) =
{

eikaj + rae−ikaj , j < 0,

taeikaj , j > 0,
(14a)

β(j ) =
{

tbl e−ikbj , j < 0,

tbr eikbj , j > 0,
(14b)

where ta (ra) is the transmitted (reflected) amplitude and tbl
(tbr ) is the forward (backward) transfer amplitude. The relation
E = E

[a]
k = E

[b]
k between wavenumber ka and wavenumber kb

can be obtained by applying Eq. (14) to the discrete scattering,
Eq. (9), far away from the j = 0 site. However, applying
Eq. (14) to the discrete scattering, Eq. (9), for the 0th and
±1st sites, we obtain the continuity conditions tbl = tbr ≡ tb

and ta = ra + 1, and the scattering amplitudes

ta = 2iξa sin ka [2iξb sin kb − Vb (E)]∏
d=a,b [2iξd sin kd − Vd (E)] − G2 (E)

, (15a)

tb = G (E) 2iξa sin ka∏
d=a,b [2iξd sin kd − Vd (E)] − G2 (E)

. (15b)

It can be observed that ta = 1 at E = ωS , which means that the
incident photon with energy E = ωS will be totally transmitted
in its original CRW due to the vanishing Vd (E) and G (E).

In Fig. 2, we plotted the transmittance T a(E) ≡ |ta(E)|2,
transfer rate T b ≡ |tb(E)|2, and reflectance Ra(E) ≡ |ra(E)|2,
as a function of the incident energy E, for three band
configurations of the two bare CRWs. In Fig. 2(a), two bands
of the CRWs are maximally overlapped. It can be seen that
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(a)

(b)

(c)

FIG. 2. (Color online) Transmittance T a(E) (solid black line),
reflectance Ra(E) [dotted (red) line], and total transfer rate 2T b(E)
[dashed (blue) line] as a function of the energy of the incident
wave. (a) ωb = 8; the two bands of the bare CRWs are maximally
overlapped. (b) ωb = 2; there is no overlap between the two bands.
(c) ωb = 6; the two bands are partially overlapped. For convenience,
all the parameters are in units of ξa and we always set ξa = ξb = 1,
ωa = ωE = ωS = 8, � = 1, and ga = gb = 0.5.

(i) the transfer rate does not vanish, and there is no perfect
reflection, therefore single photons incident from CRW-a can
be transferred to the continuum in CRW-b; and (2) single
photons incident from the left side of CRW-a can be totally
transmitted to the right side of CRW-a at E = ωS . We note
that the total transmission point cannot be observed in the
system studied in Ref. [9]. According to the probability
conservation, the incident flux is required to equal the sum
of the reflected, transmitted, and transfer fluxes. Hence,
the scattering amplitudes satisfy |ta|2 + |ra|2 + 2|tb|2 = 1. In
Fig. 2(b), there is no overlap between two bands. The total
transmission still occurs at vanishing two-photon detuning.
However, there are total reflections. It can also be observed that
the flow conservation equation is changed as |ta|2 + |ra|2 = 1,
which indicates that the photon flow is confined in CRW-a.
Actually, these total reflections are caused by the incident
energy of a single photon matching the eigenvalues of the
bound states of CRW-b with ga = 0. These bound states are
local modes around the atom in CRW-b. In Fig. 2(c), there
is partial overlap between two bands. The total transmission,
total reflection, and transfer to the continuum of CRW-b are all
shown in Fig. 2(c). When the energy of the incident photon is
out of (within) the overlap region of the two continuum bands,
the conservation relation and the related scattering properties
are the same as those in Fig. 2(b) [Fig. 2(a)].

IV. COHERENT CONTROL OF SINGLE PHOTONS

In this system, two CRWs provide two 1D continua; each
1D continuum is an open quantum channel for photons.
Without the atom, photons incident from one quantum channel
cannot transfer to the other. In this section, two band configu-
rations, where energy bands of the CRWs are either maximally
overlapped or have no overlap, are considered separately, to
better understand how the atom controls the flow of photons.

A. Multichannel quantum router

We first reveal the underlying physics in Fig. 2(a), where
two energy bands are overlapped. Two different situations,
where the classical driving is turned off or on, are considered.

When the classical driving is turned off (i.e., � = 0), single
photons incident from one quantum channel (e.g., the CRW-a)
will be absorbed by the atom, which transits from its ground
state to its excited state. Since the excited state is coupled
to a continuum of states, the excited TLS will emit a photon
spontaneously into the propagating state of either CRW-a or
CRW-b. Consequently, mediated by the atom, photons could
be routed from one quantum channel to the other. In other
words, the resonant tunneling process of the atomic excited
state helps the atom to perform quantum routing. Although it
is well known that the spontaneous emission of the excited
TLS can be exploited to switch the motion of single photons
in a 1D waveguide [6,7], it can also be exploited to redirect
the photons coming from one 1D continuum to the other, with
the TLS mediating the resonant tunneling process. To study
this mechanism, we plot the current flow of the photon in
CRW-a and CRW-b in Fig. 3, which are described by the
coefficients T a(E) + Ra(E) and 2T b(E), respectively. The
nonvanishing transfer rate around E = ωE shows that when
the incident energy E approaches the atomic transition energy
ωE , photons coming from one CRW are redirected to the
other by resonant tunneling. Actually, the atomic transition
energy ωE determines the position where the minimum flow
in CRW-a and the maximum of the probability transferred to
CRW-b occur in the energy axis; i.e., the peak transfer rate is
centered at E = ωE . The height of the peak for the transfer
rate 2T b(E) takes the maximal value when ga = gb. The width
of the peak for the transfer rate 2T b(E) is determined by the
coupling strengths ga and gb. The larger the product gagb

is, the wider the peak is. The photonic flow can be nearly
completely confined in the incident CRW once the incident
energy of single photons is largely detuned from the atomic
transition energy.

When a classical field is turned on, two dressed states with
energies ω± are created due to the coupling between a pair of
well-separated atomic bound levels |e〉 and |s〉 and a classical
field. These dressed states form doubly excited states of the
atom. For an appropriate Rabi frequency, two dressed states
are within the energy bands of two CRWs. Single photons
coming from CRW-a could excite the atom from its ground
states to either of two dressed states, due to the transition
driven by cavity mode a0. The spontaneous emission from the
atom provides a chance for photons traveling in both CRWs
since the two dressed states are coupled to the continua of
both CRWs. These tell us that photons resonantly tunnel from
one 1D continuum to the other via two dressed states, which
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(a)

(b)

FIG. 3. (Color online) Coefficients T a(E) + Ra(E) [solid black
and dotted (blue) lines], 2T b(E) [dashed (red) and dotted-dashed
(green) lines] as a function of the incident photon energy E.
The chosen parameters ξa = ξb = 1, ωa = ωb = 8, and ωS = � = 0
indicate that we study the scattering process for a two-level system
interacting with two CRWs, where the energy band of two CRWs
overlap. (a) ωE = 7, ga = 0.5, gb = 0.5 (0.2) for the dotted (blue)
and dashed (red) lines [solid black and dotted-dashed (green) lines].
(b) ωE = 9, ga = 0.4 (0.5), gb = 0.4 (0.8) for the dotted (blue) and
dashed (red) lines [solid black and dotted-dashed (green) lines].

fulfills the function of quantum routing. The quantum routing
due to the resonant tunneling process via the two dressed states
are shown by the two peaks of the transfer rate in Figs. 2(a)
and 4. However, differently from the case where the classical
field is absent, the photonic flow can be completely confined
to the incident CRW, when E = ωS , as shown in Fig. 4. To
determine the direction of the flow in the incident channel,
we plot the transmission T a(E) as a function of the incident
energy in Fig. 5. The solid (blue) line [dashed (red) line] is
the transmission spectrum when the classical field is turned
off (on). It can be found that the classical field makes the
solid (blue) line split into a doublet with a separation of 2μ

given in Eq. (13), which is the Autler-Townes splitting [40,41].
The transmission coefficient T a(E), equal to 1 at E = ωS ,
indicates that the Autler-Townes splitting yields transparency
in a transmission spectrum. Actually, from the point of view of
the dressed state [42], the total transmission appearing at the
two-photon resonance is the result of the interference between
the two resonances via the dressed states.

The above discussion tells us that the atom acts as a
multichannel router for single photons, either in the absence
or in the presence of a classical field, due to the spontaneous

(a)

(b)

FIG. 4. (Color online) Coefficients T a(E) + Ra(E) [solid black
lines and dotted (blue) lines] and 2T b(E) [dashed (red) and dotted-
dashed (green) lines] as a function of the incident photon energy
E, when a classical field is applied. Here, the parameters ξa =
ξb = 1, ωa = ωb = ωE = 8, and � = 0.2 are fixed. (a) ωS = 8,
ga = 0.5, gb = 0.2 (0.5) for solid black and dotted-dashed (green)
lines [dotted (blue) and dashed (red) lines]. (b) ωS = 9, ga = 0.5
(0.4), gb = 0.8 (0.4) for solid black and dotted-dashed (green) lines
[dotted (blue) and dashed (red) lines].

emission. However, differently from the case where a classical
field is absent, the system with an applied classical field
exhibits quantum interference between two resonances via the
dressed states, which results in the total transmission in the
incident channel, when the energy of single photons satisfies
the two-photon resonance. Hence a classical field can be used
to choose the way single photons will take in this router.

FIG. 5. (Color online) The transmission coefficient T a in the
incident channel versus the energy E of the incident photon. Here,
ωS = 0, � = 0 for the solid (blue) line, and � = 0.2 for the
dashed (red) line. Other parameters are set as follows: ξa = ξb = 1,
ωa = ωb = ωE = ωS = 8, and ga = gb = 0.5.
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B. Single-channel quantum router

We now explore the underlying physical mechanism of
perfect reflection in Figs. 2(b) and 2(c). It can be observed
in Eq. (15a) that transmission in CRW-a vanishes as long
as the condition 2iξb sin kb − g2

bV (E) = 0 is satisfied. This
condition shows that (i) the parameters related to CRW-b and
the atom determine the condition for vanishing transmissions,
i.e., the condition is independent of ωa and ga , which char-
acterize CRW-a; and (ii) a real kb cannot meet the condition,
and thus the possibility occurs of the complex extension of
the wavenumber kb in CRW-b. Actually, replacing kb with
(nbπ + iκb) yields the condition

2ξb exp (inbπ ) sinh κb + g2
bV (Eκ ) = 0 (16)

for the existence of the bound states in CRW-b, where
κb > 0 and nb = 0,1. Here nb = 0 (nb = 1) indicates that the
eigenenergies Eκ lie below (above) the band of CRW-b. Bound
states appear when the translation invariance of CRW-b is
broken. It is the atom coupled to CRW-b which breaks down
the translation symmetry of CRW-b.

To demonstrate that Eq. (16) is the condition for the
existence of bound states in CRW-b, with a � system inside,
we begin our study from Eq. (9b). By setting ga = 0, we obtain
the discrete-scattering equation for single photons traveling in
CRW-b:

(E − ωb) β (j ) = −ξb [β (j − 1) + β (j + 1)]

+ δj0β (j ) Vb (E) . (17)

Since the potential Vb (E) vanishes everywhere except at
j = 0, the wave function

β (j ) =
{
D1 exp [j (inπ + κb)] for j < 0,

D2 exp [j (inπ − κb)] for j > 0 (18)

must be a damped wave, which decreases exponentially with
the distance from the position j = 0. Applying the spatial-
exponential-decay solution, (18), to Eq. (17) far away from
the j = 0 point, we obtain the dispersion relation,

E = ωb − 2ξb exp (inbπ ) cosh κb. (19)

And an even-parity wave function with D1 = D2 is obtained
when applying Eq. (18) to the two sites around the zeroth point
of Eq. (17). The condition in Eq. (16) is achieved by inserting
the solution, (18), into Eq. (17) at the j = 0 point. Using the
dispersion relation in Eq. (19), the condition for the existence
of bound states in CRW-b can be written in terms of the
energy Eκ :

(−1)nb

√
(Eκ − ωb)2 − 4ξ 2

b + g2
bV (Eκ ) = 0. (20)

We note that by letting � = 0, Eq. (20) provides the “existence
condition” of the bound states in CRW-b with an embedded
TLS.

In Fig. 6(a), we solve Eq. (20) in the (�,E) plane. It is
observed that there are two bound states above the energy
band of CRW-b for a nonvanishing Rabi frequency. The energy
difference between these two bound states increases as the Rabi
frequency increases. And the larger the one-photon detuning
 = ωS − ωA is, the wider the energy difference. Figure 6(b)
presents the difference when the classical field is turned on or

(a)

(b)

FIG. 6. (Color online) (a) The solution of Eq. (20) in the (�,E)
plane. ωS = 8, ga = gb = 0.5 for the solid (blue) curves, and ωS =
9, ga = 0.5, gb = 0.8 for the dashed (red) curves. (b) Left side of
Eq. (20) (nb = 1) as a function of the energy with ga = gb = 0.5.
The points along the transverse axis indicate the energy of the bound
state when ωS = 0, � = 0 for the dashed (blue) curve and ωS =
8, � = 0.5 for the solid black line. In there figures, we have chosen
ωa = 8 and ωb = 2.

off. There is only one bound state localized around the TLS
when � = 0. It is shown in Fig. 6(b) that the energies of these
two bound states are not the energies ω± of the two dressed
states. In Fig. 7, we plot the transfer rate T b(E) as a function
of the energy E, to show the difference between the absence
and the presence of a classical field. It can be observed that
the applied classical field splits the bound state above the band
into two.

In Figs. 2(b) and 7, bound states of CRW-b are degenerate
in energy with the continuum of CRW-a. It is the coupling
between bound states in CRW-b and the continuum in CRW-a
which leads to the observation of bound states via the scattering
process. For single photons incident from CRW-a, the contin-
uum of CRW-a provides an open channel for the propagation
of photons; bound states, on the other hand, provide closed
channels. When the energy of the incident photon matches
either of the bound states, the interference between the
open and the closed channels leads to the total reflection of
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(a)

(b)

FIG. 7. (Color online) Transmission coefficient T a(E) as a func-
tion of the energy E when a classical field is turned off (a)
and on (b). (a) ωA = 8, ga = 0.2, gb = 0.4 for the solid black
line; ωA = 8, ga = 0.5, gb = 0.5 for the dotted (blue) line; and
ωA = 9, ga = 0.5, gb = 0.8 for the dashed (red) line. (b) ωA =
8, � = 0.1, ga = 0.2, gb = 0.4 for the solid black line; ωA = 8,

� = 0.5, ga = 0.5, gb = 0.5 for the dotted (blue) line; and
ωA = 9, � = 0.1, ga = 0.5, gb = 0.8 for the dashed (red) line.
Throughout, we have set ωa = 8 and ωb = 2.

single photons. We note that the mechanism of these total
reflections is different from the coherent interference between
the incoming wave and the wave emitted by the doubly dressed
states.

For the band configuration in Fig. 2(b), the motion of single
photons from one CRW is confined to the incident CRW. In
this case, the atom functions as a single-photon switch, which
routes photons forward or backward in the incident quantum
channel. The scattering process is similar to the Feshbach
resonance in cold-atom scattering, where the scattering cross
section diverges when the energy of the incident particle
matches the bound state of the closed channel.

C. Localized photons for the entire system

Solutions to Eqs. (9) can be found in the form of either (i) a
superposition of extended propagating Bloch waves (incident
reflected, transmitted, and transferred by the atom embedded
in the CRWs) or (ii) localized states around the location of the
atom. We note that these localized states are eigenstates of the
total system different from the one obtained above. To show
the possibility of a bound state of the total system, we now
consider the case where two bands of CRWs do not overlap.
Our purpose here is to derive the condition for the existence
of bound states. The bound state now is assumed to have the

following solutions with even parity:

ακ (j ) =
{
D exp [j (inaπ + κa)] for j < 0,

D exp [j (inaπ − κa)] for j > 0,
(21)

βκ (j ) =
{
C exp [j (inbπ + κb)] for j < 0,

C exp [j (inbπ − κb)] for j > 0,
(22)

which are localized around the zeroth site, where the atom
is embedded. Applying the assumed solution to Eq. (17) far
away from the j = 0 point, we find that κa , and κb are related
to each other via the energy

Eκ = ωa − (−1)na 2ξa cosh κa = ωb − (−1)nb 2ξb cosh κb.

(23)

Applying the assumed solution to Eq. (17) at the j = 0 point
yields the final condition for the existence of the bound state
in the total system,

G2 (E) =
∏
d

[(−1)nd 2ξd sinh κd + Vd (E)], (24)

which is the denominator of Eq. (15) with kd replaced by
ndπ + iκd , where d = a,b. Bound states of the total system
provide no contribution to the quantum transport in the
one-quantum subspace, because scattering states survive only
inside the band.

V. CONTROLLABLE AND SCATTERING-FREE
CHANNELS

In the above discussion, single photons are incident from
one quantum channel. We found that the resonant tunneling
process transfers single photons from one quantum channel to
the other when two bands overlap. In this section, we focus on
the overlap band configuration shown at the right in Fig. 2(a).
The purpose now is to investigate the quantum interference
among different quantum channels and to find the function of
the atom for waves incident from two quantum channels.

We now begin our discussion from the Hamiltonian HR in
the rotating frame. We first introduce the bright (Bj ) and dark
(Dj ) modes,

Bj = aj cos θ + bj sin θ, (25a)

Dj = aj sin θ − bj cos θ, (25b)

which are a linear combination of the cavity-mode operators
of both CRWs. Here, tan θ = gb/ga . In terms of the bright
and dark operators and the condition ωa = ωb = ω, ξa = ξb =
ξ for an overlap band configuration, the Hamiltonian of the
system reads

HR =
∑

j

[ωB
†
jBj − ξ (B†

j+1Bj + H.c.)]

+
∑

j

[ωD
†
jDj − ξ (D†

j+1Dj + H.c.)]

+HA + g|e〉〈g|B0 + �|e〉〈s| + H.c.〉, (26)

where HA is given in Eq. (5) and the coupling strength
g ≡

√
g2

a + g2
b . Two virtual CRWs (the bright and dark

CRWs) provide the propagating state for single photons. For
convenience, the CRW described by operator Bj (Dj ) is called
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FIG. 8. (Color online) The transmission coefficient T B ≡ |tB |2
as a function of the energy Ek . We set ξ = 1, ω = ωE = ωS = 8,
� = 0.2, g = 0.5 for the dotted (blue) line, � = 0, g = 0.5 for the
solid (red) line, and � = 1, g = 0.2 for the dashed black line.

the bright (dark) CRW, and the quantum channel constructed
by the bright (dark) CRW is called the bright (dark) channel.
The dark CRW is decoupled from the atom. Consequently, the
dark channel is a scattering-free channel; i.e., single photons
incident from the left in the dark CRW are transmitted into the
right with unit probability. However, single photons incident
from the bright CRW could be absorbed by the atom and
later emitted spontaneously into the bright CRW, leading to
left-going and right-going photons. This process is described
by a wave with energy Ek = ω − 2ξ cos k, incident from the
left side of the bright CRW, that results in a reflected and
transmitted wave in the same CRW.

By the same approach as in Sec. III, the transmission
amplitude is obtained as

tB = 2iξ sin k

2iξ sin k − g2V (Ek)
, (27)

where V (Ek) is given in Eq. (10). And the reflection amplitude
rB is related to tB by tB = rB + 1. In Fig. 8, we plot the
transmission coefficient as a function of the incident energy. It
can be found that (i) when � = 0, single photons can be totally
reflected when their incident energy is resonant with the atomic
transition |e〉 ↔ |g〉; and (ii) when � 
= 0, single photons
have a probability T B = 1 of being transmitted when the
incident energy satisfies the two-photon resonance Ek = ωS

and a probability RB ≡ |rB |2 = 1 of being reflected when the
incident energy matches the energy ω± of the dressed states.
These total reflections are caused by the quantum interference
between the spontaneous emission from the atom and the
propagating modes in the 1D continuum. The waves emitted
by the doubly dressed states interfere coherently, such that
the back-traveling wave is eliminated while the forward wave
is constructed, which leads to the perfect transmission of the
incident photon. The transmission spectra at � = 0 and � 
= 0
indicate that the atom is transparent once the classical field is
applied. Hence, we can control the reflection and transmission
by tuning the Rabi frequency and the classical-field frequency
for waves incident from the bright CRW. Hence, we denote the
bright channel as the controllable channel. It should be noted
that the propagating states of the bright channel are orthogonal
to those of the dark channel.

VI. DISCUSSION AND CONCLUSION

We have studied the coherent scattering process of single
photons in two 1D CRWs. The scattering target is a �-type
atom possessing an inversion center, which fulfills the quantum
routing of single photons due to quantum interference.

When there is an overlap between two bands of the CRWs,
the resonant tunneling process induces the atom to act as a
multichannel router. When a classical field is absent, one can
turn on the multichannel routing by adjusting the transition
frequency of the atom between state |e〉 and state |g〉 to match
the desired propagating states of both CRWs. To turn off the
multichannel routing, one has to tune the atomic transition
energy far away from the energy of the incident photons.
Obviously, the closure of the multichannel routing based
on large detuning is not perfect. To perfectly turn off the
quantum routing, one can utilize the Autler-Townes splitting.
The procedure is as follows: first, apply a classical field to
drive the transition between the excited state of the atom
and an intermediate level, then adjust the frequency and the
intensity of the classical field. In addition, the scatter-free and
controllable channels are found for waves incident from both
CRWs. Single photons propagate freely in the scatter-free
channel. Without a classical field, the atom acts only as a
perfect mirror for incident waves in the controllable channel
due to the Fano resonance. With a classical field applied, the
atom acts not only as a perfect mirror but also as a transparent
medium; i.e., the classical field selects the photon which is
transmitted or reflected.

When there is no overlap between the two bands, the
coupling between discrete energy levels and a continuum
makes the atom act as a single-channel router. When the
classical field is absent, the single-channel router is turned
on by adjusting the atomic transition frequency between
state |e〉 and state |g〉, so that the bound state in one CRW
matches the incident energy of the other CRW. To turn off the
single-channel router, one has to adjust the atomic transition
frequency ωE so that the bound states of the CRW are far away
from the other CRW. However, this mechanism for turning off
the single-channel router is not perfect. With a classical field
applied, one not only can shift the transmission zeros so that
the single-channel router can be operated at different energies,
but also can completely turn off the single-channel router for
single photons with a given energy.
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