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Weak-value amplification of light deflection by a dark atomic ensemble
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We study the coherent propagation of light whose dynamics is governed by the effective Schrödinger
equation derived in a magneto-optically manipulated atomic ensemble with a four-level tripod configuration
for electromagnetically induced transparency (EIT). The small transverse deflection of an optical beam, which
is ultrasensitive to the EIT effect, could be drastically amplified via a weak measurement with an appropriate
preselection and postselection of the polarization state. The physical mechanism is explained as the effect of
wave-packet reshaping, which results in an enlarged group velocity in the transverse direction.
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I. INTRODUCTION

The weak measurement proposed by Aharonov, Albert, and
Vaidman [1,2] is usually referred to as an amplification effect
for weak signals rather than a conventional quantum mea-
surement that collapses a coherent superposition of quantum
states [3]. In the original gedanken experiment [1], a seemingly
surprising effect was proposed: that it is possible to “measure”
an appropriate preselected state of a spin-1/2 particle to obtain
the average spin beyond the bound [−0.5,0.5] of the smallest
and largest eigenvalues. Such an average spin (called a weak
value) does not exactly reflect the reality of a single spin,
and is only the ensemble average of the measured data over
a postselected subset. In this sense, the weak measurement
implies some amplification of the resulting signal in the
apparatus carrying on the pre- and postselections [4]. Several
groups have studied this weak-value amplification (WVA)
effect in various physical systems, such as quantum-optical
[5–8] and condensed-matter systems [9,10]. Note that WVA
has been utilized as a quantum-coherent manipulation to engi-
neer various interesting quantum effects, such as superluminal
effects in birefringent optical fibers [11], ultrasensitive beam
deflection [7], and optical spin-Hall effects [12–16].

In this paper, we study the weak-value problem of spin
1/2 with polarized light beams propagating in a dispersive
medium, a four-level atomic ensemble controlled by external
fields. The motion of the light-wave envelope in such a
coherent medium is described by an effective Schrödinger
equation resembling the precession of a spin 1/2 in an
inhomogeneous magnetic field [17–20]. However, because the
effective magnetic field is very weak due to the inhomogeneity
of the coupling transitions, the deflection of the light beam
is usually difficult to observe even for electromagnetically
induced transparency (EIT) with two-photon resonance. For
example, in the experiment by Karpa and Weitz [21], the angle
of deflection is only about 2 × 10−5 rad when the light passes
through a gas cell 5 cm long.

Since our concern here is only the deflection of the optical
beam rather than the enhancement of the beam split, and the

two split beams may be deflected in the same direction, we
consider weak measurements to achieve this goal. We note
that protocols based on weak measurements are probabilistic.
In reality, our goal is achieved by throwing away most of the
data in the postselection process. However, it does not impede
the further application of postselections. A few postselections
are still appropriate to demonstrate basic physics features and
quantum-information processes; for example, postselection
has been used to: obtain the correct logical output [22] and to
generate entanglement. This kind of postselected entanglement
was used to violate Bell’s inequality [23]. According to our
previous series of studies [17–20], the motion of the transverse
wave packet is described by a Schrödinger-like equation,
similar to that for a spin 1/2 in a transversely inhomogeneous
magnetic field in a Stern-Gerlach experiment [20]. Thus, the
peak of the optical beam will split into two, according to
the initial polarization, under the influence of the transverse
magnetic field gradient. When making a postselection on the
final polarized state, the projection on this chosen polarization
state mixes the two local wave packets in the transverse split.
If such a weak measurement does not deform the shape of
the wave packet too much, the transverse distance of the
reshaped wave packet from the center of the beam may be
very large compared to that for any peaks in an optical Stern-
Gerlach experiment. We carry out the relevant calculations
in detail by making use of the effective field approach
[24,25].

This paper is organized as follows. In Sec. II, we present
a theoretical model for a four-level atomic ensemble with a
tripod configuration in the presence of nonuniform external
fields and derive the system of equations for the dynamics of
the signal field in the atomic linear response with respect to the
probe field. In Sec. III, we present the optical Stern-Gerlach
effect of the probe beam in momentum space, which is induced
by the interaction between the dispersive atomic medium and
the probe field used for EIT. In Sec. IV, we theoretically
study the transverse deflection of the probe field via weak
measurements, which can amplify signals by appropriate
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FIG. 1. (Color online) Schematic diagram of an atomic ensemble
with a four-level tripod configuration in a gas cell of length L,
manipulated by two optical and one magnetic field. The magnetic
field B is applied along the z direction with a gradient along the x

direction.

preselected and postselected states of the system. We conclude
our paper in the final section.

II. MODEL SETUP

Consider an ensemble of N identical and noninteracting
atoms confined in a rectangular gas cell, characterized by
the ground-state Zeeman sublevels |±〉, one intermediate
state |s〉, and an excited state |e〉, as shown in Fig. 1. The
levels are coupled by two optical fields: a control laser field
with frequency νc and wave number kc, and a probe laser
field with frequency ν and wave number k. The control
field is assumed to be homogeneous and strong enough for
propagation effects to be neglected, and it was tuned to the
|s〉 → |e〉 transition. The coupling strength is characterized
by the Rabi frequency �. Here, the Rabi frequency � is
taken to be a constant throughout the paper. The probe
laser field is linearly polarized and propagating along the
z axis. Its linear polarization is a superposition of left- and
right-handed circular polarization, labeled by σ±. We denote
the σj -polarized component as Ẽj (r,t), j = ±, which drive
the transitions |±〉 ↔ |e〉, respectively.

The atomic gas cell can be divided into many smaller cells.
We assume that each smaller cell contains a large number
of atoms and the inhomogeneous external field is sufficiently
homogeneous for each smaller cell [17]. In this case, the atomic
medium can be treated in a continuous way by the following
approach. First, describe the medium excitation by introducing
the collective atomic operators �̃μν(r) = (1/Nr)

∑Nr
j=1 �̃

j
μν ,

averaged over a small but macroscopic volume containing
many atoms Nr = (N/V )dV � 1 around position r. Here,
�̃

j
μν(r) = |μ〉j 〈ν|. Afterwards replace the sum over the total

number N of atoms by N
V

∫
d3r , where V is the volume of the

medium [24,25]. Neglecting the kinetic energy of the atoms,

the Hamiltonian of the atomic part is given by

H (A) = N

V

∑
i

∫
d3r(ωi + μiB)�̃ii , (1)

where ωi (i = ±,s,e) are the bare atomic energies, and ω± =
ω0 (which corresponds to degenerate levels when B = 0).
The magnetic field B along the z axis shifts the energy
levels by the amount μiB(r), where the magnetic moments
μi = mi

F gi
F μB are defined by the Bohr magneton μB , the

gyromagnetic factor gi
F , and the magnetic quantum number

mi
F of the corresponding state |i〉. Under the electric-dipole

approximation and the rotating-wave approximation, the light-
matter interaction Hamiltonian becomes [24,25]

H (I ) = N

V

∫
�ei(kc ·r−νct)�̃esd

3r + H.c.

− N

V

∑
j=±

dej

∫
Ẽ

(+)
j �̃ej d

3r + H.c., (2)

with de− (de+) denoting the matrix element of the dipole
momentum operator projected on the direction of the electric
field.

The slowly varying variables Ej (r,t) for the probe field and
the collective atomic transition operators �αβ can be defined
as

Ẽ+
j (r,t) =

√
ν

2ε0V
Ej (r,t)ei(kz−νt) (j = ±), (3a)

�̃ej = �ej exp(−ikz), (3b)

�̃es = �es exp(−ikc · r). (3c)

In a rotating reference frame, the dynamics of this system is
described by

Hrot = N

V

∫
d3r(δ−�−− + δ+�++ + δc�ss)

− N

V

∫
d3r

(
��es +

∑
j=±

gjEj�ej

)
+ H.c. (4)

with δi (i = ±,c) the detunings of the probe and control fields
from the corresponding atomic transitions given as

δc = ωs − ωe + νc + (μs − μe)B,

δ± = ω0 − ωe + ν + (μ± − μe)B,

and the coupling strength as

gj = dej

√
ν

2ε0V
. (5)

The Hamiltonian in Eq. (4) generates the Heisenberg equations
of the slowly varying variables �μν . Langevin equations are
obtained to describe the dynamics of the medium by introduc-
ing the coherence relaxation rate γ between the ground state
|±〉 and the intermediate state |s〉, as well as the decay rate  of
the excited state. The low-intensity approximation [24–26], on
one hand, allows us to neglect Langevin noise operators since
the number of photons contained in the probe laser beams is
much smaller than the number of atoms in the sample, so the
operators become c numbers. On the other hand, it allows us
to regard the interaction between the matter and the probe field
as a weak disturbance, since the intensity of the probe laser
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beams is much weaker than that of the control laser field. The
perturbation approach [24,25,27] can be applied in terms of a
power series in gEj :

�αβ = �
(0)
αβ + ε�

(1)
αβ + · · · , (6)

where ε is a parameter that ranges continuously between zero
and 1. When ε = 0, the probe field is absent. For all atoms
initially in level |±〉 without polarization (i.e., atom i in a
mixed state ρi = �j=±|j 〉〈j |/2), we obtain

�
(0)
−− = �

(0)
++ = 1

2 (7)

while all others terms vanish. Here, we retain only terms up to
the first order in ε, since the linear-optical-response theory can
sufficiently reflect the main physical features. The dispersion
and absorption are determined by �

(1)
je , which is obtained as

�
[1]
je = �j gj Ej

2��∗ (j = ±) (8)

in steady-state solutions [19,20,27], where pure dephasing
processes and decay among the lower states are neglected
(γ = 0) to highlight the main physics, and a sufficiently
strong driving field is assumed to satisfy |�|2 � γ,δiδj . We
note the assumption of the strong driving field implies that
|�| � |(μ+ − μ−)B|. The Raman detuning is defined as

�j = δj − δc, (9)

which leads to a spatially varying refractive index profile in
the gas cell [17] due to the small transverse magnetic field
gradient.

Using the slowly-varying-envelope approximation, the
paraxial wave equation in the linear-optical-response theory
[24,25,27]

(i∂t + ic∂z)Ej = −Ng∗
j �

(1)
je , (10)

becomes an effective Schrödinger equation

i∂tEj = HjEj , (11)

by substituting Eq. (8) into (10), where the effective Hamilto-
nian is

Hj = cpz − N |gj |2
2|�|2 �j . (12)

Here c is the velocity of light in vacuum and pz = −i∂z. Notice
that σ± polarizations accompany the component E±. Writing
the σ±-polarization states as column vectors resembling the
spin 1/2,

|σ+〉 = [ 1 0 ]T , (13a)

|σ−〉 = [ 0 1 ]T , (13b)

where the superscript T means transpose, we can group the two
components E± into a column vector defined as the “spinor
state” � = [E+,E−]T . The dynamical equation of the probe
laser field reads

i∂t� =
[

H+ 0

0 H−

]
� = Heff�, (14)

which allows us to write the state of the probe laser field at
any arbitrary time as

|�(t)〉 =
∑
j=±

cj |Ej (t)〉|σj 〉. (15)

Here, the states |Ej 〉 describe the state of the spatial degrees of
freedom, with Ej (r,t) referred to as the corresponding spatial
representation.

Hereafter, to investigate the beam deflection amplification
of the light beam, propagating in the dispersive atomic
ensemble, we use a signal enhancement technique known
from weak measurements [28]. Along with the standard weak-
measurement terminology, the transverse-position degree of
freedom of the probe beam is referred to as the meter and its
intrinsic polarization degree of freedom is referred to as the
measured system.

III. OPTICAL STERN-GERLACH EFFECT

We now investigate the evolution of the probe wave packet.
The polarization vector of the probe field lies in the plane
perpendicular to its traveling direction (i.e., the z direction). It
is initially prepared in a superposition state

|i〉 = cos
α

2
|H 〉 + sin

α

2
|V 〉 (16)

of the horizontal polarization, |H 〉 = (|σ+〉 + |σ−〉)/√2, and
vertical polarization, |V 〉 = −i(|σ+〉 − |σ−〉)/√2, where α is
the polarization angle of the probe light beam. For weak mea-
surements, this angle is very small, which means that the probe
field is initially almost in the horizontal polarization state.
The role of α in the transverse beam deflection amplification
via weak measurements will be further discussed in the next
section.

The two components of the probe field travel collinearly
before reaching the medium, which implies that initially
|Ej (t0)〉 = |E0(0)〉, where the initial time t0 = 0. After the
probe field enters the medium, the atomic ensemble induces
the time evolution operator U (t) = e−iHeff t on the meter state
according to its polarized state. Then the state at an arbitrary
time becomes an entangled state

|�(t)〉 = 1√
2

[e−iα/2|σ+〉|E+(t)〉 + eiα/2|σ−〉|E−(t)〉], (17)

where the meter state is described by

|Ej (t)〉 = e−iHj t |E0(0)〉. (18)

We will show that E±(r,t) in Eq. (17) implies a wave-packet
split in momentum space according to polarizations. After
a measurement on the postselected state |V 〉, the meter is
reshaped as∣∣�m

f (t)
〉 = i

2
[e−iα/2|E+(t)〉 − eiα/2|E−(t)〉]. (19)

Obviously, the superposition of the two wave packets E±(r,t)
can produce an interference pattern in the coordinate space.

Now we assume that the magnetic field B applied in the z

direction has a linear gradient along the x direction with the
expression

B = B0 + B1x. (20)
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Here, our treatment is confined to only one transverse
dimension, say the x direction. The effective Hamiltonian in
Eq. (12) reads

Hj = cpz + b0j + b1j x, (21)

where the parameters

b0j = −N |gj |2
2|�|2 [ω0 + ν − ωs − νc + (μj − μs)B0], (22a)

b1j = −N |gj |2
2|�|2 (μj − μs)B1, (22b)

can be adjusted by the control laser field and the magnetic
field as well as the energy levels. We note that the condition
|�|2 � γ,δiδj guarantees that b1j cannot tend to infinity.
For an initial state with a two-dimensional Gaussian amplitude
profile

Ej (r,0) = 1√
2πa2

exp

(
− z2 + x2

4a2

)
, (23)

the EIT medium introduces different phase shifts on the meter
wave packet according to whether the state is right-handed or
left-handed circularly polarized, and a displacement ct along
the z direction,

Ej (r,t) = e−itb0j

√
2πa2

exp

[
− (z − ct)2 + x2

4a2
− itb1j x

]
. (24)

Since [Hj,x] = 0, the center of Ej (r,t) does not change with
time, 〈xj 〉 = 0, which implies no spatial split of the meter wave
packet. A Fourier transformation on Eq. (24),

Ej (k,t) = 2
√

2a2π exp
( − ib0j t − a2k2

z − ickzt
)

× exp
[ − a2(kx + b1j t

)2]
, (25)

shows that each meter’s wave packet keeps the longitudinal
momentum unchanged and acquires a transverse momentum
with magnitude b1j t , which is a linear function of time.
Therefore, two wave packets of the probe field have the same
centroid, but achieve different momenta in the x direction
inside the EIT medium. To illustrate the split of the probe
beam in momentum space, we assume that the probe beam
with an initial width a = 2 mm is tuned to the rubidium
(87Rb) D1 line 5 2S1/2 ↔ 5 2P1/2 , that the ground states |±〉
correspond to the magnetic sublevels (with mF = 1 and −1)
of the F = 1 hyperfine ground state, and that |s〉 represents
the hyperfine ground state |F = 2,mF = 1〉. In this case,
the phase shift on the σ− component vanishes due to μs =
μ− = 4.64 × 10−24 J T−1. Hence, there is no shift of the
momentum on the σ− component. The magnetic field gradient
B1 = 910 μG mm−1 and the magnetic moments μ+ = −μs

subject the wave packet of the σ+ component to a linear
potential in the transverse direction. In Fig. 2, we show such an
optical Stern-Gerlach effect in momentum space by plotting
the transverse distribution |Ej (kx,tf )|2 as a function of the
wave number kx = px/h̄ using the value g2N/�2 ≡ tan2 θ

given in [29] at a fixed time tf . (Actually, g2N/�2 ≡ tan2 θ

is obtained from the typical group velocity vg = c cos2 θ of
a few thousand meters per second given in Ref. [29].) Here
tf = L/c denotes the interaction time with L = 50 mm as the

5×10- 30.

0×10- 31.

5×10- 31.

FIG. 2. (Color online) Optical Stern-Gerlach effect in momentum
space with the transverse distribution |Ej (kx,tf )|2 as a function of
wave number kx = px/h̄, right after the light leaves the EIT medium.
Here, kx is in units of reciprocal meters.

cell length. Obviously, the transverse displacement is smaller
than the uncertainty of the width of two wave packets of the
meter.

However, postselecting the system on a desired polarized
state |V 〉 leads to a coherent superposition of two transverse
wave packets. The interference of the two meters’ wave packets
displace the centroid of the wave packet in coordinate space
by

〈x〉 = sin(b0t + α)a2b1tft

1 − ft cos(b0t + α)
, (26)

where we have introduced b0 = b0− − b0+, b1 = b1− − b1+,
and ft ≡ exp(−a2b2

1t
2/2). We also note that when the optical

beam is deflected by the EIT medium, the wave packet will
spread in the transverse direction. This spread will blur the
observation of deflection. To examine this, we calculate the
transverse fluctuation

〈�x2〉 = a2 1 + (
a2b2

1t
2 − 2

)
ft cos α + (

cos2 α − a2b2
1t

2
)
f 2

t

(1 − ft cos α)2

with b0 = 0. Usually, only if 〈�x2〉 < 〈x〉2, we can clearly
observe such deflection. Otherwise, i.e., 〈�x2〉 > 〈x〉2, the
deflection will be blurred by the transverse spreading of
wave packets. In this case, a weak-measurement technique
is necessary to observe the extremely small deflection of the
light beam.

IV. WEAK VALUE AND DEFLECTION
OF THE OPTICAL BEAM

In the previous section, we have shown that the projection
measurement on the initial polarization described by the state
|i〉 in Eq. (16) could induce transverse displacement of the op-
tical beam after light passes through an EIT medium. Now, we
will consider the maximization of this transverse displacement,
with the weak measurement proposed by Aharanov et al. [1].

A weak measurement describes a situation where a system
is so weakly coupled to a measuring device that the uncertainty
in the measurement is larger than all the separations among
the eigenvalues of the observable. Therefore, no information
is given since the eigenvalues are not fully resolved. Three
steps are necessary for weak measurements: (1) quantum state
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preparation (preselection); (2) a weak perturbation; (3) postse-
lection on a final quantum state. The three essential ingredients
of weak measurements were theoretically performed in the
previous section.

First, we have initially prepared the state |i〉 of the system
and a Gaussian wave packet of the meter before the light is
incident on the medium. Second, the polarization-dependent
effective potential in Eq. (14) changes the polarized state as

|φ〉 = e−iθ̄x t

√
2

[
exp

(
i
α + b0t

2

)
exp

(
i
b1xt

2

)
|σ−〉

+ exp

(
− i

α + b0t

2

)
exp

(
− i

b1xt

2

)
|σ+〉

]
(27)

with θ̄x = (b̄0 + b̄1x), where b̄j ≡ (bj+ + bj−)/2. The state
|φ〉 indicates that there is an interaction Hamiltonian between
the system and the meter, Hint = ξσz with ξ = b1x/2, and a
free evolution exp(−ib0tσz/2) for the spin. Here, |σ±〉 are
the eigenstates of the Pauli operator σz with eigenvalues
±1. A weak perturbation is guaranteed when the transverse
displacement in momentum space is smaller than the width of
the transverse distribution. In addition, the coupling strength
b1 can be adjusted by the control laser field and the magnetic
field gradient.

Afterwards, the polarization state |V 〉 is postselected. The
information on the observable of the system is read out from
the transverse spatial distribution which serves as the meter.
However, the mean position in Eq. (26) is not the weak value.
Weak measurements can provide the weak values defined by
〈σz〉w = 〈ψfi|σ̂z|ψin〉/〈ψfi|ψin〉, where |ψin〉 and |ψfi〉 are the
preselected and postselected states of the system, respectively.
Here, they are given by

|ψin〉 ≡ e−iθ̄x t

√
2

[
exp

(
i
α + b0t

2

)
|σ−〉

+ exp

(
− i

α + b0t

2

)
|σ+〉

]
, (28a)

|ψfi〉 = |V 〉. (28b)

In our case, the observable is σz. Taking the free evolution of
the spin into account, we obtain the weak value

〈σz〉w = 〈ψfi|σz|ψin〉
〈ψfi|ψin〉 = i cot

(
α + b0t

2

)
. (29)

From the definition of the weak value, one can find that if
the free evolution of the spin is not taken into account, the
resulting weak value is i cot(α/2), rather than the above result.

It is well known that the weak value is linked to the final
read of the meter. To obtain the mean position, one should
first expand 〈ψfi| exp(−iξσzt)|ψin〉 up to first order in b1t .
Actually, this first-order expansion is valid in our system since
we consider only the short-time behavior and the external
magnetic field gradient B1 in the x direction is very small;
thus

b1tf 
 a−1 (30)

is satisfied, which is the condition for performing the weak
measurement. Then we write 〈ψfi|σz|ψin〉 in terms of the
weak value 〈σz〉w. Finally, we regroup it to an exponential
function 〈ψfi|ψin〉(1 − iξ t〈σz〉w) ≈ 〈ψfi|ψin〉 exp(−iξ t〈σz〉w),

which yields

〈x〉wv = a2b1t cot

(
α + b0t

2

)
(31)

as the observed mean position of the meter.
It can be seen from Eq. (31) that the final read of the meter

is proportional to the imaginary part of the weak value. To find
the relation between the result in Eq. (26) and the weak value
in Eq. (31), we rewrite Eq. (18) as

|Ej (t)〉 = exp[−i(cpz + b0j )t](1 − ib1j xt)|E0(0)〉 (32)

by retaining the linear term of the Taylor series expansion
of exp(−ib1j xt). After some algebra, we find that the mean
position in Eq. (31) is a linear approximation of Eq. (26) with
respect to the coupling between the system and the meter. After
the postselection of the polarization degrees of freedom, the
normalized wave packet of the probe field in the transverse
direction becomes

�N
f (x,t) = 1√

2πa2
exp

(
− x2 − x〈x〉wv + 〈x〉2

wv

4a2

)
. (33)

In Fig. 3, we plot the transverse distribution of the incident
wave packet in Eq. (23) with a red solid curve, |�N

f (x,t)|2
in Eq. (33) at time tf = L/c (black dashed curve), and the
normalized norm squared of Eq. (19) right after the probe
field leaves the atomic medium (green dash-dotted curve).
Obviously, the weak measurement significantly enhances the
deflection of the probe field.

Unlike the mean value of a quantum-mechanical measure-
ment, which must lie within the range of eigenvalues, weak
values in Eq. (29) produce results much larger than any of the
eigenvalues of an observable, particularly when one chooses
the initial state |ψin〉 with α = −b0tf (where tf is the total
interaction time). By performing a weak measurement of
the probe laser field that has passed through an EIT atomic
medium, we are able to significantly magnify the transverse
displacement of the probe field, which results in a large group
velocity d〈x〉wv/dt in the transverse direction. The deflection

FIG. 3. (Color online) Transverse distribution of the probe field.
The red solid curve corresponds to the Gaussian profile in Eq. (23).
The black dashed curve depicts the norm squared of the wave function
in Eq. (33) with a weak measurement right after the light leaves
the medium. The green dash-dotted curve presents the normalized
distribution of Eq. (19) at time tf = L/c. Here, x is in units of
millimeters. b0t + α = 0.08. The other parameters are the same as in
Fig. 2.
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angle given in Ref. [21] is defined as θ = c−1d〈x〉wv/dt . When
b0 = 0, the deflection angle is totally decided by the original
polarization angle α, and the magnitude of the deflection angle
could be arbitrarily large as α approaches zero. Comparing to
the angle of deflection 2 × 10−5 rad for the EIT condition
[21], the weak-measurement technique discussed here greatly
amplifies the displacement of the probe field in the transverse
direction.

When the dynamics in the x direction is taken into account,
the effective Hamiltonian in Eq. (21) becomes

Hj = cpz + c

2k
p2

x + b0j + b1j x.

After postselecting the system on a desired polarized state |V 〉,
the centroid of the wave packet shifts to

〈x〉 = ct2

k
b̄1 + e−f2t sin(α + f1t )

(
a2t + c2t3

2a2k2

)
b1

1 − cos(α + f1t )e−f2t
,

where

f1t = b0t + ct3

3k
b̄1b1, f2t =

(
c2t2

8a2k2
+ a2

2

)
t2b2

1.

By expanding the above centroid of the wave packet up to first
order in the coupling between the system and the meter, we
obtain

〈x〉 = ct2

k
b̄1 +

(
a2t + c2t3

2a2k2

)
b1 cot

α + b0t

2
.

The terms related to ct2/(2k) and c2t3/(2a2k2) yield the
difference from the centroid of the wave packet in Eq. (31).
We calculate the magnitude of each term at the time tf by
the data given in Sec. III, and found that ct2

f /(2k) ∼ 10−19,
c2t3

f /(2a2k2) ∼ 10−22, and a2tf ∼ 10−16, which shows that
the term a2t contributes most to the centroid of the wave
packet. Therefore, we can neglect the transverse dynamics.

According to Ref. [25], there is a modification of the group
velocity of the probe field in the EIT medium. In this case,
Eq. (21) will be modified by replacing c → vg = c cos2 θ

and |�|2 → |�|2 + g2N , i.e., Eq. (21) becomes Hj = vgpz +
b′

0j + b′
1j x, where b′ is related to b by the expression b′

lj =
blj cos2 θ (l = 0,1). After some algebra, it can been found
that the condition for allowing use of the weak-measurement
technique and the weak value are still given by Eqs. (30)
and (31), respectively. We note the difference between our
semiclassical approach and the polariton approach. In our
semiclassical approach, the atomic medium is treated as
a quantum system and the probe field is treated as the
classical system. The propagation velocity of the light remains
unchanged, i.e., the speed of light c, but the “force” becomes
large. In the polariton approach, both the probe light and
the atomic medium are treated as quantum systems. The
propagation velocity of the polariton is changed to c cos2 θ ,
but the force becomes small. However, the two approaches
give the same results for light deflection.

V. DISCUSSION

We have theoretically studied a magneto-optically con-
trolled atomic ensemble under the EIT condition to couple

a property (the observable σz) of the polarization (the system)
with the spatial degree of freedom (the meter). In the paraxial
regime, the dynamics of the transverse distribution is gov-
erned by an impulsive measurement interaction Hamiltonian
Hint = ξσz, which makes the displacements of the transverse
spatial components polarization dependent. An enhanced
displacement in the meter distribution is achieved by an
appropriate preselection and postselection of the polarization
state. However, the choice of the preselected state is dependent
on the accumulated phase during the free evolution of the
system with the weak measurement taking place in between.

For an atomic gas in a finite temperature, the Doppler
shift kp,cv for the atoms having velocity v along the probe
or control-field propagation direction has to be involved in
the detunings δj ,δc. To neglect the Doppler-induced absorp-
tion, the EIT condition must be changed to |�|2 � (δj −
δc)kp,cv̄,γ ( + kp,cv̄), where v̄ is the mean thermal atomic
velocity and kp and kc are the wave numbers of the probe and
control field. Integrating over the Maxwell-Boltzmann velocity
distribution shows that b1j in Eq. (21) remains unchanged;
however, b0j is related to the mean thermal atomic velocity.
Consequently, the choice of the polarization angle α in Eq. (16)
must be related to the mean atomic velocity in order to obtain
the weak value.

Our previously study [20] shows that there is a polarization
or quasispin current in this system, which is transverse to
the flow of photons generated by the transverse gradient of
magnetic fields. Weak measurements map the small polar-
ization current onto a large shift of a measuring device’s
pointer. We notice that one can choose the magnetic moment
of state |s〉 equal to that of one ground state (say |−〉); the
σ− component of the probe field propagates in a straight
line, while the σ+ component of the probe field experiences a
declination similar to the probe field in Ref. [21], i.e., the tiny
beam deflection is completely caused by the σ+ component.
Therefore, the weak-value technique significantly amplifies
the beam deflection of the the probe field in Ref. [21].

Finally, we note that light can be stored in as many modes
as possible in the collective excitations in an atomic ensemble
with definite space variations. We hope that such a weak-value
technique as discussed here can enhance the resolution for
different modes stored in an atomic ensemble.
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APPENDIX: EFFECTIVE EQUATION FOR THE PROBE
FIELD WITH TRANSVERSE DYNAMICS

In this Appendix, we will derive the effective Schrödinger
equation by taking the transverse dynamics into account. The
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effective Schrödinger equation is obtained by the following
steps: First, we assume that the changes along the z direction
of the probe envelope are smaller than the changes that occur
along the transverse directions, which allows us to neglect the
second-order derivative over the coordinates with respect to
z and t for the amplitude Ej (r,t) as well as the first-order
derivative over time for atomic slowly varying variables �je.
We obtain the paraxial wave equation

i∂tEj (r,t) + ic∂zEj (r,t) + c

2k
∇2

T Ej (r,t) = −gjN�je.

(A1)

In the linear-optical-response theory, the paraxial wave equa-
tion further reduces to Eq. (10). For the atomic medium, we
first obtain the Langevin equations for the atomic operators.
In order to neglect the Langevin noise operators, we assume
that the number of photons contained in the probe laser beams
is much smaller than the number of atoms in the sample. Then
the dynamics of the atomic ensemble is obtained as

�̇+e = (iδ+ − )�+e + i��+s + ig−E−�+−
+ig+E+(�++ − �ee), (A2a)

�̇+s = [i(δ+ − δc) − γ ]�+s − ig+E+�es + i�∗�+e,

(A2b)

�̇−e = (iδ− − )�−e + i��−s + ig+E+�−+
+ ig−E−(�−− − �ee), (A2c)

�̇−s = [i(δ− − δc) − γ ]�−s − ig−E−�es + i�∗�−e,

(A2d)

where we have phenomenologically introduced the relaxation
rate  of the excited state and the decoherence rate γ .
We note that the Doppler and collisional broadening are
phenomenologically included in the coherence relaxation rate
γ . Since we are interested in the situation that the intensity
of the probe laser beams is much weaker than that of the
control laser field, we use the perturbation approach, which
is introduced in Eq. (6). The zeroth-order equations in gjEj

read

�̇
[0]
+e = (iδ+ − )�[0]

+e + i��
[0]
+s , (A3a)

�̇
[0]
+s = [i(δ+ − δc) − γ ]�[0]

+s + i�∗�[0]
+e, (A3b)

�̇
[0]
−e = (iδ− − )�[0]

−e + i��
[0]
−s , (A3c)

�̇
[0]
−s = [i(δ− − δc) − γ ]�[0]

−s + i�∗�[0]
−e, (A3d)

and the equations of first order in gjEj are

�̇
[1]
+e = (iδ+ − )�[1]

+e + i��
[1]
+s + ig−E−�

[0]
+−

+ ig+E+
(
�

[0]
++ − �[0]

ee

)
, (A4a)

�̇
[1]
+s = [i(δ+ − δc) − γ ]�[1]

+s − ig+E+�[0]
es + i�∗�[1]

+e,

(A4b)

�̇
[1]
−e = (iδ− − )�[1]

−e + i��
[1]
−s + ig+E+�

[0]
−+

+ ig−E−
(
�

[0]
−− − �[0]

ee

)
, (A4c)

�̇
[1]
−s = [i(δ− − δc) − γ ]�[1]

−s − ig−E−�[0]
es + i�∗�[1]

−e.

(A4d)

We assume furthermore that the whole population of atoms is
initially prepared in a mixed state of the ground states when
the electromagnetic fields are absent. Since the population
experiences no changes for the equations of the zeroth order in
gjEj , only the terms �

[0]
−− and �

[0]
++ are different from zero, and

�
[0]
−− + �

[0]
++ = 1. For a probe field with duration much larger

than −1 and γ −1, the lowest adiabatic approximation allows
us to let �̇

[1]
αβ = 0. The steady-state solutions give the relation

between the atomic response �
[1]
je and the slow variable Ej of

the probe field:

�
[1]
je = gj [(δj − δc) + iγ ]�[0]

jj

(iδj − )[i(δj − δc) − γ ] + |�|2 Ej . (A5)

The condition |�|2 � γ,δiδj reduces the above atomic
response to

�
[1]
je = �

[0]
jj

(δj − δc) + iγ

|�|2 gjEj , (A6)

which reduces to Eq. (8) by letting γ = 0 and �
[0]
jj = 1/2.

Substituting �
[1]
je into Eq. (A1), we obtain the equation for the

spatial motion of the probe field:

i∂tEj (r,t) + ic∂zEj (r,t) + c

2k
∇2

T Ej (r,t)

= −�
[0]
jj

(δj − δc) + iγ

|�|2 |gj |2NEj . (A7)

Therefore, the propagation velocity of the light along the z

direction is the speed of light. We note that the decoherence
rate γ ≈ 10−4 leads to absorption of the probe field by
the atomic ensemble, where the relaxation rate  is of the
order of megahertz. From the data presented in Sec. III, the
ratio of the output intensity of the probe field to its input
intensity is approximately exp(−10−3), and the magnitude
of detuning δ+ − δc is about 10−2, which means that the
detuning δj − δc plays the major role. In order to show
the underlying physics, we let γ = 0. In the following, our
treatment proceeds in only one transverse dimension, say in
the x direction. By defining pz = −i∂z and px = −i∂x , the
paraxial wave equation becomes a Schrödinger-like equation.
So we can define the effective Hamiltonian

H = cpz + c

2k
p2

x − N |gj |2
|�|2 �

[0]
jj (δj − δc). (A8)

Equation (12) is obtained by neglecting the transverse mo-
mentum. It can been found that an initial mixed state with an
imbalance of the populations changes the value of b0j and b1j

in Eq. (21) by replacing 1/2 → �
[0]
jj in Eq. (22). Hence, the

observed mean position of the meter in Eq. (31) is changed
accordingly, and so is the choice of the polarization angle α in
Eq. (16) to enlarge the observed mean position of the meter in
Eq. (31).

053815-7



LAN ZHOU, YUSUF TUREK, C. P. SUN, AND FRANCO NORI PHYSICAL REVIEW A 88, 053815 (2013)

[1] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60,
1351 (1988).

[2] Y. Aharonov and D. Rohrlich, Quantum Paradoxes—Quantum
Theory for the Perplexed (WILEY-VCH, Weinheim, 2005).

[3] J. V Neumann, Mathematical Foundations of Quantum Mechan-
ics (Princeton University Press, Princeton, NJ, 1955); published
in German 1932.

[4] A. G. Kofman, S. Ashhab, and F. Nori, Phys. Rep. 520, 43
(2012).

[5] N. W. M. Ritchie, J. G. Story, and R. G. Hulet, Phys. Rev. Lett.
66, 1107 (1991).

[6] G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph,
and H. M. Wiseman, Phys. Rev. Lett. 94, 220405
(2005).

[7] P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys.
Rev. Lett. 102, 173601 (2009).

[8] Q. Wang, F.-W. Sun, Y.-S. Zhang, Jian-Li, Y.-F. Huang, and
G.-C. Guo, Phys. Rev. A 73, 023814 (2006).

[9] N. S. Williams and A. N. Jordan, Phys. Rev. Lett. 100, 026804
(2008).

[10] A. Romito, Y. Gefen, and Y. M. Blanter, Phys. Rev. Lett. 100,
056801 (2008).

[11] N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin,
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