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Entanglement swapping and testing quantum steering into the past via collective decay
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We propose a scheme to realize entanglement swapping via superradiance, entangling two distant cavities
without a direct interaction. The successful Bell-state-measurement outcomes are performed naturally by the
electromagnetic reservoir, and we show how, using a quantum trajectory method, the nonlocal properties of the
state obtained after the swapping procedure can be verified by the steering inequality. Furthermore, we discuss
how the unsuccessful measurement outcomes can be used in an experiment of delayed-choice entanglement
swapping. An extension of testing the quantum steering inequality with the observers at three different times is
also considered.
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I. INTRODUCTION

Entanglement swapping [1] is a procedure to create en-
tanglement between two qubits which have never directly
interacted with each other and has been demonstrated experi-
mentally by Pan et al. [2]. Together with quantum memories
[3], one can, in principle, use entanglement swapping to
build quantum repeaters [4] to overcome the decoherence
problem in quantum communication [5]. In fact, entanglement
swapping can also be viewed as a special example of
quantum teleportation [6] if the unknown state is replaced
by an entangled state [7]. Very recently, the notion of
delayed-choice entanglement swapping was experimentally
demonstrated by Ma et al. [8], an idea first considered in
Peres’s [9] and Cohen’s [10] gedanken experiments. The
intriguing feature of this mechanism is that the entanglement
is made a posteriori, after the entangled qubits have been
measured.

Another route to create entanglement between two qubits
is to make use of the common environment [11], i.e., the one
via which they can effectively interact. Taking this one step
further, Chen et al. [12] combined the concept of teleportation
and a common environment and proposed a method to
teleport charge qubits via a common reservoir using the
superradiance effect. The necessary Bell-state measurements
are performed naturally by the collective decay, i.e., the sub-
and superradiance channels [13]. An analysis of the fidelity
and the success probability was further examined [14] using
the quantum trajectory method.

In this work, we propose a scheme to accomplish entangle-
ment swapping via collective decay, effectively swapping the
entanglement between two atoms into entanglement between
two distant cavities. The steering inequality [15] is utilized
to verify the nonlocal properties of the final state obtained
between the two distant cavities. We further point out that
the unsuccessful outcomes, naturally occurring from the
superradiance effect we employ here, may be useful in a
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delayed-choice entanglement-swapping experiment. Finally,
we consider the scenario of quantum steering into the past
when the observers perform their measurements at three
different times.

II. ENTANGLEMENT SWAPPING VIA SUPERRADIANCE

It is well known that highly entangled states can be
“naturally” generated via collective spontaneous decay [13].
For two identical qubits interacting with a common photon
reservoir, separated by a distance shorter than the emitted
radiation wavelength, entanglement appears in the two in-
termediate states, |S0〉 = (| + −〉 − | − +〉)/√2 and |T0〉 =
(| + −〉 + | − +〉)/√2, of the two decay channels [16] from
the excited state |T1〉 = | + +〉 to the ground state |T−1〉 =
| − −〉. Armed with this information, we now propose how to
accomplish the entanglement-swapping protocol through such
collective decay processes.

We first consider two identical two-level atoms, each
passing through a separate cavity, as shown in Fig. 1. At this
stage atom-cavity system 1 and atom-cavity system 2 are well
separated from each other. In the strong atom-cavity coupling
regime the interactions between the atoms and their respective
cavities can be written as [17]

H ′ = h̄gj (σj,+b−
j + σj,−b+

j ), (1)

where j = 1 or 2, gj is the atom-cavity coupling strength, and
b±

j and the Pauli matrices σj,± are the cavity photon and the
atom operators, respectively. With the appropriate preparation
of the initial states and control of the passage times through
the cavities, the singlet entangled states

(|0〉c,j |+〉j − |1〉c,j |−〉j )/
√

2 (2)

are prepared between the j th atom and its corresponding
cavity. Here, |0〉c,j (|1〉c,j ) and |+〉j (|−〉j ) represent the j th
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FIG. 1. (Color online) Schematic description of entanglement
swapping via superradiance. First, the entanglement is generated
between the j th atom and its corresponding cavity. The next step
is to trap the two atoms, so that they decay collectively. If the
measurement outcome is a single photon, the entanglement swapping
can be achieved.

cavity with no (one) photon and the j th atom in its excited
(ground) state, respectively.

Our goal is to use these entangled atom-cavity states and the
phenomena of collective decay, as well as postselection, to per-
form entanglement swapping and entangle the photonic states
of the two distant cavities. To achieve this, the next step is to
remove the atoms from the cavities and trap the two atoms close
together so that they experience superradiant collective decay
processes in the common electromagnetic environment. This
is a collective decay phenomenon which is enhanced when the
interatom distance is much shorter than the wavelength of the
emitted photon. One can also have a similar enhanced effect
by placing the two atoms at the antinodes of a cavity [11].
Before the collective decay occurs, the total wave function of
the combined atom-cavity systems can be written as

|�〉 = [
1
2 (|0〉c,1|+〉1 − |1〉c,1|−〉1)

⊗ (|0〉c,2|+〉2 − |1〉c,2|−〉2)
]

= 1
2 [|0〉c,1|0〉c,2 ⊗ |T1〉12 + |1〉c,1|1〉c,2 ⊗ |T−1〉12

+ (|0〉c,2|1〉c,1 − |1〉c,2|0〉c,1) ⊗ |S0〉12

− (|0〉c,2|1〉c,1 + |1〉c,2|0〉c,1) ⊗ |T0〉12]. (3)

Assuming that all photonic decay processes from the two
atoms can be observed (inefficient detection is introduced
below), there are four possible outcomes due to the collective
decay: zero photons emitted (|T−1〉12), two photons emitted
(|T1〉12), and, finally, just one photon via the subradiant
channel (|S0〉12) or one photon via the superradiant channel
(|T0〉12). If the measurement outcome is a single photon, i.e.,
via either |S0〉12 or |T0〉12, then entanglement swapping can be
achieved, provided that the sub- and superradiant decays can
be distinguished. As pointed out in Ref. [12], the momentum
of the emitted photon

−→
k depends on the separation of the two

atoms −→
r , i.e.,

−→
k · −→

r = 0, or π corresponds to the emission
of a super- or subradiant photon. Therefore, to distinguish
between the sub- and superradiant photons one can place the
detectors at the appropriate angles.

One can use the recently proposed steering inequality [15]
or Bell–Clauser-Horne-Shimony-Holt (CHSH) inequality [18]
to verify the nonlocal properties of the state obtained after the
swapping procedure. The density operator of the state obtained

after the postselection measurement can easily be calculated
by using the quantum trajectory method [14], where it can be
described as a probabilistic mixture of different measurement
outcomes:

ρ(t) =
∑

i

pi |ψi(t)〉〈ψi(t)|, (4)

where i denotes the events, or measurements, of photodetec-
tion and |ψi(t)〉 is the pure state conditioned on this event.
For example, the total master equation of the evolution of two
two-level atoms and their collective decay phenomena, without
postselection, can be written as

d

dt
ρ = − i

h̄
[H,ρ] +

n∑
i

(2ĴiρĴ
†
i − Ĵ

†
i Ĵiρ − ρĴ

†
i Ĵi). (5)

H is any Hermitian Hamiltonian evolution (e.g., dipole-dipole
interactions between the atoms or external magnetic fields).
Here we neglect such terms and set H = 0. The photon-
emission-event operators are

Ĵ1 =
√

γ + �

2
(σ1,− + σ2,−), (6)

Ĵ2 =
√

γ − �

2
(σ1,− − σ2,−). (7)

We assume the two atoms are separated by a distance d

and that the wavelength of the emitted light is λ. Thus,
γ is the spontaneous emission rate for a single atom and
� = sin(2πd/λ)

(2πd/λ) γ .
To obtain the postselected state, one can unravel the

evolution (see Ref. [14] for a full description of a similar
derivation for a teleportation scheme driven by superradiance),
and then the un-normalized state of the two atoms given by

|ψi(t)〉 = e−iHB (t−tn)Ĵine
−iHB (tn−tn−1) · · · Ĵi2

× e−iHB (t2−t1)Ĵi1e
−iHB t1 |ψ(0)〉, (8)

with the effective non-Hermitian Hamiltonian written as

HB = −ih̄(Ĵ †
1 Ĵ1 + Ĵ

†
2 Ĵ2). (9)

As pointed out in Ref. [14], the sub- and superradiant
outcomes can also be distinguished in a statistical sense. In
this case, one notes that state |S0〉12 (|T0〉12) favors the longer
(shorter) emission times. Following the derivation in Ref. [14],
one can define a crossover time t∗1 , such that the swapped
state should be corrected (i.e., |0〉c,2|1〉c,1 + |1〉c,2|0〉c,1 →
|0〉c,2|1〉c,1 − |1〉c,2|0〉c,1) for a single-photon emission at time
t1 < t∗1 . For t1 > t∗1 , there is no need to correct the swapped
state.We now assume that after the atoms are brought together
one waits a time T and retains the state when exactly one
photon, emitted by the atoms, is detected in the period T (with
detection efficiency η). After averaging over all such detection
events (distinguished by the statistical scheme mentioned
above) and tracing out the atomic states [14], the remaining
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two-cavity state is

ρc(η,T ) = ηρc(T ) + η(1 − η)

4
|0〉c,1|0〉c,2 ⊗ c,2〈0|c,1〈0|

×
{

2(γ 2 + �2)

γ 2 − �2
(1 + e−2γ T ) − 2

κ
e−(γ+�)T

− 2κe−(γ−�)T − 4�2

γ 2 − �2
(1 − e−2γ T )

}
, (10)

where

ρc(T ) = |0〉c,1|0〉c,2 ⊗ c,2〈0|c,1〈0|
{

1

4κ

[
e−(γ+�)T − e−2γ T

]
+ κ

4

[
e−(γ−�)T − e−2γ T

]}

+ 1

4
|ψ+〉〈ψ+|{1 − κ (γ+�)/2�

+ κ (γ−�)/2� − e−(γ−�)T
}

+ 1

4
|ψ−〉〈ψ−|{1 − κ (γ−�)/2�

+ κ (γ+�)/2� − e−(γ+�)T
}
. (11)

Here,

κ ≡ (γ − �)/(γ + �), (12)

|ψ−〉 = (|0〉c,2|1〉c,1 − |1〉c,2|0〉c,1)/
√

2, (13)

|ψ+〉 = (|0〉c,2|1〉c,1 + |1〉c,2|0〉c,1)/
√

2. (14)

To test the nonlocal properties of the resultant cavity state
ρc(η,T ), we use both the steering inequality [15] and the
maximum value of a Bell inequality violation [18]. For the
steering inequality, the correlated measurements observed by
Alice and Bob on the two cavities are described by the
probability distribution P (Bi = b, Ai = a), with b = ±1 or 0
and a = ±1. If the two cavities are not entangled, the steering
inequality is written as [15]

SN ≡
N∑

i=1

E
[〈Âi〉2

Bi

]
� 1, (15)

where N (= 2 or 3) is the number of mutually unbiased
measurements that Alice implements on her qubit (cavity) and

E
[〈Âi〉2

Bi

] ≡
∑

b=±1,0

P (Bi = b)〈Âi〉2
Bi=b, (16)

with Alice’s expectation value for a measurement (conditioned
on Bob’s result) defined as

〈Âi〉Bi=b ≡ P (Ai = +1 | Bi = b) − P (Ai = −1 | Bi = b).

(17)

For the maximum value of a Bell inequality violation, the
Bell operator associated with the CHSH inequality has the
following form [18]:

B̂CHSH ≡ â · σ̂ ⊗ (̂b + b̂′) · σ̂ + â′ · σ̂ ⊗ (̂b − b̂′) · σ̂ , (18)

where â, â′, b̂, b̂′ are unit vectors in R3. Here, â · σ̂ ≡∑3
i=1 aiσi, where σi are the standard Pauli matrices. If the

two cavities are not entangled, the CHSH inequality of the
two-cavity state ρ obeys

|〈B̂CHSH 〉ρ | = |Tr(ρB̂CHSH )| � 2. (19)

The maximum value of the CHSH inequality is given by

Bmax = max
â,̂a′ ,̂b,̂b′

Tr(ρB̂CHSH ). (20)

Thus, violations of the steering parameter SN or the maximum
value of the CHSH inequality Bmax can mean that the resultant
cavity state is entangled.

In Fig. 2(a), we plot the steering parameter SN and the
maximum value of the CHSH inequality Bmax for various

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

η=0.9

η=0.79
η=0.7

η=0.9

η=0.79
η=0.7

B

S

max

B
m

ax

3

S
3

/

d (units of  λ)

(a)

0.5

1

1.5

2

2.5

B
m

ax
/S

3

B

S

max

3

T (units of )γ -1

2.5 5 10 15

η=0.9

η=0.79

η=0.7

η=0.9 η=0.79 η=0.7

(b)
3

FIG. 2. (Color online) Testing the steering and Bell-CHSH
inequalities for the two-cavity state ρc(T ) after entanglement swap-
ping. The solid curves and dashed curves represent the results
of the maximum value of Bell’s inequality Bmax and the steering
parameter S3, respectively. The horizontal black line is the Bell-CHSH
inequality bound, and the horizontal red (gray) line is the S3 bound. In
plotting (a), we set the waiting time T = (5/γ ), and the interatomic
distance d is in units of the wavelength λ of the emitted photon. In
plotting (b), we set the interatomic distance d = 0.1λ.
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photon-detection efficiencies. When decreasing the photon-
detection efficiency η below 0.79, the steering inequality
(dashed curves) is still violated, while the Bell-CHSH one
(solid curves) is not. For the interatomic distance d, the range
for the violation of the steering parameter is larger than that
for the mean value of the Bell observable. In Fig. 2(b), we
also plot SN and Bmax as a function of the waiting time T . As
seen, if the waiting time T is too short, it is possible that the
inequalities are not violated. This coincides with the results
obtained in Ref. [14]: The longer the waiting time T is, the
higher the success probability is. In addition, the results in
Figs. 2(a) and 2(b) all show that the steering inequality has
better tolerance in examining the nonlocal properties of the
entangled states [15].

III. DELAYED-CHOICE ENTANGLEMENT SWAPPING

From Eq. (3), naively, one knows there is a 50% chance
that this protocol may fail, i.e., one may obtain the outcomes
|T−1〉12 or |T1〉12. This drawback is actually useful if one
wishes to implement delayed-choice entanglement swapping.
To illustrate this, let us start with Peres’s [9] original gedanken
experiment. The joint state of a pair of singlets (particles a and
b and particles c and d) takes the form

|�〉abcd = |ψ−〉ab ⊗ |ψ−〉cd , (21)

where |ψ−〉ab = (|↑〉a|↓〉b − |↓〉a|↑〉b)/
√

2 and likewise for
|ψ−〉cd . Here, |↑〉k and |↓〉k are the two spin states of the
particles k = a, b, c, d. Equation (21) can be rewritten in the
basis of Bell states of particles a and d and b and c:

|�〉abcd = 1
2 (|ψ+〉ad ⊗ |ψ+〉bc − |ψ−〉ad ⊗ |ψ−〉bc

− |φ+〉ad ⊗ |φ+〉bc + |φ−〉ad ⊗ |φ−〉bc), (22)

where |ψ+〉ad = (|↑〉a|↓〉d + |↓〉a|↑〉d )/
√

2 and |φ±〉ad =
(|↑〉a|↑〉d ± |↓〉a|↓〉d )/

√
2 are the symmetric Bell states (and

likewise for particles b and c). In the normal scheme of
delayed-choice entanglement swapping, particles a and d are
sent to Alice and Bob. The third observer, Eve, performs
the Bell-state measurement on particles b and c after Alice
and Bob have measured the values of their spin components
(randomly chosen along arbitrary directions). With Eq. (22),
Alice and Bob can then sort their data into four subsets
according to the measurement outcomes of Eve. If Alice and
Bob test Bell’s inequality with only the data in one of the
subsets, they would find the inequality is readily violated.

Very recently, Ma et al. [8] experimentally demonstrated
the delayed-choice entanglement-swapping protocol using
photons. In their experiment, instead of choosing all four
Bell-state measurements, they performed measurements which
projected either onto entangled states or onto the separable
states (|↑〉a|↑〉d or |↓〉a|↓〉d ). This allowed them to a posteriori
decide whether Alice and Bob’s states are entangled or
separable.

Returning to our entanglement-swapping scheme in Eq. (3),
although there is a 50% chance that the swapping may fail, the
unsuccessful results (|T−1〉12 and |T1〉12) are just those that
project the particles into the separable states [8] and therefore
can be used in the experiment for delayed-choice entanglement
swapping. An additional advantage here, over that of a scheme
based on purely photonic degrees of freedom, is that we can

make use of other internal metastable states of the atoms to
postpone the collective decay (Fig. 3). When atoms b and c are
trapped, laser pulses can be applied to store the information
in metastable states with a much longer dephasing or decay
time. After Alice and Bob have performed their measurements
on their own particles (which are now the photonic degrees
of freedom in the cavities) at time t1, the reverse pulses are
applied to the atoms b and c to continue the collective decay
at a later time t2.

IV. TESTING QUANTUM STEERING INTO THE PAST

In our scheme, the Bell measurements are made “automati-
cally” by the common photon reservoir. Therefore, the delayed
choice is intrinsically random, i.e., in the stochastic sense of
spontaneous decay. However, a loophole may arise when Alice
and Bob both happen to choose their measurements along the z

axis. If their measurement outcomes are the same (|0〉c,1|0〉c,2
or |1〉c,1|1〉c,2), from Eq. (3) they would know in advance that
the later joint-measurement settings can be only the separable
ones and could never be the entangled ones. To overcome this,
the relative temporal order of the three observers should be
changed: t1(Alice) < t2(Eve) <t3(Bob), as shown in Fig. 4. In
this case, even if Alice chooses her setting along the z axis,
the wave function of Eq. 3 may, for example, collapse onto

|�〉bcd = 1
2 [|0〉c,2 ⊗ |T−1〉12

−|1〉c,2 ⊗ |S0〉12 + |1〉c,2 ⊗ |T0〉12]. (23)

The later joint atomic measurement driven by the common
photon reservoir can still either project it into the separable
state (|T−1〉12) or the entangled states (|S0〉12, |T0〉12). Actually,
such an arrangement can be viewed as a special kind of
quantum steering if the atomic regime and Bob’s cavity are
considered as a black box [15]. This means Bob can steer

entangled entangledb c

a d

t1

t2

metastable state

Alice Bob

Eve

FIG. 3. (Color online) Delayed-choice entanglement swapping
via superradiance. When atoms b and c are trapped, laser pulses
are applied to store the information in metastable states with a
much longer dephasing or decay time. After the measurements are
performed on the cavities (a and d) at time t1, the reverse pulses are
applied to atoms b and c to continue the collective decay at a later
time t2.
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entangled

1 2

c1

c2

t1

t2

t3

Alice

Eve

Bob

FIG. 4. (Color online) To test quantum steering into the past via
superradiance, the relative temporal order of the three observers
should be arranged as t1(Alice)< t2(Eve)< t3(Bob). If the atomic
regime and Bob’s cavity are considered as a black box (blue dashed
line), Bob can steer Alice’s state by his measurement.

Alice’s state by his measurement, which is conditioned on the
random choice of the collective decay. Remember that Alice’s
measurement is performed before Bob’s measurement. Similar
to Bell’s test in Ref. [8], one can therefore test “quantum
steering into the past” by using the steering inequality [15].

The above proposal may also be further simplified by using
only one cavity with two atoms. As shown in Fig. 5, one first
lets atom 1 pass through the cavity, and as it does so, the cavity
plays the role of cavity c1 in the above scheme. After atom
1 has exited the cavity and is trapped and its state has been
transferred to an internal metastable state, one then performs a
measurement on the photonic state in cavity c1 and records the
data. The next step is to “reset” the cavity and let atom 2 pass
through it, so that the cavity now plays the role of cavity c2.
When atom 2 arrives at the trap, atom 1 is transferred back to
its original state so that the collective decay can occur. Then,
a measurement is again performed on cavity c2.

Following the above procedure, one can obtain the violation
of the steering inequality and may have the illusion of “self-
entanglement” since the measurement data are produced by
the same cavity. However, this is not the case because when

entangled

1 2

c1

Collective decay 
(measured at t2)

c2
(measured at t3)(measured at t1)

FIG. 5. (Color online) A simplified version of testing quantum
steering into the past. After atom 1 is trapped and the information is
stored in its metastable state, one then performs a measurement on
cavity c1 at time t1. The next step is to reset the cavity and let atom
2 pass through it. When atom 2 arrives at the trap, the reverse pulse
is applied to atom 1, so that a collective decay can occur at time t2.
Then, the measurement is performed on cavity c2 at time t3.

we reset the cavity, it (of course) becomes a new system.
The use of a single cavity simplifies a possible experimental
implementation and emphasizes the fact that the relative
temporal order of the three observers’ events is irrelevant [8,9].

V. SUMMARY

In summary, we have proposed a scheme to accomplish
entanglement swapping via superradiance. We outlined how
the swapping protocol could be combined with collective
decay to entangle two distant cavities. After postselection
and averaging over all single-photon events, the nonlocal
properties of the two-cavity state were analyzed by both the
steering and Bell-CHSH inequalities. We found that the steer-
ing inequality has a better tolerance in verifying the nonlocal
properties of the swapping state. Furthermore, we have also
pointed out that the unsuccessful events in our scheme can be
used in a delayed-choice entanglement-swapping protocol.
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