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Efficient tomography of quantum-optical Gaussian processes probed with a few coherent states
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An arbitrary quantum-optical process (channel) can be completely characterized by probing it with coherent
states using the recently developed coherent-state quantum process tomography (QPT) [Lobino et al., Science
322, 563 (2008)]. In general, precise QPT is possible if an infinite set of probes is available. Thus, realistic
QPT of infinite-dimensional systems is approximate due to a finite experimentally feasible set of coherent states
and its related energy-cutoff approximation. We show with explicit formulas that one can completely identify a
quantum-optical Gaussian process just with a few different coherent states without approximations like the energy
cutoff. For tomography of multimode processes, our method exponentially reduces the number of different test
states, compared with existing methods.

DOI: 10.1103/PhysRevA.88.022101 PACS number(s): 03.65.Wj, 42.50.Dv

I. INTRODUCTION

One of the basic problems of quantum physics is to
predict the evolution of a quantum system under certain
conditions. For an isolated system with a known Hamiltonian,
the evolution is characterized by a unitary operator determined
by the Schrödinger equation. However, the system may interact
with its environment, and the total Hamiltonian of the system
plus the environment is in general not completely known. The
evolution can then be regarded as a “black-box process” [1–3]
which maps the input state into an output state. An important
problem here is how to characterize an unknown process by
testing the black box with some specific input states, which
is referred to as quantum process tomography (QPT) (for
reviews, see Refs. [4,5]).

QPT can be understood as the tomography of a quantum
channel since any physical operation describing the dynamics
of a quantum state can be considered as a channel [6]. In
contrast, the goal of quantum state tomography (QST) is the
reconstruction of an unknown state (i.e., its density matrix) by
a series of measurements on multiple copies of the state (for a
review, see Ref. [4]). Both QPT and QST are essential tools in
quantum engineering and quantum-information processing.

A few methods for QPT were developed, including the
standard QPT [1,2], ancilla-assisted QPT [3,7–9], direct char-
acterization of quantum dynamics [10,11], and coherent-state
QPT [12]. There are dozens of proposals and experimental re-
alizations of QPT for systems with a few qubits. These include
the estimation of quantum-optical gates [8,11,13–19], liquid
nuclear-magnetic-resonance gates [20–22], superconducting
gates [23–28] (for a review, see Ref. [29]) and other solid-state
gates [30–32], ion-trap gates [33,34], or the estimation of the
dynamics of atoms in optical lattices [35]. In contrast, there
are only a very few experimental demonstrations of QPT for
infinite-dimensional systems (see, e.g., Ref. [12]).
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Any physical process can be described by a completely
positive map ε. Such a process is fully characterized if the
evolution of any input state ρin is predictable: ρout = ε(ρin).
In general, QPT is very difficult to implement in high-
dimensional spaces, and, more challengingly, in an infinite-
dimensional space, such as a Fock space [9,12]. Recently,
Ref. [12] described QPT in a Fock space for continuous
variable (CV) states. Two conclusions can be drawn [12]: (i) If
the output states of all coherent input states are known, then one
can predict the output state of any input state; (ii) by taking the
photon-number-cutoff (or energy-cutoff) approximation, one
can then characterize an unknown process with a finite number
of different input coherent states (CSs).

It is an interesting question to identify an exact QPT with
a finite number of coherent states. If the process is completely
unknown, then QPT with a finite number of coherent states is
impossible. However, if some of the constraints of the quantum
process are known, then QPT can be simplified and, thus,
effective. Gaussian maps are the most common for quantum-
optical processes. In this article, we show that if a certain
quantum process is known to be Gaussian, then an exact QPT
can be performed with only a few different coherent states.

It is worth noting that there is an analogy between QPT
and QST, especially for quantum-optical Gaussian processes
(channels) [6,36] and Gaussian states [37,38]. This analogy
can be seen, e.g., by comparing correlations between observ-
ables encoded in the covariance matrices, which completely
describe a Gaussian object (either a quantum state or process).
Thus, tomographies of quantum Gaussian systems are effec-
tively finite-dimensional with their covariance matrix having
a physical meaning analogous to a finite-dimensional density
matrix.

As has been shown in Ref. [3], QPT can be performed
with two-mode squeezed vacuum (TMSV) for any unknown
process. However, TMSVs are not so easy to manipulate in
practice, especially because this involves quantum tomography
of entangled states, which is not an easy task.
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Here, we show that based on existing results [3], by using
the standard quantum-optical Husimi Q representation, one
can perform QPT with only a few CSs without entangled
ancillas for quantum-optical Gaussian processes. The method
described here has several advantages. First, it presents
explicit formulas without any approximations, such as the
photon-number-cutoff approximation. Second, it requires only
a few different states to characterize a process, rather than all
CSs. Third, for multimode Gaussian process tomography, the
number of input CSs increases polynomially with the number
of modes, rather than exponentially. Fourth, it uses the Husimi
Q functions only, which is always well-defined for any state
without any higher-order singularities in the calculation.

The paper is organized as follows: We review the existing
results about QPT based on entangled ancillas in Sec. II. In
Sec. III, the QPT without ancillas is proposed for single-mode
Gaussian processes. A simple illustrative example of the
method is discussed in Sec. III A. A generalization of our QPT
for a multimode case is presented in Sec. IV. We conclude in
Sec. V.

II. ANCILLA-ASSISTED QUANTUM PROCESS
TOMOGRAPHY

First, we review the existing result of the ancilla-assisted
QPT with TMSV [3] to show some similarities but also crucial
differences in comparison to our proposal of ancilla-free QPT,
which will be described in Sec. III.

A TMSV is defined by |χ (q)〉 = cq exp(qa†b†)|00〉, where
cq =

√
1 − q2, and q is real. The (unnormalized) maximally

entangled state here is

|�+〉 = lim
q→1

exp(qa†b†)|00〉 =
∞∑

k=0

|kk〉, (1)

where a† (b†) is the creation operator for mode a (b). Note that
entanglement is not required for the ancilla-assisted QPT, but it
makes it more efficient. In particular, the use of the maximally
entangled states can make the QPT experimentally optimal
with regard to perfect nonlocal correlations [8].

Assume now that the black box process acts only in mode
b of the bipartite state |χ (q)〉. After the process, we obtain a
two-mode state �q . One can define the projection operator

T (q) = cq exp[(ln q)a†a], (2)

which has the property [40]

T (q)(a,a†) T −1(q) = (a/q,qa†). (3)

The TMSV |χ (q)〉 can be written as

|χ (q)〉 = T (q) ⊗ I |�+〉. (4)

According to Eq. (4), we have

�q = T (q) ⊗ IρεT (q) ⊗ I, (5)

where ρε = I ⊗ ε(|�+〉〈�+|). Naturally,

ρε = T −1(q) ⊗ I�qT
−1(q) ⊗ I. (6)

We now also formulate the output state of any single-mode
input state |ψ({ck})〉 = ∑

k ck|k〉 of mode b. Obviously it can

be written as

(|ψ〉〈ψ |)b = a〈ψ∗|�+〉〈�+|ψ∗〉a
= tra(|ψ∗〉〈ψ∗| ⊗ I |�+〉〈�+|), (7)

and |ψ∗〉a = ∑
k c∗

k |k〉a is a single-mode state for mode a

(sometimes we omit the subscript a or b for simplicity). We
obtain the output state

ρψ = a〈ψ∗|ρε |ψ∗〉a = tra(|ψ∗〉〈ψ∗| ⊗ Iρε)

= tra[|ψ∗({ck/q
k})〉〈ψ∗({ck/q

k})| ⊗ I�q]

= a〈ψ∗({ck/q
k})|�q |ψ∗({ck/q

k})〉a. (8)

More explicit expressions can be obtained by using the Husimi
Q function. If the single-mode input state in mode b is a
coherent state |α〉, the output state then becomes

ρα = 〈α∗|ρε|α∗〉 = 〈α∗|T −1(q) ⊗ I�qT
−1(q) ⊗ I |α∗〉. (9)

Note that the state |α∗〉 here is a single-mode coherent state in
mode a. Using the property of T (q) and the definition of CSs,
a|α∗〉 = α∗|α∗〉, we easily find

T −1(q) ⊗ I |α∗〉 = Nq(α)|α∗/q〉, (10)

where the factor Nq(α) = exp[−|α|2(1 − 1/q2)/2]/cq , and
|α∗/q〉 is a coherent state in mode a defined by a|α∗/q〉 =
(α∗/q)|α∗/q〉. Thus, the output state of mode b is

ρα = |Nq(α)|2a〈α∗/q|�q |α∗/q〉a. (11)

Let |Za,Zb〉 be a two-mode coherent state defined by
(a,b)|Za,Zb〉 = (Za,Zb)|Za,Zb〉, where Za,Zb are complex
amplitudes. Then, the Husimi Q function for �q can be defined
as

Q�q
(Z∗

a ,Z
∗
b ,Za,Zb) = 〈Za,Zb|�q |Za,Zb〉, (12)

and the corresponding density operator is the following
normally ordered operator

�q = : Q�q
(a†,b†,a,b) : , (13)

which is simply the operator functional obtained by replacing
the variables (Z∗

a ,Z
∗
b ,Za,Zb) with (a†,b†,a,b) in the Q

function given by Eq. (12), analogously to Eq. (16). Therefore,
using Eq. (11) and the normally ordered form of �q , we have
the following simple form for the Husimi Q function:

Qρα
(Zb

∗,Zb) = |Nq(α)|2Q�q
(α/q,Zb

∗,α∗/q,Zb) (14)

of the output state ρα . Equations (11)–(14) are the explicit
expressions of the output state for the input of any coherent
state |α〉. According to Ref. [12], if we know the output states
for all input CSs, then we know the output states of all states in
Fock space. In this approach, given any input state |ψ〉, we can
write it in its linear superposition form in the coherent-state
basis, and then obtain the Q function of its output state by
using Eq. (14).

These results can be generalized for a multimode
QPT. To apply the Jamiolkowski isomorphism [41],
we consider k pairs of maximally entangled states,
each in modes a1,b1,a2,b2, . . . ,ak,bk . Explicitly, |�+〉 =
|φ+〉1|φ+〉2 · · · |φ+〉k. Here |φ+〉i = limq→1 exp(qa

†
i b

†
i )|00〉

indicates a maximally entangled state in modes ai,bi . Sub-
spaces a and b each are now k mode. Any state |ψ〉 in subspace
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b can still be written in the form of Eq. (7), with the new
definitions for |ψ〉 and |�+〉. Using Eq. (6), it is obvious that
the output state of these k pairs of TMSV fully characterizes
the process.

III. ANCILLA-FREE GAUSSIAN PROCESS
TOMOGRAPHY WITH A FEW COHERENT STATES

Now we present the main result of this paper, which is an
efficient tomography of Gaussian processes probed with only
a few single-mode coherent states without the assistance of
ancillas.

As shown in Ref. [12], if we only use CSs in the
test, the tomography of an unknown process in Fock space
requires tests with all CSs. Though this problem can be
solved by taking the photon-number-cutoff approximation, in
a quantum-optical process associated with intense light, one
still needs a huge number of different CSs for the test. Here
we show that the most important process in quantum optics,
the Gaussian process [6,36], can be exactly characterized with
only a few CSs in the test.

A Gaussian process maps Gaussian states into Gaussian
states [39]. Therefore, the Husimi Q function of the operator
ρε must be Gaussian:

Qρε
(Z∗

a ,Z
∗
b ,Za,Zb) = exp(c0 + L + L† + S + S† + S0),

(15)
where

L = (�a,�b)

(
Za

Zb

)
, S = 1

2
(Za,Zb)X

(
Za

Zb

)
,

S0 = (Z∗
a ,Z

∗
b )Y

(
Za

Zb

)
, X = XT =

(
Xaa Xab

Xba Xbb

)
,

Y = Y † =
(

Yaa Yab

Yba Ybb

)
.

Before testing the map, all these are unknowns. The normally
ordered form of the density operator ρε is

ρε = : Qρε
(a†,b†,a,b) : (16)

corresponding to Eq. (15) but with variables (Z∗
a ,Z

∗
b ,Za,Zb)

replaced by (a†,b†,a,b). The normal order notation : . . . :
indicates that any term inside it is reordered by placing the
creation operator in the left. For example, : aba†b†a : =
a†b†a2b.

The output state from any single-mode input coherent state
|u〉 (in mode b) is

ρu = tra[(|u∗〉〈u∗|)a ⊗ Iρε], (17)

where ρε is given by Eq. (16). Its Husimi Q function is

Qρu
(Z∗

b ,Zb) = Qρε
(u,Z∗

b ,u
∗,Zb)

= exp(cu + Lu + L†
u + R + R† + R0), (18)

where

Lu = (�b + u∗Xab + uYab)Zb,

R = ZbXbbZb/2, R0 = Z∗
bYbbZb,

and cu is determined by c0, �a , Xaa , and Yaa . Explicitly,

cu = c0 + Re(2�au
∗ + u∗Xaau

∗ + uYaau
∗). (19)

The quadratic functional terms (R,R†,R0) in the exponent in
Eq. (18) are independent of u; these terms must be the same
for the output states from any input CSs. Therefore, these can
be known by testing the map with one coherent state. Thus,
we do not need to consider these terms below.

Now suppose that we test the process with six different CSs,
|αi〉, and i = 1,2, . . . ,6. Assume also that the detected Husimi
Q function of the output states is

Qραi
(Z∗

b ,Zb) = exp(ci + Di + D
†
i + R + R† + R0), (20)

where Di = diZb is the detected (hence known) linear term.
We note that there are available efficient methods of Gaussian
QST based on homodyne detection, which enable the estima-
tion of the Wigner function or, equivalently, the Husimi Q

function for Gaussian states [38]. According to Eq. (18), the
Q function of the output state from the initial state |αi〉 of
mode b must be

Qραi
(Z∗

b ,Zb) = Qρε
(αi,Z

∗
b ,αi

∗,Zb). (21)

Therefore, we can derive self-consistent equations by using
the detected data from ραi

and setting u = αi in Eq. (18),

Li = Di, cαi
= ci, (22)

where Li , cαi
are just Lu, cu, respectively, after setting u =

αi in Eqs. (18) and (19); Di and ci are known from tests.
Explicitly,

Li = (�b + αi
∗Xab + αiYab)Zb. (23)

The first part of Eq. (22) gives

K (�b,Xab,Yab)T = d, (24)

where

K =
⎛
⎝ 1 α1

∗ α1

1 α2
∗ α2

1 α3
∗ α3

⎞
⎠ , d =

⎛
⎝d1

d2

d3

⎞
⎠ .

There are three unknowns (�b, Xab, and Yab) with three
equations now. We find

(�b,Xab,Yab)T = K−1d. (25)

If the Gaussian process is known to be trace-preserving,
then Eq. (25) completes the tomography: up to a numerical
factor, we can deduce all the output states of the other input
CSs, |αi〉, for i = 4,5,6. The term ci can be fixed through
normalization, which is determined by the quadratic and linear
functional terms in the exponent of the Q functions. Knowing
these {ci}, one can construct ρε completely as shown below.

For any map, ci can be known from tests with |αi〉 for
i = 1,2, . . . ,6. We then have

J (c0,�a,�
∗
a ,Xaa,X

∗
aa,Yaa)T = c, (26)

where

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α∗
1 α1

1
2α∗2

1
1
2α2

1 |α1|2
1 α∗

2 α2
1
2α∗2

2
1
2α2

2 |α2|2
1 α∗

3 α3
1
2α∗2

3
1
2α2

3 |α3|2
1 α∗

4 α4
1
2α∗2

4
1
2α2

4 |α4|2
1 α∗

5 α5
1
2α∗2

5
1
2α2

5 |α5|2
1 α∗

6 α6
1
2α∗2

6
1
2α2

6 |α6|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

c4

c5

c6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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for the second part of Eq. (22). Thus

(c0,�a,�
∗
a ,Xaa,X

∗
aa,Yaa)T = J−1c. (27)

Theorem: Given K and J defined by Eqs. (24)–(26), then the
QPT of any single-mode Gaussian process in Fock space can
be performed with six input CSs, when det K �= 0 and det J �=
0. The QPT of any trace-preserving single-mode Gaussian
process in Fock space can be executed with three input CSs,
when det K �= 0.

For example, one can simply choose α1 = 0, α2 = 1, α3 =
i, α4 = −1, α5 = −i, and α6 = 1 + i. One finds

c0 = c1, �b = d1,

�a = 1
4 (c2 + ic3 − c4 − ic5),

Xab = 1
2 [−(1 + i)d1 + d2 + id3],

Yab = 1
2 [−(1 − i)d1 + d2 − id3], (28)

Yaa = 1
4 (c2 + c3 + c4 + c5) − c1,

Xaa = 1
4 [c2 − c3 + c4 − c5 + 2i(c1 − c2 − c3 + c6)],

where {di} and {ci} are defined in Eq. (20).

A. Example: Output state of a beam-splitter process

As a check of our conclusions, we calculate the output state
of a beam-splitter (BS) process as shown in Fig. 1. The BS has
input modes b and c and output modes b′ and c′. Regarding
this as a black-box process, the only input is mode b and the
only output is mode b′. We set mode c to be the vacuum. The
BS transforms the creation operators of modes b and c by

UBS(b†,c†)U−1
BS = (b†,c†)MBS, (29)

where MBS = ( cos θ sin θ
− sin θ cos θ

). If we test such a process with

a coherent state |αi〉, we shall find ραi
= |αi cos θ〉〈αi cos θ |.

Comparing this with Eq. (20), we have di = α∗
i cos θ and ci =

−|αi cos θ |2. Using Eqs. (25)–(27), we find

Ybb = −1, Xab = cos θ, Yaa = − cos2 θ,
(30)

�a = �b = Yab = Xaa = Xbb = c0 = 0.

Therefore,

ρε = : exp(a†b† cos θ − a†a cos2 θ − b†b + ab cos θ ) : . (31)

With this we can predict the output state of any input state,
for example the squeezed coherent state (squeezed displaced
vacuum)

|ξ (r,Z)〉 = exp

[
r

2
(b2 − b†2)

]
exp(Zb† − Z∗b)|0〉, (32)

where r is real. According to Eq. (8),

ρξ = tra{[|ξ (r,Z∗)〉〈ξ (r,Z∗)|]a ⊗ Ibρε}. (33)

FIG. 1. Gaussian map constructed by a beam-splitter. Here, we
assume that the input mode c is in the vacuum.

As a result,

Qρξ
(Z∗

b ,Zb) = C exp(H1 − H2 + H3 + H4), (34)

where C is the normalization factor, and

H1 = |Zb|2(tanh2 r sin2 θ − 1)/g,

H2 = (
Z2

b + Z∗
b

2) tanh r cos2 θ/(2g),

H3 = Zb cos θ (Z∗ − Z tanh r sin2 θ )/(g cosh r),

H4 = Z∗
b cos θ (Z − Z∗ tanh r sin2 θ )/(g cosh r),

and g = 1 − tanh2 r sin4 θ . This is the same result obtained
from direct calculations using Eq. (29).

IV. EFFICIENT MULTIMODE-GAUSSIAN QPT

Multimode Gaussian QPT has many important applica-
tions. For example, it applies to a complex linear optical circuit
with BSs, squeezers, homodyne detections, linear losses,
Gaussian noises, and so on. Consider now a Gaussian process
acting on a k-mode input state (in modes b1,b2, . . . ,bk), with
outcome also a k-mode state. Even though other methods [12]
can also be extended to the multimode case, the number of
input states required there increases exponentially with the
number of modes k, because the number of ket-bra operators
|{ni}〉〈{mi}| in Fock space increases exponentially with k.
As shown below, the number of input states in our method
increases polynomially.

A k-mode QPT can be tested with k-mode CSs if the process
is Gaussian. The main Eqs. (25)–(27) still hold after redefining
the notations there. First, �a, �b, u, αi , di , Za , and Zb are now
k-mode vectors. For example,

|αi〉 = |αi1,αi2, . . . ,αik〉,
di = (di1,di2, . . . ,dik), Zb = (Zb1,Zb2, . . . ,Zbk),

and so on. Following Eq. (15), Xxy is now a k × k matrix,
for X = X or Y with x = a,b; y = a,b. We still apply
Eqs. (25)–(27) to calculate {�b,Xab,Yab} and {�a ,Xaa ,Yaa},
respectively, but keep in mind that the matrices K ,J and
symbols d,c are now redefined. There are (2k + 1)k unknowns
in (�B,Xab,Yab). We need (2k + 1) different CSs of k mode to
fix these unknowns. Now we have

K =

⎛
⎜⎜⎜⎜⎝

1 α∗
1 α1

1 α∗
2 α2

...
...

...

1 α∗
2k+1 α2k+1

⎞
⎟⎟⎟⎟⎠ , (35)

which is a (2k + 1) × (2k + 1) matrix, since each αi here is
a k-mode row vector. Moreover, d is here a (2k + 1) × k ma-
trix as dT = (dT

1 ,dT
2 , . . . ,dT

2k+1), with di = (di1,di2, . . . ,dik).
Similarly,

J =

⎛
⎜⎜⎜⎜⎝

1 α∗
1 α1

1
2α∗2

1
1
2α2

1 |α1|2
1 α∗

2 α2
1
2α∗2

2
1
2α2

2 |α2|2
...

...
...

...
...

...

1 α∗
N αN

1
2α∗2

N
1
2α2

N |αN |2

⎞
⎟⎟⎟⎟⎠ , (36)
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which is now an N × N matrix, and N = (k + 1)(2k +
1), since α2

i and |αi |2 here are row vectors of α2
i =

(Ei1,Ei2, . . . ,Eik) and |αi |2 = (Ẽi1,Ẽi2, . . . ,Ẽik), and each
element of Eim (or Ẽim) is a vector with (k − m + 1) modes
(or k modes), as

Eim = (α2
im,αimαi,m+1,αimαi,m+2, . . . ,αimαk,α

2
k ),

Ẽim = (αimα∗
i1,αimα∗

i2, . . . ,αimα∗
i,k−1,αimα∗

ik).

Obviously, c is a column vector with N elements. Therefore,
we conclude with the following:

Corollary. Any k-mode Gaussian QPT can be performed
with (k + 1)(2k + 1) different CSs of k mode, or with (2k + 1)
different CSs of k mode if the process is trace-preserving.

V. CONCLUSIONS

In summary, we have presented explicit formulas for the
tomography of quantum-optical Gaussian processes probed
with only a few different coherent states. We have reduced the

problem of Gaussian QPT to Gaussian QST, for which efficient
methods are experimentally available [38]. We have extended
our results to multimode Gaussian QPT and demonstrated that
the number of test states required increases only polynomially
with the number of modes.
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