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Abstract
The single-mode Dicke model is well known to undergo a quantum phase
transition from the so-called normal phase to the superradiant phase (hereinafter
called the ‘superradiant quantum phase transition’). Normally, quantum phase
transitions can be identified by the critical behavior of quantities such as
entanglement, quantum fluctuations, and fidelity. In this paper, we study the role
of the quantum Fisher information (QFI) of both the field mode and the atoms in
the ground state of the Dicke Hamiltonian. For a finite but large number of
atoms, our numerical results show that near the critical atom-field coupling, the
QFI of the atomic and the field subsystems can surpass their classical limits, due
to the appearance of nonclassical quadrature squeezing. As the coupling
increases far beyond the critical point, each subsystem becomes a highly mixed
state, which degrades the QFI and hence the ultimate phase sensitivity. In the
thermodynamic limit, we present the analytical results of the QFI and their
relationship with the reduced variances of the field mode and the atoms. For each
subsystem, we find that there is a singularity in the derivative of the QFI at the
critical point, a clear signature of the quantum criticality in the Dicke model.
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1. Introduction

Quantum phase transitions in many-body systems are of fundamental interest [1] and have
potential applications in quantum information [2–7] and quantum metrology [8–15]. Consider,
for instance, a collection of N two-level atoms interacting with a single-mode bosonic field,
described by the Dicke model (with = 1) [16]:

ω ω λˆ = ˆ ˆ + ˆ + ˆ + ˆ ˆ + ˆ† †
+ −( )( )H b b J

N
b b J J , (1)z0

where b̂ and ˆ†
b are annihilation and creation operators of the bosonic field with oscillation

frequency ω, which is nearly resonant with the atomic energy splitting ω0. The collective spin

operators σˆ ≡ ˆ ± ˆ = ∑ ˆ±
±J J iJx y k k and σˆ = ∑ ˆJ 2z k k

z obey the SU(2) Lie algebra, where σ̂±
k and σ̂k

z are

Pauli operators of the kth atom. The atom-field coupling strength λ ∝ N V depends on the atomic
density N V . For a finite number of atoms N (= j2 ), the Hamiltonian (1) commutes with the parity

operator Π πˆ = ˆ ˆ + ˆ +
†

i b b J jexp [ ( )]z , due to Π Πˆ ˆ ˆ = − ˆ†
J Jx x and Π Πˆ ˆ ˆ = − ˆ†

b b [17]. As a result, the
ground state of the finite-N Dicke model ∣g does not exhibit any singularity or degeneracy. This can

be understood by expanding the ground state in the basis ∣ ⊗ ∣{ }n j m, , where ∣n and ∣ j m,
denote the Fock states of the field mode and the Dicke states of the atoms [18], respectively. For
vanishing atom-field coupling strength λ, the ground state ∣ = ∣ ⊗ ∣ −g j j0 , has a positive parity

Π̂ = +1; similarly for λ > 0, due to the conserved parity, the ground state ∣g consists of states

with even number + +n m j, which results in vanishing coherence (i.e., 〈 ˆ 〉 = ˆ =J b 0x ).
However, in the thermodynamic limit (for finite N V , as N and → ∞V ), the parity symmetry is
spontaneously broken and the ground states with parities ±1 become degenerate in the superradiant
phase (i.e., the symmetry-broken phase at λ λ ω ω⩾ = 2cr 0 ) [19–31], leading to the bifurcation

of both 〈 ˆ 〉Jx and b̂ [17].
Unlike the traditional phase transition of the Dicke model at a finite temperature [32], the

superradiant quantum phase transition is driven by quantum fluctuations in the large-N limit. It
is natural to ask in what different ways one can characterize such a quantum critical
phenomenon in a realistic system. Several quantities, with various degrees of experimental
accessibility, have been shown to be sensitive to the quantum criticality, such as the von
Neumann entropy [7], the fidelity [33], and more recently the quantum squeezing of the field
mode [34].

In this paper, we investigate the quantum Fisher information (QFI) of both the field state
ρ̂ = ∣ ∣g gTr ( )

B A and the atomic state ρ̂ = ∣ ∣g gTr ( )
A B , where TrA (TrB) is the partial trace of the

ground state ∣g over the atomic (bosonic field) degrees of freedom. The QFI is one of the
central quantities used to qualify the utility of an input state [35, 36], especially in
Mach–Zehnder (or, equivalently, Ramsey) interferometer-based phase or parameter estimation.
The achievable phase sensitivity is well known to be limited by the quantum Cramér–Rao

bound δφ ρ∝ ˆ ˆF G1 ( , )
min in

, where the QFI ρ̂ ˆF G( , )
in

depends on the input state ρ̂
in
and the
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choice of phase-shift generator Ĝ [36–38]. For a spin state ρ̂
in
with fixed and finite N, the

inequality ρ̂ ˆ >F G N( , )
in

provides not only a criterion of phase sensitivity better than the

classical limit (i.e., δφ < N1
min

), but also a sufficient condition for the multiparticle

entanglement of ρ̂
in
[37].

Recently, Ma and Wang [12] have shown that the QFI is a sensitive probe of a quantum
phase transition in the Lipkin–Meskhov–Glick model. Inspired by their work, we investigate the
QFI of both the atomic state ρ̂

A
and the field state ρ̂

B
in the Dicke model. Unlike the finite-N spin

systems studied elsewhere, the states we consider here are in general mixed states and the
calculation of the QFI becomes more complex. Our numerical results show that near the critical
point λcr, the QFI of each subsystem can surpass the classical limit due to the appearance of
quadrature squeezing in ρ̂

A B,
. As the coupling strength λ λ≫ cr, both ρ̂

A
and ρ̂

B
become highly

mixed states, which leads to the QFI of the field returning to the classical limit, while for the
atoms the QFI tends to zero. In the thermodynamic limit, we find that there exists analytical
relationships between the QFI and the reduced variances, which show clearly the squeezing-

induced enhancement of the QFI. More interestingly, we find that the derivative of ρ̂ ˆF G( , )
A B,

for each subsystem is divergent at λ λ= cr, similar to the fidelity of the ground state ∣g in the
one dimensional Ising chain [33]. This finding suggests that the QFI of the two subsystems in
the Dicke model can identify the superradiant quantum phase transition.

Our paper is organized as follows. In section 2, we present numerical results of the QFI of
the atomic and the field subsystems by exactly diagonalizing the finite-N Dicke Hamiltonian
[21, 25]. In section 3, analytical results of the QFI and its relationship with the reduced variance
for each subsystem are derived in the thermodynamic limit. Finally, we present a brief

conclusion and discuss the role of the so-called Â
2
term.

2. QFI in the finite-N Dicke model

We first examine the field state ρ̂ = ∣ ∣g gTr ( )
B A of the finite-N Dicke model by numerically

evaluating the QFI with respect to ρ φ φ ρ φˆ = − ˆ ˆ ˆi G i G( ) exp ( ) exp ( )
B B

, where φ is an unknown

phase shift and Ĝ is the phase-shift generator (= ˆ ˆ†
b b for the single-mode field [38]). In general,

the field state ρ φˆ ( )B
is a mixed state and the QFI is given by [36–41]

∑ ∑ρ Δ ψ ψˆ ˆ = ˆ −
+

∣ ∣ ˆ ∣ ∣
≠

( ) ( )F G p G
p p

p p
G, 4

8
, (2)

B
n

n n
m n

m n

m n
m n

2 2

where the weights p{ }
n

are nonzero eigenvalues of ρ̂
B
, and ψ∣ 〉{ }

n
are the corresponding

eigenvectors. The first term of equation (2) is a weighted average over the QFI for each pure

state ψ∣ 〉
n
, and the variance is Δ ψ ψ ψ ψˆ ≡ 〈 ∣ ˆ ∣ 〉 − ∣〈 ∣ ˆ ∣ 〉∣G G G( )n n n n n

2 2 2. The second term is simply a

negative correction (cf [41]). For a pure coherent state α∣ 〉, with mean number of bosons

α¯ = ∣ ∣n 2, the QFI of the bosonic field ρ̂ ˆF G( , )
B

, denoted shortly by FB, is simply given by

Δ= ˆ ˆ = ¯
†

F b b n4( ) 4B
2 . Therefore, the ultimate sensitivity is limited by δφ = n̄1/(2 )

min
cl , known as
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the classical (or shot-noise) limit. A sub shot-noise-limited phase sensitivity with δφ δφ<
min
cl is

achievable provided that > ¯F n4B (see figure 1(a)), which has also been shown to be a
nonclassical criterion of ρ̂

B
for the single-mode linear interferometer [42].

The atoms in the ground state ρ̂ = ∣ ∣g gTr ( )
A B can also be used as a probe of a Ramsey

interferometer. First, an external π 2-pulse is required to rotate the atomic spin about the Ĵy axis.

Next, a phase shift φ ω τ= 0 is accumulated during free evolution under the Hamiltonian ω Ĵz0 .

New J. Phys. 16 (2014) 063039 T-L Wang et al

4

Figure 1. Scaled quantum Fisher information of the bosonic field ¯F n/(4 )B (a) and that of
the atoms F NA (b) as a function of the coupling strength λ for a finite number of atoms
N = 2, 6, 10, and 20, as indicated by the arrow. Horizontal dotted lines: the classical (or
shot-noise) limit for the field mode = ¯F n4B (with mean number of bosons n̄) and that of
the atoms =F NA . Dashed lines: analytical results of the QFI in the thermodynamic
limit (i.e., = ∞N ). For each state ρ̂

A B,
, the derivative of the QFI has a singularity at the

critical point λcr. Other parameter: the critical coupling λ ωω≡ =2 1 2cr 0 on resonant
condition ω ω= = 10 .



Finally, a second π 2-pulse is applied to extract the phase information. The total action of the

pulses and the phase accumulation is equivalent with an unitary operator φ− ˆi Jexp ( )x . Again,

the QFI of the reduced atomic state ρ φ φ ρ φˆ = − ˆ ˆ ˆi J i J( ) exp ( ) exp ( )
A x A x is given by equation (2),

where the phase-shift generator Ĝ is replaced by Ĵx and ψ∣ 〉{ }
n

are eigenvectors of ρ̂
A
with

nonzero weights p
n
. For a coherent spin state ∣ − 〉 = ∣ ↓ 〉 ⊗j j, N , the QFI of the atoms is given

by ρ Δˆ ˆ = ˆ =F J J N( , ) 4( )
A x x

2 , so the sensitivity is limited by δφ = N1
min
cl (i.e., the classical

limit). Hereafter, we denote the QFI of the atoms as FA, to distinguish it from that of the bosonic
field FB.

In figure 1, we plot the scaled QFI of the field ¯F n/(4 )B and that of the atoms F N/A against
the atom-field coupling strength λ. We first calculate the ground state for the finite-N system,
which takes the form of [21, 25]:

∑ ∑∣ = ∣ ⊗ ∣
= =−

+

g c n j m, , (3)
n

n

m j

j

n m
0

,

max

where nmax is a cutoff photon number, ∈ − +m j j[ , ] for =j N 2, and the probability amplitudes
cn m, are obtained numerically by diagonalizing the Dicke Hamiltonian (1). Due to the conserved

parity Π̂ , the Hilbert space only contains the states ∣ ⊗ ∣n j m, with even excitation number
+ +n m j, which in turn gives the dimension of the subspace + + +N n[( 1)( 1) 1]/2max . In our

numerical calculations, the value of nmax is increased until the quantities of interests remain
unchanged [43]. Since the subspace is still huge, we evaluate the ground state for the number of
atoms up to N = 20, limited by our computational resources. Next, for each subsystem ρ̂

A B,
, we can

obtain the variances of the quadrature operators and the phase-shift generators. To solve the QFI,
we further calculate the eigenvalues and the associated eigenvectors of ρ̂

A B,
and insert them into

equation (2). As depicted by the solid curves of figure 1(a), one can find that for vanishing λ, the
QFI of the field ¯ =F n(4 ) 0B because the bosonic field is in a vacuum state, i.e., ρ̂ = ∣ ∣0 0

B
at

λ = 0. In contrast, the QFI of the atoms is given by =F NA for the coherent spin state
ρ̂ = ∣ − − ∣j j j j, ,

A
, as mentioned above. When the coupling λ increases up to its critical point

λcr, the ground state contains a large number of excitations [21, 28] and FB begins to increase. It
surpasses the classical limit around λcr as the ratio ¯ >F n(4 ) 1B (see the solid lines of figure 1(a)).
From figure 1(b), one can note that the QFI of ρ̂

A
with small N cannot beat the classical limit; the

ratio F NA is always smaller than 1 and decreases monotonically with increasing λ. Only for a
large enough number of atoms (say, >N 10), can the scaled QFI F NA be larger than 1 around
the critical point λcr.

It is interesting to observe two key features of the finite-N Dicke model: (i) near the critical
point λcr, both ρ̂

A
and ρ̂

B
provide enhanced QFI beyond the classical limits, although they are in

general highly mixed states; (ii) for λ λ≫ cr, the QFI of the field approaches the classical limit,
i.e., → ¯F n4B , while for the atoms, →F 0A . To understand this behavior we study in detail the
quantum nature of ρ̂

A B,
(see below). In section 3, we further present analytical results of the QFI

in the thermodynamic limit (i.e., = ∞N ), and find that both ¯F n/(4 )B and F N/A show critical
behavior at λ λ= cr.
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The quantum nature of ρ̂
A B,

can be partially visualized by the quasi-probability distribution

of the atoms θ ϕ θ ϕ ρ θ ϕ= ∣ ˆ ∣Q ( , ) , ,A A
and that of the bosonic field α α ρ α= ∣ ˆ ∣Q ( )B B

, where

α α α∣ = ˆ − ˆ ∣*†
b bexp ( ) 0 and θ ϕ η η∣ = ˆ − ˆ ∣ −*

+ −J J j j, exp ( ) , (with η θ= ϕ−e 2i ) denote
coherent states of the two subsystems [18]. Overall, there is a one-to-one correspondence
between QA and QB, as depicted in figure 2. For vanishing λ, both ρ̂

A
and ρ̂

B
are also minimum-

uncertainty states, which exhibit isotropic quasi-probability distributions θ ϕ θ=Q ( , ) cos ( 2)A
j4

and α α= −∣ ∣( )Q exp ( )B
2 (see figure 2(a)). When λ crosses λcr, from figure 2(b), we find that

both QA and QB become elliptical, implying the appearance of phase-squeezed states for the two
subsystems.

To confirm the presence of nonclassical states at λ λ∼ cr, we consider the quadrature
squeezing of the field state ρ̂

B
, following the original calculations by Emary and Brandes [21].

As usual in quantum optics, we introduce a quadrature operator

ˆ = ˆ + ˆ
σ

σ σ− †( )X be b e
1
2

, (4)i i

where the squeezing angle σ π∈ [0, 2] is to be determined. When σ = 0 or π 2, the quadrature
operator represents the amplitude or the phase component of the field mode, i.e.,
ˆ = ˆ + ˆ†
X b b( ) 20 or ˆ = ˆ − ˆ

π
†

X b b i( ) (2 )2 . For vanishing coupling λ, the field is in the vacuum

state ∣0 and hence the variance Δ ˆ =σX( ) 1 42 , which is the classical limit of the field variance
and is independent of the squeezing angle σ. This isotropic variance has been depicted in the
right panel of figure 2(a). As the coupling λ increases, one finds

〈 〉 〈 〉
Δ

σˆ = +
ˆ + ˆ ˆ

σ

†

( ) ( )
X

b b b1
4

Re cos 2

2
,

2
2

where we have used ˆ =b 0 and 〈 〉ˆ ∈b
2

, due to the parity symmetry Π Πˆ ˆ ˆ = − ˆ†
b b and the

real atom-field coupling λ. Minimizing Δ ˆ
σX( )2 with respect to σ, we obtain the optimal squeezing

angle σ = 0op or π 2. Our numerical result in figure 2(b) suggests σ π= 2op , which means that

the optimal squeezing occurs along the ˆ
πX 2 axis with the reduced variance Δ ˆ

πX( )2
2 smaller than

the classical limit 1 4. In figure 3(a), we confirm that the degree of squeezing Δ ˆ <πX4( ) 1/2
2 , and

that it is minimized at λ λ∼ cr for large enough N.
Similarly, one can consider the spin squeezing of the atomic state ρ̂

A
. Due to the conserved

parity, the atoms have vanishing coherence 〈 ˆ 〉 =+J 0 and hence the total spin 〈 ˆ〉 = 〈 ˆ〉J J(0, 0, )z ,
similar to that of the Lipkin–Meshkov–Glick model [4–6, 12]. To quantify the degree of spin

squeezing [43–49], one can introduce a spin component ϕ ϕˆ = ˆ + ˆ
ϕJ J Jcos sinx y , which is

normal to the total spin. Again, the squeezing angle ϕ is to be determined. Since 〈 ˆ 〉 =ϕJ 0, we

obtain the variance of ϕ̂J as

Δ ϕ= ˆ + ˆ + ˆ
ϕ +

⎡
⎣⎢

⎤
⎦⎥( ) ( )J J J J

1
2

Re cos 2 ,x y

2 2 2 2
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where we have used Im 〈 ˆ 〉 ≡ 〈 ˆ ˆ + ˆ ˆ 〉 =+J J J J J 0x y y x

2
. It is easy to find the optimal squeezing angle

ϕ = 0
op

or π 2 [45], and the left panel of figure 2(b) suggests ϕ π= 2
op

, corresponding to spin

squeezing and anti-squeezing in the Ĵy and the Ĵx axes, respectively. A spin squeezed state is
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Figure 2. Quasi-probability distributions θ ϕQ ( , )A (left panel) and α( )QB (right panel)
of the ground state of the Dicke Hamiltonian with N = 20 and the atom-field coupling
strength λ = 0 (a), 0.54 (b), and 1 (c). The axes on the Bloch sphere (top view from the
south pole) are given by = 〈 ˆ 〉J Jx y z x y z, , , , , while for that of the field mode, α = 〈 ˆ 〉XRe 0 and

α = 〈 ˆ 〉πXIm /2 . The expectation values are taken with respect to the coherent states θ ϕ,
and α , respectively. Other parameters: the critical coupling λ = 1 2cr , the same as in
figure 1. The density of QA is normalized by its maximal value [44, 45], i.e., =Q 1A,max

(a), 0.557 (b), and 0.5 (c).



defined if the reduced variance of Ĵy is smaller than the classical limit N 4 [43–49]. As shown in

figure 3(b), one can see that the squeezing parameter ξ Δ= Ĵ N4( )y
2 2 is minimized around λcr.

From the solid lines of figure 1, we also note that as the coupling λ λ≫ cr, the QFI of the
field → ¯F n4B , while for the atoms →F 0A . This behavior can be understood by examining the
ground state of the finite-N Dicke Hamiltonian with λ → ∞ [50–52]. In this ultra-strong
coupling regime, the number of bosons λ¯ ∝ → ∞n 2 and hence the dominant term of the Dicke

Hamiltonian is given by ω λˆ = ˆ ˆ + ˆ + ˆ ˆ† †
H b b b b J N2 ( ) x0 . Minimizing the energy of Ĥ0 with

respect to a product of coherent states α∣ ⊗ ∣ j m, x, one can obtain the atomic state

ρ̂ = ∣ + 〉 〈 + ∣ + ∣ − 〉 〈 − ∣j j j j j j j j( , , , , )/2
A xx xx , where ∣ ± 〉j j, x, being eigenvectors of Ĵx,

New J. Phys. 16 (2014) 063039 T-L Wang et al
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Figure 3. Degree of quadrature squeezing for the field mode Δ ˆ
πX4 ( )2

2 (a), and that of

spin squeezing for the atoms ξ2 (b) against the coupling strength λ for the number of
atoms N = 2, 6, 10, and 20, as indicated by the arrow. Dashed lines: analytical results in
the thermodynamic limit (i.e., = ∞N ). The local minimum of the reduced variances
indicates quadrature squeezing of ρ̂

AB
at the critical point λ = 0.5cr (on resonance, as

figure 1).



provide the variances Δ ˆ =±J( ) 0x
2 . Therefore, from equation (2) we have →F 0A as λ → ∞.

Similarly, the field state is given by ρ α α α αˆ = ∣+ 〉〈+ ∣ + ∣ − 〉〈− ∣( )/2
B 0 0 0 0 , where α∣± 〉0 , with the

amplitude α λ ω= N0 , denoting coherent states [50–52]. It is easy to find that as the
amplitude α0 ( λ∝ ) →∞, the two coherent states α∣ ± 〉0 , almost orthogonal with each other,

provide the variances Δ αˆ ˆ = = ¯
†

±b b n( )2
0
2 . As a result, we obtain the total QFI of the bosonic field

Δ≈ ∑ ˆ ˆ = ¯± ±

†
±F p b b n4 ( ) 4B
2 (due to =±p 1 2), leading to the ratio ¯ →F n/(4 ) 1B as λ → ∞.

When the coupling λ λ≫ cr, the quasi-probability distribution of ρ̂
A B,

contains two

contributions, i.e., = +− +Q I I( )/2A B, , with θ ϕ= ±±I [1 sin ( ) cos ( )] 2N N for the atoms and

α α= −∣ ± ∣±I exp ( )0
2 for the bosonic field, as illustrated in figure 2(c). In addition, we obtain

the reduced variances Δ ˆ =J N( ) 4y
2 (i.e., ξ = 12 ) and Δ ˆ =πX( ) 1 42

2 (see the solid curves in

figure 3), as well as the increased variances Δ αˆ = +X( ) 1 40
2

0
2 and Δ ˆ =J N( ) 4x

2 2 , which have
been confirmed by [53].

3. QFI in the thermodynamic limit

In this section, we first briefly review the quantum critical behavior of the Dicke model in the
thermodynamic limit based on the solution outlined by Emary and Brandes [21], and then
present analytical results of the QFI for the field and the atomic subsystems.

The standard procedure for the diagonalization of the Dicke Hamiltonian consists of four

steps [21]. First, performing the Holstein–Primakoff transformation ˆ = ˆ = ˆ − ˆ ˆ+ −
† † †J J a N a a( )

and ˆ = ˆ ˆ −†J a a N 2z , one can write down the Dicke Hamiltonian and the parity in terms of

bosonic operators â and b̂. Second, the operators â and b̂ are decomposed as

δ α δ βˆ = ˆ ± ˆ = ˆ ∓a a b b, , (5)s s

where αs (β
s
) denotes the mean-field part and δâ (δb̂) the quantum fluctuation for each

subsystem. Third, one obtains the Dicke Hamiltonian up to quadratic order in δâ and δb̂ by
eliminating their linear terms, which gives the solution for the mean field parts [21]:

α
μ

β λ
ω

μ=
−

= −( )( )N
N

1

2
, 1 , (6)s s

2

where the order parameters αs and β
s
are vanishing for μ = 1 in the normal phase (i.e.,

λ λ ωω< = 2cr 0 ), and αs, β ∼ O N( )
s

for μ λ λ= <( ) 1cr
2 in the superradiant phase; the

parameter μ allows a unified description in both phases6. Finally, one can diagonalize the

effective Hamiltonian by introducing the Bogoliubov transformation: γ γˆ = ˆ − ˆq X Xcos sinB A1

and γ γˆ = ˆ + ˆq X Xsin cosB A2
, where q̂

1,2
denote the position operators of the polaritons and X̂A B,
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2

in the superradiant phase (i.e., λ λ⩾ cr), for which the quantities, such as ω ω μ μ˜ = +(1 )/20 , the mixing angle γ,
and our results (equations (12)–(15)) keep being valid in the two phases.



are that of the atoms (A) and the bosonic field (B), i.e., δ δˆ ∝ ˆ + ˆ†X a a( )A and δ δˆ ∝ ˆ + ˆ†
X b b( )B .

For the mixing angle γ given by γ λ ω ωμ ω μ ω= −tan (2 ) 4 /[ ( / ) ]0 0
2 2 , one can obtain the

Hamiltonian of the two-mode polaritons, with the excitation energies εk (for k = 1, 2) determined
by [21],

ε
ω ω μ

ω ω μ λ ωω μ=
+

+
−

− +⎡⎣ ⎤⎦
( ) ( ) ( ) ( )
2

1

2
4 , (7)k

k

2
2

0

2

2
0

2 2 2

0

where μ takes different values in the two phases (see footnote 6). In the position space
of the polaritons, the ground-state wave function is given by Ψ ≡ 〈 ∣ 〉q q q q g( , ) ,g 1 2 1 2

ε ε π= ( / )1 2
2 1/4

ε ε− +q qexp [ ( )/2]1 1
2

2 2
2 , which, according to the Bogoliubov transformation, can also be

expressed in the coordinates of the atomic and the field operators X̂A B, .
The two possible shifts in equation (5) correspond to opposite spatial displacements of the

ground state in position space, due to ω ω α ωˆ = ˜ ˆ ∓X x/ ( 2/ )A A s0 0 and β ωˆ = ˆ ±X x 2B B s
,

where ω ω μ μ˜ = +(1 )/20 (see footnote 6) and x̂A B, are the position operators before the
displacements. We first consider the atomic state ρ̂

A
under one choice of the displacements. The

reduced density matrix of the atoms can now be obtained by integrating Ψ Ψ*
g g over the

coordinate of the field operator X̂B, as done in [7]. The result has the same form as that of a
thermal oscillator (see appendix, also [54]), with unit mass and the effective oscillation
frequency

Ω
ε ε

ε ε
ε ε

ε ε
=

+
+

−( )
c s

c s
1 , (8)1 2

1
2

2
2

1 2

2 2 2

1 2

where we have set γ=c cos , γ=s sin , and βΩ ε ε ε ε= + − −c scosh ( ) 1 2 [ ( ) ]1 2 1 2
2 2 2 1, with

β = −k T( )B
1 and the Boltzmann constant kB. In the Fock basis of the thermal oscillator [54], the

reduced density matrix of the atoms can be expressed as

∑ρ ψ ψˆ = = ∣ ∣
β

β

− ˆ

− ˆ
e

e
p

Tr
, (9)

A

H

H
n

n n n

A

A

where Ωˆ = ˆ + ˆH P X( )/2A A A

2 2 2
is the effective Hamiltonian of the thermal oscillator [7], with the

eigenvectors ψ∣ 〉 ≡ ˆ ∣ 〉 !Ω
†a n( ) 0 /

n
n and the eigenvalues ψ ρ ψ βΩ≡ 〈 ∣ ˆ ∣ 〉 = −p nexp ( )

n n A n

βΩ− −[1 exp( )]. Here, the momentum operator P̂A can be expressed by the atomic fluctuation
δâ, or the annihilation operator of the thermal oscillator ˆΩa , i.e.,

ω δ δ Ωˆ = ˜ ˆ − ˆ = ˆ − ˆΩ Ω
† †P i a a i a a/2 ( ) /2 ( )A . The position operator of the atoms X̂A is similarly

defined, δ δ ω Ωˆ = ˆ + ˆ ˜ = ˆ + ˆΩ Ω
† †X a a a a( )/ 2 ( )/ 2A .

As discussed in [21], the two displacements result in doubly degenerate and orthogonal
ground states in the symmetry-broken (i.e., superradiant) phase, which in turn gives the
different atomic states ρ̂±

A
corresponding to each possible displacement. We can also diagonalize

each state in the two ortho-normalized Fock basis ψ∣ 〉±{ }
n

, with ψ ψ δ〈 ∣ 〉 =± ±
′ ′n n n n, and

ψ ψ∣ 〉 =± ∓
′ 0

n n
. The total atomic state is often taken to be an incoherent superposition of both
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possible displacements ρ̂±
A

with the same weights, i.e., ρ ρ ρˆ = ˆ + ˆ+ −( ) 2
A A A

. Note that the
collective spin operators under the two displacements take the form

α

α
δ δ α αˆ =

−

−
ˆ + ˆ ± − +†( ) ( )J

N

N
a a N O N

2

2
, (10)x

s

s

s s

2

2

2 0

α
δ δˆ =

−
ˆ − ˆ +†( ) ( )J

N

i
a a O N

2
, (11)y

s
2

0

and δ α δ αˆ = ˆ ± ˆ ± −†J a a N( )( ) 2z s s , where the terms ∼O N( )0 are negligible in the
thermodynamic limit. Using the self-consistent condition δ〈 ˆ〉 =a 0 [21], it is easy to obtain

the expectation values α α〈 ˆ 〉 = ± −±J Nx s s
2 and 〈 ˆ〉 =±J 0y for each ρ̂±

A
. A 50:50 weighted

average over 〈 ˆ 〉±Jx gives 〈 ˆ 〉 = 〈 ˆ〉 =J J 0x y for the total density matrix ρ̂
A
. As in the previous finite-

N case, the squeezing parameter is given by ξ = 〈 ˆ 〉J N4 y
2 2

, with its explicit form

ξ
μΩ
ω

βΩ
βΩ

μ
ω

ε ε
ω μ ω

ε ε
=

+
−

= + +
−

+

⎛
⎝⎜

⎞
⎠⎟

( )
( )

exp 1

exp 1 2
, (12)2

0 0
1 2

0
2 2 2

1 2

where, in the the last step, we have dropped the intermediate quantities Ω and βΩexp ( ) (for

details, please see the appendix). The reduced variance δ δ〈 ˆ 〉 ∝ 〈 ˆ − ˆ 〉†J a a( )y

2 2 can also be

obtained from previous works [21]. To solve the QFI, one has to diagonalize the reduced
density matrix as equation (9), and then calculate the QFI for each ρ̂±

A
using equation (2). Since

both contributions from ρ̂±
A
are the same, we obtain the total QFI of the atoms (see appendix)

μω
Ω

βΩ
βΩ

= −
+

F
N exp ( ) 1

exp ( ) 1
, (13)A

0

which has an exact relationship with the reduced variance, ξ μ=F NA
2 2 (see footnote 6). This

finding can be used to verify that the enhanced QFI beyond the classical limit is induced by the
squeezing. One can see this from equation (12). The squeezing parameter at the critical point is
given by ξ ω ω ω= + <−( ) 12

0
2

0
2 1 2 due to ε = 01 and ε ω ω= +( )2

2
0
2 1 2, which in turn leads to

ξ= >−F N 1A
2 at λ λ= cr.

For the field subsystem, one can also obtain the reduced density matrix ρ̂±
B

for each

displacement, similar to equation (9), but with different oscillation frequency Ω∣ ↔c s, i.e.,
interchanging c and s in equation (8). Again, we assume that the total field state is a mixture of
ρ̂±

B
, which can be diagonalized in the Fock basis ψ∣ 〉±{ }

n
. With the self-consistent condition

δ ˆ =b 0, it is easy to obtain ω〈 ˆ 〉 = 〈 ˆ 〉 =πX P / 2 0B/2 [21], where ωˆ =P i /2B

δ δ Ωˆ − ˆ = ˆ − ˆ
Ω Ω

† †
b b i b b( ) /2 ( ) and ˆ

πX 2 is the quadrature operator of the bosonic field, defined

by equation (4). For each ρ̂±
B
, we find that the reduced variances Δ ωˆ = 〈 ˆ 〉π ± ±X P( ) /(2 )B2

2 2
take the

same form (see appendix), and therefore
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Δ Ω
ω

βΩ
βΩ ω

ε ε
ω μ ω

ε ε
ˆ = +

−
= + −

−
+π

⎛
⎝⎜

⎞
⎠⎟( )X

4

exp ( ) 1

exp ( ) 1
1

8
. (14)2

2

1 2
0
2 2 2

1 2

Again, we have removed the intermediate quantities Ω and βΩexp ( ) in the the last step. The

QFI of the field mode depends on the matrix elements ψ ψ〈 ∣ ˆ ∣ 〉± ±G
m n

, where

δ β δ βˆ = ˆ ˆ = ˆ ∓ ˆ ∓
† †

G b b b b( )( )
s s

denotes the phase-shift generator and δ δˆ ± ˆ ∝
†

b b ˆ ± ˆ
Ω Ω
†

b b( ),
as mentioned above. After some tedious calculations, we obtain the total QFI of the field mode
(see appendix)

ω Ω

ω Ω
βΩ
βΩ

ωβ
Ω

βΩ
βΩ

=
− +

+
+ −

+
( ) [ ]

F
2

exp ( ) 1

exp (2 ) 1

4 exp ( ) 1

exp ( ) 1
, (15)B

s

2 2 2

2 2

2 2

where β
s
is the order parameter, given by equation (6). In the normal phase, the first term of

equation (15) dominates due to β = 0
s

. On the contrary, for the superradiant phase, the first term
vanishes quickly and the second term becomes important due to the macroscopic occupation

β ∼ → ∞O N( )
s
2 , which gives a simple relation Δ βˆ ≈ ≈ ¯πF X n( )B s/2

2 2 (see appendix for the
explicit form of n̄).

Our above results, equations (12)–(15), dependent upon the parameter μ, are valid for both
phases (see footnote 6). In figures 1 and 3, we plot the scaled QFI and the reduced variances of
ρ̂

A B,
as a function of the atom-field coupling λ. For the vanishing coupling λ, we have

ξ Δ= = ˆ =πF N X/ 4 ( ) 1A
2

2
2 and =F 0B (as Ω ω= ), due to μ = 1, α β= = 0s s

, and

ε ε ω ω+ = +1 2 0. When the coupling increases up to λcr, the lower-branch polaritonic energy

is gapless, i.e., ε = 01 and ε ω ω= +( )2
2

0
2 1 2, so the reduced variance of the field

Δ ω ω ωˆ = + <π
−X4 ( ) ( ) 1/2

2 2
0
2 1/2 and hence Δ¯ ≈ ˆ >πF n X/(4 ) 1/[4 ( ) ] 1B /2

2 , similar to that of the
atomic subsystem. From the dashed lines of figures 1 and 3, one can easily see that at the critical

point λ = 1 2cr (on resonance with ωω = 10 ), the scaled QFI = ¯ →F N F n/ /(4 ) 2A Q due to

ξ Δ= ˆ =πX4 ( ) 1/ 22
/2

2 . As the coupling λ → ∞, the excitation energies ε ω→1 and

ε ω μ→2 0 , yielding ξ → 12 and μ≈ →F N 0A
2 ; while for the bosonic field, we have

Ω ω≈ and βΩ → ∞exp ( ) , so Δ ˆ →πX( ) 1 4/2
2 and ¯ →F n/(4 ) 1B , returning to the classical limit.

Before closing, we study the critical behavior of the QFI of the atoms F NA and that of the
field mode ¯F n/(4 )B at λ λ∼ cr. The critical exponents of a quantum phase transition are
manifested in the behavior of the excitation energies [1]. For the Dicke model, it has been
shown that the lower-branch excitation energy vanishes at λ λ= cr as ε λ λ∼ ∣ − ∣ ν

1 cr
2 , with the

critical exponent ν = 1 4 [21]. Recently, Nataf et al [34] have found that a product of variances

of the field mode Δ Δˆ ˆ
πX X0 2 diverges as λ λ∣ − ∣−

cr
1/4 near the critical point. Here, we show that

the QFI of the atoms F NA is nonanalytic at λ λ= cr, since its first-order derivative diverges as

λ λ∂ ∣ ∼ ∣ − ∣λ λ λ→ ±
−F N( / )A 0 cr

1/2

cr
. A similar result can be obtained for the field mode, ¯F n/(4 )B ,

indicating that the QFI of both subsystems are sensitive to the quantum criticality of the Dicke
model, as one expects.
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4. Discussions and conclusion

In summary, we have investigated the QFI of both the field and atoms in the ground state of the
Dicke model. For finite and large enough N, we find that the QFI of each subsystem can beat the
classical limit near the critical point λcr, due to the appearance of quantum squeezing in the
ground state, as demonstrated numerically by the quasi-probability distribution of ρ̂

A B,
and the

reduced quadrature variances. When the atom-field coupling enters the ultra-strong coupling
regime λ λ≫ cr, we find the QFI of the bosonic field → ¯F n4B , while for the atoms →F 0A , since
ρ̂

A B,
at λ → ∞ is an incoherent mixture of two coherent states α∣± 〉0 and that of the atoms

∣ ± 〉j j, x, respectively. In the thermodynamic limit, we present analytical results for the QFI and

the reduced variances for both subsystems, ξ μ=F NA
2 2 and Δ ˆ ≈ ¯πF X n( )B /2

2 , from which we
verify that the enhanced QFI near λcr is induced by the quadrature squeezing. For each
subsystem, we find that the first-order derivative of the QFI diverges as λ λ→ ± 0cr , which
suggests that the QFI can recognize the superradiant quantum phase transition.

Finally, we point out that the analytical relationships between the QFI and the reduced

variances of ρ̂
A B,

remain valid when the Dicke Hamiltonian contains the so-called Â
2
term, i.e.,

ˆ + ˆ†
D b b( )2, with κλ ω=D 2

0 [30, 31]. For this case, the critical coupling is given by

λ ω ω ωω κ= + = −D( 4 ) (1 )cr
1

2 0
1

2 0 , dependent on the ratio κ. With the increase of

κ ∈ (0, 1), the critical coupling strength becomes larger; while for κ ⩾ 1, however, it becomes
meaningless and the superrandiant phase disappears. Formally, this may be caused by the
dependence of D on λ, i.e., λ ω∝D 2

0 [30, 31]. Rather than discuss the no-go argument
[30, 31, 55, 56], we focus on the relationship between the QFI and the reduced variance and
find ξ μ=F NA

2 2 for μ = 1 in the normal phase and μ λ λ= ( )cr
2 in the superradiant phase. Due

to the nonlinear term with κ ∈ (0, 1), a stronger squeezing is obtained at the critical point,

ξ ω ω ω κ→ + − −[ (1 )]2
0 0

2 2 1 2, which in turn leads to a larger QFI F NA compared with the
case κ = 0. This can be understood by the fact that the nonlinear term, just like a degenerate
parametric oscillator, produces a stronger quadrature squeezing of the field mode and hence that

of the atoms. Except for the Â
2
term, it may also be interesting to study whether or not the QFI

can still beat the classical limit in a non-equilibrium scenario or at finite temperature.
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Appendix. Detailed derivations of equations (12)–(15)

In the thermodynamic limit, we calculate the reduced density matrix of the atoms by integrating
Ψ Ψ*

g g over the coordinate of the bosonic field (see for example [7]), namely

∫ρ Ψ Ψ= *′
−∞

∞ ′X X X X X X X( , ) d ( , ) ( , )
A A A B g B A g B A , which is indeed the density matrix of a single-

mode harmonic oscillator at finite temperature T [54]:

ρ
Ω βΩ

βΩ
∝ −

+ −′ ′⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦ ⎫
⎬⎪
⎭⎪

)M X X X X
exp

cosh ( )( 2

2 sinh ( )
, (A.1)

A

A A A A
2 2

where βΩ ε ε ε ε= + − c scosh ( ) 1 2 [ ( ) ]1 2 1 2
2 2 2 , with γ=c cos and γ=s sin . By taking the mass

M = 1, we further obtain the effective oscillation frequency as equation (8). In the Fock basis of
the thermal oscillator, the reduced density matrix can be rewritten as equation (9). For the two
possible displacements, we adopt the notation ρ̂±

A
and diagonalize them as ρ ψ ψˆ = ∑ ∣ 〉〈 ∣± ± ±p

A n n n n
,

where ψ∣ 〉±{ }
n

are Fock states of the thermal oscillators and βΩ βΩ= − − −p nexp ( )[1 exp ( )]
n

are the weights. It is reasonable to assume the total atomic state ρ ρ ρˆ = ˆ + ˆ+ −( ) 2
A A A

.

We now calculate the reduced variance and the QFI of the atoms for each ρ̂±
A
. Using

equations (9) and (11), we obtain the expectation value 〈 ˆ〉 =±J 0y for each ρ̂±
A
, and also its

variance

∑ ψ ψ
μΩ
ω

βΩ
βΩ

ˆ = ∣ ˆ ∣ = +
−± =

+∞
± ±J p J

N

4

exp ( ) 1

exp ( ) 1
, (A.2)y

n
n n y n

2

0

2

0

where we have used ψ ψˆ ˆ ∣ 〉 = ∣ 〉Ω Ω
† ± ±a a n

n n
, α μ= −N (1 ) 2s

2 , and the identities

∑ ∑
βΩ

βΩ
βΩ

=
−

= +
−=

+∞

=

+∞

[ ]
np n p

1
exp ( ) 1

,
exp ( ) 1

exp ( ) 1
. (A.3)

n
n

n
n

0 0

2
2

Note that the variances 〈 ˆ 〉±Jy

2
for each ρ̂±

A
are the same, so we obtain the total variance

〈 ˆ 〉 = 〈 ˆ 〉±J Jy y

2 2
and hence the squeezing parameter ξ = 〈 ˆ 〉J N4 y

2 2
, as given by equation (12). The

intermediate quantities Ω and βΩexp ( ) can be removed by using the relation

βΩ
βΩ

βΩ
βΩ

ε ε
ε ε

+
−

= +
−

= +
−( ) c sexp ( ) 1

exp ( ) 1

cosh ( ) 1

cosh ( ) 1
1 , (A.4)1 2

2 2 2

1 2

where βΩcosh ( ) has been defined in equation (A.1). Multiplying the above result with equation
(8), we further obtain

Ω
βΩ
βΩ

ε ε
ε ε ω μ ω

ε ε
+
−

= + =
+

+
−

+ )
s c

exp ( ) 1

exp ( ) 1 2 2(
, (A.5)1

2
2

2 1 2 0
2 2 2

1 2

which reduces the final result of ξ2 as equation (12). According to equation (2), the QFI depends

upon the matrix elements of the phase-shift generator Ĝ (=Ĵx). For each ρ̂±
A
, from equation (10)

we obtain
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ψ ψ α α δ
α

α

ω
Ω

δ δ

∣ ˆ ∣ = ± − +
−

−

× + +
∼

± ±

+ −( )

J N
N

N

n n

2

2

1 ,

m x n s s m n
s

s

m n m n

2
,

2

2

, 1 , 1

and thereby ψ ψ ψ ψ〈 ∣ ˆ ∣ 〉 = ∑ ∣〈 ∣ ˆ ∣ 〉∣± ± ± ±J J
n x n m m x n

2 2, with its explicit form

ψ ψ
α

α
ω
Ω

α α∣ ˆ ∣ =
−

−
+ + −

∼
± ± ( )

) ( )J
N

N
n N

2

4(
(2 1) ,

n x n

s

s

s s

2
2 2

2

2 2

where we have used the relation βΩ= −+p p exp ( )
n n1

and equation (A.3). Substituting the

above results into equation (2), we obtain the same QFI for each ρ̂±
A
, which yields the total QFI

of the atoms, as equation (13) in the main text.
It should be mentioned that the total atomic state ρ̂

A
is supposed to be an incoherent

superposition of ρ̂±
A

for two possible displacements with the same weights, i.e.,

ρ ρ ρˆ = ˆ + ˆ+ −( ) 2
A A A

, since one possible displacement has no reason to be superior to the other.

However, if one adopts other combinations, say, the total density matrix ρ ρ ρˆ = ˆ + − ˆ+ −x x(1 )
A A A

,

then the total QFI is given by ρ ρ ρˆ ˆ = ˆ ˆ + − ˆ ˆ+ −F J xF J x F J( , ) ( , ) (1 ) ( , )
A x A x A x , as long as ρ̂±

A
are

orthogonal with each other. Since ρ ρˆ ˆ = ˆ ˆ+ −F J F J( , ) ( , )
A x A x as shown above, one would obtain the

same QFI as in the main text. This is also true for the bosonic field mode.
We now calculate the reduced variance and the QFI of the bosonic field. As with the

previous case, we suppose that the total field state is given by ρ ρ ρˆ = ˆ + ˆ+ −( ) 2
B B B

, where ρ̂±
B
for

each displacement can be diagonalized in the Fock basis ψ∣ 〉±{ }
n

, with the weights p
n
similar to

that of the atoms. For each ρ̂±
B
, we obtain the same expectation value 〈 ˆ 〉 =±P 0B , and also the

variance

∑ ψ ψ Ω βΩ
βΩ

ˆ = ∣ ˆ ∣ = +
−± =

∞
± ±P p P

2

exp ( ) 1

exp ( ) 1
, (A.6)B

n
n n B n

2

0

2

where we have used Ωˆ = ˆ − ˆ
Ω Ω
†

P i b b2 ( )B and ψ ψˆ ˆ ∣ 〉 = ∣ 〉Ω Ω
† ± ±b b n

n n
. Therefore, the reduced

variance of ρ̂
B
is given by Δ ωˆ = 〈 ˆ 〉π ±X P( ) (2 )B2

2 2
, as the first result of equation (14). The

intermediate quantities Ω and βΩexp ( ) can be removed by using the identity

Ω
βΩ
βΩ

ε ε
ε ε ω μ ω

ε ε
+
−

= + =
+

−
−

+ )
c s

exp ( ) 1

exp ( ) 1 2 2(
, (A.7)1

2
2

2 1 2 0
2 2 2

1 2

where we have interchanged c ( γ=cos ) and s ( γ=sin ) in a comparison with equation (A.5). We
now calculate the QFI of the bosonic field, which depends on the phase-shift generator

δ β δ βˆ = ˆ ˆ = ˆ ∓ ˆ ∓
† †

G b b b b( )( )
s s

, with the relations δ δ Ω ωˆ − ˆ = ˆ − ˆ
Ω Ω

† †
b b b b( ) and δ δˆ + ˆ =

†
b b

ω Ω ˆ − ˆ
Ω Ω
†

b b( ). The matrix elements of Ĝ are given by
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ψ ψ β ω
Ω

δ δ

Δ δ δ

Δ β δ

∣ ˆ ∣ = ∓ + +

+ + + + −

+ + + −

± ±
+ −

− + −

+

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

( )G n n

n n n n

n

1

( 1)( 2) ( 1)

(2 1)
1
2

,

m n s m n m n

m n m n

s m n

, 1 , 1

, 2 , 2

2
,

where Δ ω Ω ωΩ= ±± ( )/(4 )2 2 . Using the above result, one can easily obtain

∑ψ ψ ψ ψ

ωβ
Ω

Δ

Δ β

∣ ˆ ∣ = ∣ ∣ ˆ ∣ ∣

= + + + +

+ + + −

± ± ± ±

−

+
⎡
⎣⎢

⎤
⎦⎥

G G

n n n

n

(2 1) 2 ( 1)

(2 1)
1
2

.

n n
m

m n

s

s

2 2

2
2 2

2
2

Therefore, we can calculate the QFI for each ρ̂±
B
. For instance, it is easy to obtain the first term

of equation (2) as

∑ ∑Δ ψ ψ ψ ψ

Δ
βΩ

βΩ

ωβ
Ω

βΩ
βΩ

ˆ = ∣ ˆ ∣ − ∣ ∣ ˆ ∣ ∣

= +
−

+ +
−

± ± ± ±

−

( )( )

[ ]
( )

p G p G G4 4

8
exp (2 ) 1

exp ( ) 1

4 exp ( ) 1

exp ( ) 1
,

n
n n

n
n n n n n

s

2 2 2

2

2

2

and the second term is given by

∑ ψ ψ
βΩ

Δ
βΩ

ωβ
Ω

βΩ
βΩ

+
∣ ∣ ˆ ∣ ∣ =

−

×
− +

+ −
− +

≠

± ±

−
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

[ ]
( )

p p

p p
G

8 16

exp ( ) 1

2

exp ( 2 ) 1

exp ( ) 1

exp ( ) 1
,

m n

m n

m n
m n

s

2
2

2 2

where we have used equation (A.3) and the relation βΩ= −+p p kexp ( )
n k n

, for k = 1, 2. These

two results give the total QFI of the bosonic field, i.e., equation (15). To determine the scaled
QFI ¯F n(4 )B , we also need to calculate the mean number of bosons

∑ ψ ψ Δ
βΩ
βΩ

β

ω ε
ε ω

ε
ε ω β

¯ = 〈 ∣ ˆ ∣ 〉 = +
−

+ −

= − + − +

± ±
+

⎡
⎣⎢

⎤
⎦⎥( ) ( )

n p G

s c

exp ( ) 1

exp ( ) 1
1
2

1
4

, (A.8)

n
n n n s

s

2

2

2
2

2
2

1
1

2 2

where, in the last step, we have used equation (A.7) and the identity

Ω
βΩ
βΩ

ε ε
ε ε

+
−

=
+s c1 exp ( ) 1

exp ( ) 1
.1

2
2

2

1 2
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The last result of equation (A.8), also obtained in a previous work [21], shows clearly that the
mean number of bosons β¯ ≈ ∼n O N( )

s
2 in the superradiant phase since the first term ∼O N( )0

is negligible as → ∞N . Combining equation (15) and equation (A.8), we can investigate the
scaled QFI ¯F n(4 )B , as shown by the dashed line of figure 1(a), and analyze the critical behavior
of it near the critical point.
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