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The Kondo effect and the Fano—Kondo effect are important phenomena that have been observed in quantum dots (QDs). We theoretically
investigate the transport properties of a coupled QD system in order to study the possibility of detecting a qubit state from the modulation of the
conductance peak in the Kondo effect and the dip in the Fano—Kondo effect. We show that the peak and dip of the conductance are both shifted
depending on the qubit state. In particular, we find that we can estimate the optimal point and tunneling coupling between the |0) and |1) states of
the qubit by measuring the shift of the positions of the conductance peak and dip, as functions of the applied gate voltage on the qubit and the
distance between the qubit and the detector. © 2013 The Japan Society of Applied Physics

1. Introduction

Nanodevices allow the observation of interesting quantum
interference effects. The Kondo effect and the Fano—Kondo
effect are observed in coupled systems with discrete energy-
levels and a continuum of states, e.g., when a quantum dot
(QD) is tunnel-coupled to leads. The Kondo effect in a QD
appears as a zero-bias peak in the conductance because of
the spin singlet formation between a localized spin and the
reservoirs," while in the Fano—Kondo effect, an asymmetric
line shape is observed in the density of states (DOS) and the
conductance because of interferences in the hybrid electron
states in the dot-electrode system.”

In a Kondo system, such as a QD connected to two
electrodes, the conductance has a sharp peak, known as
the Kondo peak;*™ while in Fano-Kondo systems, such
as T-shaped QDs, the conductance has a sharp dip (Fano-
Kondo dip) structure,'%!¥ both of these as a function of the
energy level of the QDs. The peak and dip structures appear
when the energy-level is close to the Fermi level of the
Ieservoirs.

Here we investigate the Kondo effect and the Fano—
Kondo effect using them as detectors of a capacitively-
coupled two-level system, a charge qubit.'”?? We use
Fig. 1(a) as a set-up for the Kondo effect and Fig. 1(b) to
study the Fano—Kondo effect. Each grey ellipse in Fig. 1
represents a QD. The source “S”, drain “D”, and QD “d”
are the “linear-shaped” detector in the Kondo geometry
shown in Fig. 1(a). The T-shaped detector in Fig. 1(b) has a
trap site “c” and a proper QD “d”. We define the |0) state
of the charge qubit when the excess charge is localized in
the QD “a”, and the |1) state when the excess charge is
localized in the QD “b”. Using the notation in Fig. 1, due to
the Coulomb interaction V, between the charge qubit and
the detectors, the energy level of the QD “d” is shifted for
the Kondo detector, and that of the QD “c” is shifted for the
Fano—Kondo detector.

The basic idea is the following: the Kondo peak and the
Fano—Kondo dip will be affected by the charge state of the
charge qubit because of the capacitive coupling between the
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Fig. 1. Two types of charge qubit (two-level system) detectors. (a) The
charge qubit detected by the Kondo effect. (b) The charge qubit detected by
the Fano—Kondo effect. Note that the charge qubit “a—b” is composed of
two QDs (“a” and “b”). The tunneling coupling between QD “a” and “b” is
Q. The charge qubit is coupled to the detector part by the capacitive
coupling energy V,. The detecting QDs “d” are coupled to the source “S”
and the drain “D”. The linear-shaped “S”-d-“D” detector for the Kondo
system in (a) is replaced by a T-shaped detector for the Fano—Kondo system

“

in (b). In (b), the on-site Coulomb repulsion for the trap QD “c” is strong.
For the QD “d”, the on-site Coulomb repulsion is strong for the Kondo
detector in (a) and weak for (b).

charge qubit and the detectors. Therefore, it is expected that,
by analyzing the change of the Kondo peak and the Fano—
Kondo dip in the conductance, the charge qubit state can be
inferred. In our model, the capacitive coupling is the same as
those of the conventional quantum point contact (QPC),>**¥
and the single electron transistor (SET).?>?® In the standard
QPC or SET system, only the position of the excess charge
in the qubit (J0) or |1)) is detected. What’s new here is
that, by analyzing the peak position of the conductance peak
and dip, we can also estimate the tunneling coupling 2
between the |0) and |1) states of the charge qubit. We will
also show that the shifts of the conductance peak and dip
are largest when the energy gap between the two qubit
eigenstates is smallest. At this point, we will show that the
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Fano factor is smallest and we call this point the optimal
point, where in general charge-noise-induced dephasing is
minimized.>*?"-?®)

The standard method to detect the position of the excess
charge in a charge qubit is by measuring the conductance of
a single-electron transistor near a Coulomb blockade peak.
This standard method is considered to be more robust than
our method, because, in general, measurements of the Kondo
and Fano—Kondo effects are more difficult than the measure-
ment of a Coulomb blockade. In this respect, our method has
a supplementary relationship to the standard method. In the
Kondo and Fano—Kondo regime, which emerge as a result of
correlation between the localized spin and the Fermi sea,
charge degrees of freedom are not perfectly frozen. There-
fore, in the conventional Kondo or Fano—Kondo regime, the
charge and spin degrees of freedom are not separated, in
contrast to the pure one-dimensional Luttinger liquid that
shows spin charge separation.”” This means that electrons in
the QDs of the Kondo regime behave differently than those
of the non-Kondo regime, as a result of the correlation
between the charge and spin degrees of freedom. It is
considered that our setups provides the information about
the system by the linking between the spin and charge
degree of freedom of the QDs.

Our method should be able to detect those two-level
systems or, in general, any systems that have two charged
states. For example, two-level systems based on QDs are
also widely used in spin qubits.’**" Thus, this method has a
wide variety of potential applications for nanosystems.

For simplicity, and without loss of generality, we assume
that all QDs have a single energy level and that there is a
strong on-site Coulomb interaction in the QD “d” of the
Kondo detector, and the QD “c¢” of the Fano-Kondo
detector, but not for the QD “d” of the Fano-Kondo
detector. If there is a strong on-site Coulomb interaction in
the QD “d” of the Fano—Kondo detector, the Fano resonance
becomes complicated.’” We use a slave-boson mean-field
theory (SBMFT)!*3273% with the help of nonequilibrium
Keldysh Green functions to calculate the conductance of the
detectors. Moreover, we assume that the interactions
between the qubit and the detectors are weak and can be
decoupled into the mean-field parameters of the SBMFT. An
estimate of the effect produced by the charge fluctuations
would be desirable. However, in the SBMFT, charge
fluctuations are neglected.®® This is a limitation of the
SBMFT approach. We consider as following: In the Kondo
linear detector and the T-shaped QD detector setups, the
SBMFT approach is widely used as an appropriate method
to describe the system.!®!'*® Because our setups (Fig. 1)
are based on the Kondo linear detector and T-shaped QD
detector, as long as the coupling between the qubit and the
detector is weak, the application of the SBMFT to our setups
is a suitable starting point to treat the complicated electronic
structure of these QD systems.

The rest of the paper is organized as follows. In Sect. 2,
we formulate the slave-boson mean-field method to calculate
the conductance of the Kondo and the Fano—Kondo
detectors. In Sect. 3, we show numerical results regarding
the shifts of the conductance peak and dip. In Sect. 4, we
use a perturbation theory to estimate the validity of the
decoupling approximation between the qubit and the
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detectors. Section 5 presents discussions and conclusions.
In Appendix, we summarize the derivation of the coupling
constant V, from a network capacitance model.

2. Formulation

2.1 Hamiltonian

As shown in Fig. 1, we study the detection of the state of a
charge qubit via either the Kondo or Fano—Kondo effects in
the detector. The total qubit—detector Hamiltonian has three
terms H = Hge + Hy + Hin, Where Hg describes the
detector, H, the charge qubit, and Hj, the interaction
between the charge qubit and the detector. Here Hy is
written as

Hy = Qddy + djd,) + e,(d}d, — d}dp). (1)

Here, d, and d, are electron annihilation operators of the
upper QD “a” and the lower QD “b” in the charge qubit,
respectively. Experimentally, &, can be controlled by the
gate electrode attached to the QD “a” (not shown in Fig. 1).
Thus, we call ¢, qubit bias. The detector Hamiltonian Hye
is composed of an electrode part Hsp and a QD part Hgp.
Because we assume that there are strong on-site Coulomb
interactions in the QD “d” of the Kondo detector and the QD
“c” of the Fano—Kondo detector making double occupation
of these dots impossible, we introduce a slave boson
operator b, for the Kondo detector and a slave boson
operator b, for the Fano—Kondo detector.>**3 The Kondo
(K) detector Hamiltonian is

Hge! = Hsp + Hop, )
and the Fano—Kondo (F) detector Hamiltonian is
Hg! = Hsp + Hgp, 3)
where
Hsp= Y > {ew,ch (Cre + Valel Jas + [kl @)
a=L,R kgy,s
HOY =" eaffus + /ld[ijs 45+ blba — 1], (5)
N N
H((QFE)) = Z Zgalf(jl_y as + }'L[Zf:y cs + beL - ]:|
aj=c,d s s

+1a ) (iDL fes + Fibefas): 6)

Here ¢, is the energy level for the source (¢ = L) and
drain (o = R) electrodes; ¢, and ¢, are energy levels for the
two QDs, respectively; #; and V,, are the tunneling coupling
strengths between the trap QD “c” and the detecting
QD “d”, and that between QD “d” and the electrodes,
respectively; ¢ s and f,,s are annihilation operators of the
electrodes, and of the QDs («; = c,d), respectively; s is
the spin degree of freedom with spin degeneracy 2; Ao, is a
Lagrange multiplier. In the mean field theory, slave boson
operators are treated as classical values such as by, — (by,)-
We take (by,) and &,, = &4, + Ao, as mean-field parameters
that are obtained numerically by solving self-consistent
equations. The Kondo temperature is estimated as T1(<K) ~
(82 4 y?22)"? for the Kondo detector,** and T ~ (82 +
tf,z(zl)l/ 2 for the Fano—Kondo detector,'” where 2oy =
(bzl)(bm). In the numerical calculations shown below, we
take a temperature of T = 0.02t; < T, T .
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The interaction Hamiltonian H;, is derived from a
capacitance network model as shown in Appendix*’*®

Hint = qual O’Zi’lal, (O(] =, d) (7)

where n. and n, are the numbers of electrons in the trap QD
“c”, given by n. = ) f(A f.s for the Fano—Kondo case, and
in the detecting QD “d” is given by n; = Z fds ds for the
Kondo case. Also, o¢ is given by o, =d'd, — d hdp. As
shown by Eq. (A-11) in the Appendix A, V, l/dD where
dp is the distance between the charge qubit and the detecting
QD.

We assume that the interaction between the charge qubit
and the detector is weak and the decoupling approxima-
tion®” to the interaction Hamiltonian Eq. (7) can be applied.
In the decoupling approximation used here, the electric field
which the qubit senses is almost constant and we can thus
decouple the interaction between the qubit and the detector.
The decoupling of the interaction term Hj, leads to

HYE = V2o, (0900, + 0%(na,) — (0%) (1, )}

= VoZur{ (Xga = XapVer + 107 = (Xgu = Xgp)] Y x}
s

(®)
where o) =c,d, X, = (didy), and yg = (f] fors)» With
a1 = ¢,d. In this decoupling approximation, &., &4, and g,
are replaced by

/
Eay = &y, = Eoy + Aoy + V2o [ Xga —

U
&g = &, = &g+ VyZo, E KXoty
s

Xl C))
(10)

2.2 Green functions

Charge qubit detection in our system is carried out by the
measurement of the current of the detector. The current
through each detector is calculated using the non-equi-
librium Green functions as>*?

ie I
J =2 Wil Jas)

ki .s

— Vificres)]

= Z Re[ Vi G(1,1)]

kp.s
ReZ / do[Vi G5 (o)), a1
kL \)
where G, (t,1) = <CkLS(t)fds(t)>7 and
G (@) = ViIg (@)G (@) + g (@)Gy(w)],  (12)
with g}, (w) = (w — & + i8)~! (8 is an infinitesimal quan-
tity) and g7 (w) = 2n8(w — &) (w). Here fr(w)=
{expl(@ + eViias — Ep)/(kg DI+ 1)71 and  fr(w) =

{exp[(w — Eg)/(kgT)] + 1}_l are the Fermi distribution
functions of the electrodes when there is a finite bias voltage
Vbias between the two electrodes (kg is the Boltzmann
constant).

Let us first consider the Green function formulation for
the Fano—Kondo system. With the decoupling given in
Eq. (8), the Green functions remain the same as those
without interactions between the charge qubit and the
detector, by changing the replacements Eq. (10). Using the
equation of motion method, the advanced Green function G?

04CJ03-3

for the detecting QD “d” of the Fano—Kondo detector is
obtained as

(Fa _ C()_Eé—lts

= —, 13
= i -~ —

where 7y = t4(b.). The G')~(1) = —i(f}(t)f4(r)) can then be
calculated from G, = G, X7,G%, with
Eou(@) = i fr(w) + Trfr(@)],

where 'y, = Zﬂpa(EF)|VD,|2 is the tunneling rate between
the « electrode (¢ = L, R) and the detecting QD “d”, with a
DOS p, (EFg) for each electrode at the Fermi energy Eg. Thus

(14)

ix(@)

G~ = w—¢)?, 15
Coo ( ) (15)
where
x(@) = ' fr(w) + Crfr(w), (16)
Coo = [(@ — &)@ — £0) — |lal*T + V(@ — €)*. (17)
Similarly, we find
GO () = K@= &) (18)
Coo
. > 12
G(Clz)<(w) — M , (19)
Coo

with y= ([ +Tg)/2. We also define I'=2I T/
('L + I'g). For simplicity, we assume ['; = I'y.

For the Kondo linear detector shown in Fig. 1(a), the
Green functions are similarly obtained by using the equation
of motion method

G(K)< _ izg x(w) (20)
(w— &)+ 22
1
€ S — 21
dd w— &, —iyzg @D
The charge qubit Green functions are expressed as
Gaale) = — 2% (22)
aa W)= < s
(w0 — A)w+ A)
Gy = —2 " (23)
w)=——"".——¥"—,
b (@— A)w+ A)
Q
Gup(w) = Gpe(w) = (24’)

W —e2—Q’

where A = (¢ + QH'2,
Thus, the current for the Fano—Kondo detector can be
expressed as

do 22T Tr(w — €)
J= / GTLIRO 6 ) el ©9)
h T C()()
and the current for the Kondo detector is given by
e dw Zér‘L FR
J=2- | ———F——= — . (26
h/ T @)l 42 [f1(@) — fr(@)]. (26)

In Sect. 3, we show numerical results of conductance
G =dJ/dWVys at Vyips =0, and discuss the transport
properties of the two detector.

2.3 Self-consistent equations
The detector current is calculated self-consistently: while the
qubit state influences the detector QD energy level and thus

© 2013 The Japan Society of Applied Physics
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the current through it, the qubit state itself is also affected by
the detector QD occupation through capacitive coupling, as
described by Eq. (8). Here we derive the self-consistent
equations. The DOS of qubits are derived from the qubit
Green function p; = —(1/7) Im Gy(w + i8) (I = a,b). Then,
the average electron occupancy x,; of the two QDs of the
qubit is expressed by

D 1 el A
X = /D dof(w)p(w) = 3 (1 +p thanh %)a @n

where p, =1, p,=-—1, and f(w)= {expl(w— Er)/
(kgT)] + 1}, Using Eq. (10), we have the self-consistent
equations for the Fano—Kondo case:

g BA

=t +A:+ V2 Z”tanh R (28)
8; == Eq + quc[l - Zc]s (29)
do (0 — &)|ty)? o’
/fﬂx(w)v%ﬁ—”:& (30)
v C()() Bzc
dw z.|ty)?
/_w“d' @)+ 2 —1=0, 31)
7 Coo

where z. = |(b.)|* and B~! = kgT. From Eq. (29), we can
see that the energy shift 8; — g, of the charge qubit is related
to the electron occupancy 1 —z. =1 — |(b.)|* of the trap
site “c”, and its magnitude is proportional to the coupling
strength V. In particular, the qubit energy shifts as a
function of V,, due to back-action.

For the Kondo detector interacting with the charge qubit,

the self-consistent equations are

/

e A

= et Aa Ve tanh O (32)

dw (w— &) dey

= _ 7 "d7 +A;,+—%=0, (4
/ T ((,() _ S/d)z + ]/2ZL21 X(U)) d 8Zd ( )

dw Zd

o W )4z —1=0. 35
/n(w—e;fwzzﬁ)(( )+ 24 (35)

3. Numerical Results

Here we show numerical results focusing on the shift of the
conductance peak in the Kondo effect and the shift of the
conductance dip of the Fano—-Kondo effect. Although #,
appears only in the Fano-Kondo detector, we measure all
energies in units of z4, to better compare the Kondo detector
with the Fano—Kondo detector. For the Fano—Kondo
detector, when I" > ¢4, the electron tunneling between the
QD “c” and the QD “d” cannot be easily observed because
the current flow to and from the two electrodes is too fast, so
that it drowns out the effects of the electron tunneling
between QDs “c” an “d”. Thus, as shown in Ref. 32, we use
the QD-electrode tunneling rate I' to characterize the
detection speed. Specifically, we denote the case of
I'/t; =2 as a fast detector, and I'/t; = 0.04 as a slow
detector.

3.1 Conductance

Figure 2 shows numerical results of the DOS of the
detecting QDs “d”. The DOS pgy.(w) of the detector QD is
derived from pye (@) = —Im G} ,(w)/7. For the Kondo case
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Fig. 2. (Color online) DOS of the detecting QD “d” for (a) the Kondo
detector and (b) the Fano—Kondo detector, using Q2/t; =1, V, /t; = 0.5,
&q/ta = —0.05, and T'/t; = 0.02.
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Fig. 3. (Color online) Numerical results for the conductance G (in units

of e/h) for detectors as a function of the QD energies (g, for the detecting
QD “d” of the Kondo detector, and ¢, for the charge trap “c” of the Fano—
Kondo detector) for /t; =1, V,/tq = 0.5 and temperature 7'/t; = 0.02.
(a) Fast Kondo detector: I'/f; = 2. (b) Fast Fano—Kondo detector: I' /7, = 2.
(c) Slow Kondo detector: I'/t; = 0.4. (d) Slow Fano—Kondo detector:
I'/ty = 0.4. The peak positions for the Kondo detector and the dip positions
for the Fano—Kondo effect are shifted by the qubit bias &,.

in (a) there is a single peak, and for the Fano—Kondo case in
(b) we can see the Fano asymmetric line shape. Figure 3
shows the conductance of the Kondo detector [(a) and (c¢)]
and the Fano—Kondo detector [(b) and (d)], as a function of
the detector QD energy levels g; of the Kondo detector [(a)
and (c)] and e. the Fano—Kondo detector [(b) and (d)],
respectively. We can see clear peaks for the Kondo detector
[(a) and (c)], and clear dips for the Fano—Kondo detector [(b)
and (d)], as in Refs. 3—12 and 15-18. These peaks and dips
are maximized when the coherence between the discrete
energy state and the continuum states is largest, we thus
denote corresponding energies £ and &P as coherent
extrema. For the Kondo detector, because of Eq. (21), as
the detector speed I' increases, the width of the peak also
increases. However, for the Fano—Kondo detector, because
of Eq. (13), as the detector speed increases, the width of the
dip decreases. For both detectors, the shifts of the con-
ductance peaks and dips are observed, when ¢, is changed.
Below we investigate the shift of the coherent extrema & P**"
and ¢ in more detail.

© 2013 The Japan Society of Applied Physics
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Fig. 4. (Color online) The coherent extrema s&peak) (conductance peak)
and %P (conductance dip), as a function of the qubit bias &4. The
conductance peak of the Kondo detector for the ©2/7, = 0.5 qubit (a), and
the ©2/t; = 1 qubit (c). The conductance dip of the Fano—Kondo detector for
the Q/t; = 0.5 qubit (b), and the /7, = 1 qubit (d). The £ and P
are smallest around the optimal point eq =g, ~0.

Figure 4 plots the coherent extrema &P and &P, as a
function of the qubit bias g, [Eq. (1)]. As the qubit bias &,
increases, the distribution of the excess charge in the qubit
approaches to the detector QDs, resulting in raising the
energy of QD “d” of the Kondo detector and that of QD “c”
of the Fano—Kondo detector. Finally, the increase of the QD
energies are saturated because of the balance of the charge
distribution. Figure 4 reflects this fact and shows that &P
and £@P) increase as ¢, increase.

Because z,, =0 (@) = ¢,d) is satisfied at the coherent
extrema, we have the relation aq = g, from Egs. (29) and
(33). Then, it can be observed that the minimum of s(peak)
and &P exist around the ¢/ ~ 0 region in Fig. 4. At 6‘ ~ 0,
the energy splitting (2 —i—e/z)l/ 2 between the two elgen—
energies of the qubit is smallest and the qubit energy
splitting is a quadratic function of the qubit bias. Thus, qubit
state is insensitive to charge noises that lead to qubit
dephasing, and this zero bias point corresponds to an optimal
point, in analogy to other similar cases.?*?"-?®

The third terms of Egs. (28) and (32) decrease 8;" %) and
gl when & <0 and increases them when &, >0
(BA > 1), resulting in the minimum structure of Fig. 4 at
the optimal point &/ = 0. In addition, because the third terms
of Egs. (28) and (32) become larger as 2 becomes smaller,
Figs. 4(a) and 4(b) are considered to show clearer minimum
structures than Figs. 4(c) and 4(d). We can also observe that
the magnitude of the minimum is proportional to the
coupling strength V,. This is also the reason that the
minimum in Fig. 4 are caused by the third terms of Egs. (28)
and (32). From Egs. (28) and (32), at the optimal point
(ej] =0, thus, A = ) of the coherent extrema, we obtain

dey, _ ddg,
de,  dgg

(36)

(a1 = ¢, d). The peaks of Fig. 4 correspond to dey, /de; =0
and Eq. (36) shows that dAd,,/de; =0 at the minimum
values of the coherent extrema.

As mentioned above, the sgipeak) and &%) increase when ¢,
increases, and they are finally saturated after they have their

minimum regarding the optimal points. Thus, their deriva-
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ig. 5. (Color online) Maximum values of de;" " /de, and de P /de,

plotted as a function of the qubit—detector coupling V, for both fast

(I'/ty = 2) and slow (I'/t; = 0.4) detectors for (a) the Kondo and (b) the
Fano—Kondo detectors. It can be seen that the maximum values do not vary
with the speed I" of the detectors. It can also be seen that

dsP™ Jde, o V,/Q and de¥P /de, o V, /K.

tives, ds(peak)/daq and ds"9P)/dsg,, are considered to have
their maximum values around the middle points between
the minimum of the optimal points and the small ¢, region.
Figure 5 plots the maximum values of des'P*"/de, and
de'%P) /de, as a function of the qubit-detector couphng V,. It
can be seen that: (i) the maximum values of ds(peak)/ de, and
de'%P /de, do not depend on the speed I' of the detectors,
and (ii) there is a relationship between the peaks and V, /2
such as

deFO\
—, 37
max d, Q (37)
ds(d‘p) Vy
=, 38
max ( ds, >o< 2 (38)

when €2/t; > 1. These weak dependences of the maximum
values on the speed I' of the detectors are considered to be
because of the sharp response of the Kondo and Fano—
Kondo effects at their coherent extrema. Because all
quantities are numerically derived from the self-consistent
equations, Egs. (37) and (38) cannot be derived analytically,
and these results are obtained numerically. In principle, V,
can be calculated from the structure of the system by using
the capacitance network model, as shown in the Appendix
A. Thus, in experiments, if we can prepare several samples
with the different distances between the detector and the
qubit, we can estimate the tunneling coupling 2 for the
charge qubit by using the relations Egs. (37) and (38).

Therefore, Figs. 4 and 5 indicate that by finding the
minimum of sf,peak) and &%) we can find the optimal point
(¢, =0) of the qubit, and by analyzing the coefficients
of de'P*™ /ds, and ds'%P /de, as a function of V,, we can
infer the tunneling coupling €2 for the charge qubit.

Here, we check whether the temperature 7 = 0.002¢; is
below Tx ~ /€2 + 272 or not. In our calculations, &, ~ €
(¢ = c¢,d). As can be seen from Fig. 3, Kondo peaks and
Fano dips are observed for |e,| > 0.5. In addition, when
there are no Kondo peaks or Fano dips, z, ~ 1. Thus, in both
the Kondo region and the non-Kondo region, Tx > T =
0.002¢, is always held.
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Fig. 6. (Color online) The qubit bias s; of (a) the Kondo detector for
I'/t; = 0.4 and (b) the Fano—Kondo detector for I'/t; = 2. Fano Factor F of
(c) the Kondo detector for I'/t; = 0.4 and (d) that of the Fano—Kondo
detector for I'/t; = 2. Here, Q/t; = 0.5, V,/t; = 0.5, at zero temperature.

3.2 Back-action

As we have seen, both the Kondo detector and the Fano—
Kondo detector have similar capabilities to detect the
tunneling 2 and the qubit bias 8;. Here we consider the
effect of measurement (back-action on the qubit) and
the noise characteristics of the two types of detectors.
Figures 6(a) and 6(b) show how 8; is affected by the
detectors. The change of qubit energies clearly depends on
the coherent extrema of the Kondo peak and the Fano—
Kondo dip. Although figures are not shown, the changes
of 8; for I'/t; =2 of the Kondo detector and that for
I'/t; = 0.4 of the Fano—Kondo detector are larger than those
in Figs. 6(a) and 6(b), respectively. Thus the slow Kondo
detector and the fast Fano—Kondo detector are better from
the viewpoint of back-action.

The ratio of the shot noise S; and the full Poisson noise
2el, F = S;/(2el), is called the Fano factor. It indicates
important noise properties with regard to the quantum
correlations.® Smaller F is better because smaller F means
less noise of the detection. Similarly to the result of Ref. 40,
the Fano factor F at zero bias and zero temperature is given
by 1 — 7(Eg), where 7 (Eg) is a transmission probability
expressed by

2 Ty
't +Tr

[04et(w) is the DOS of the detector QD, as mentioned above.]
This means that the larger 7 (w) is better from the viewpoint
of the noise reduction. As can be inferred from Figs. 3(a)
and 3(c), 7 (w) for I'/t; = 2 of the Kondo detector is larger
than that of I'/t; = 0.4 of the Kondo detector. This means
that, in the case of the Kondo detector, F for I'/t; =2 is
smaller than that for I'/t; = 0.4 [Fig. 6(c)]. Similarly, in the
Fano—Kondo detector, F for I'/t; = 0.4 is smaller that that
for I'/t; = 2 [Fig. 6(d)]. Thus, the fast Kondo detector and
the slow Fano—Kondo detector are better from viewpoint of
the noise reduction. Therefore, the magnitude of the back-
action and the efficiency of the detector have a tradeoff
relationship. More advanced analysis such as Ref. 41 should
be considered as a future problem.

T(w) = T Pger(@). (39)

04CJ03-6

4. Perturbation Theory

A crucial assumption that allows our calculations mentioned
above to proceed is the decoupling approximation as stated
in Eq. (8). Here we investigate the validity of this
approximation by using a simple model in which the charge
qubit is capacitively coupled to a QD connected to a Fermi
sea. In Ref. 42, T" is related to the measurement speed of
the system. Here we use !, the tunneling time between
the central QD and the leads, to represent the time scale of
the detector and its temporal sensitivity. The perturbation
Hamiltonian is

Hl = Hinl H}:l/[tp _ Vq{o-znoz] - (an - qu)notl

- (Z xa,s)az + Gla = Xa) Y x} (40)

where o) = c¢,d. Because the qubit Hamiltonian Eq. (1)
includes o, and o,, H; can flip the qubit state between |0)
and |1). We apply the golden rule and calculate the transition

probability starting from the initial qubit state |0). The
transition probability P(A) is given by
P(A) = ZZp, / dt (il H{ (1) H, (0) i)
14 .
=3 _ooerp,- (g, (D, O)li)e™,  (41)

where i labels the eigenstates of the environment (elec-
trodes), and p; = exp(—p¢ei/Zp), with an equilibrium
environment partition function Z,. At zero temperature,
we can decouple (i|ny, (H)ng, (0)]) into (fa](t)fal(O)) and

(fo, (O T (O)) using the Bloch—-De Dominicis theorem. 43 For
the Fano—Kondo case,
- do x(w) ,,
o) = i [ 525 “2)
2 Coo
dw v(a)) i
o o) = il [ 52 @)
2w Coo
where v(w) = Za:L, g Fall — fo(w)]. Defining the lifetime
of the mean-field approximation by 1/t= P(A), as
discussed in Ref. 44, we obtain, for A K y
1162V A "
T A2 )
and for A > y
1 4F2V2t4z3 _
PO A P e (45)
T (ay —a_ )N i
where
1
ar =5 [=7 + 1z £ /P02 230 (46)
For the Kondo case, we obtain for A <« y
1 VA
-2 47
N A @7)
and for A > y
1 8I*viz A
- 71 — . 48
- A3 Og()/Zd> (48)
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We estimate this lifetime for the case of A < y by referring
to the experimental values in Ref. 16. The intrinsic
measurement time f, can be estimated from f#, =~ h/T.
When wusing f;,=05meV, I'=y=02meV, V,=
0.01 meV, and A = 0.01 meV, we obtain 7 ~ 64 ns for the
Fano—Kondo case, and we obtain t ~ 26 ns for the Kondo
case. Then, t, ~ /T ~ 0.0033 ps and #,, < 7 is held. Thus,
in this region, the decoupling approximation is valid. The
fast detector has longer lifetime for the Kondo case. When
using 7y =05meV, I' =y = 1meV, V, =0.01 meV, and
A =0.0lmeV, we obtain 7~ 0.65us for the Kondo
detector.

5. Discussion and Conclusions

We have shown that by measuring the shifts of the Kondo
resonance peak and the Fano—Kondo dip in the conductance,
we can estimate the optimal point and the tunneling strength
Q2 between two states of a charge qubit. In general, it is
believed that charged two-level systems are susceptible to
phonons. In Ref. 45, the result of the spin-boson model
showed that the degradation of the coherence by phonons is
smaller than expected. References 46 and 47 also argued
that the effect of phonons is not so large. In addition,
because we use the coherent extrema, the effect of phonons
is expected to be smaller than other energy scales.

We have studied the Kondo and the Fano—Kondo effects
in QD system from viewpoint of the detectors of a
capacitively coupled charge qubit. We have used the
slave-boson mean field theory and the decoupling approx-
imation to describe the quantum interference of the system.
In particular, we have investigated the modulation of the
conductance peak and dip by the charge qubit. We found
that, by measuring the shifts of the positions of the
conductance peak and dip as a function of the applied gate
voltage on the charge qubit (qubit bias), we can estimate the
optimal point. In addition, we showed that, by analyzing the
derivatives of the shifts of the peak and dip as the function of
the qubit bias, we can infer the tunneling strength between
the states |0) and |1) of the charge qubit. These character-
istics are the results of the resonant behavior of the Kondo
and the Fano—Kondo effects, and a new aspect of the
application of these important quantum interference effects.
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Appendix: Qubit-Detector Interaction

Here we derive the formula of the capacitive interaction
Eq. (7) between a charge qubit and a detector QD, applying
the capacitance network model to the system shown in
Fig. A-1. When charges stored in each capacitance are
expressed as in Fig. A-1, the charging energy of this system
is expressed by*”

04CJ03-7

Substrate

Fig. A-1. Charge qubit (right side) made of two coupled QDs with
tunneling strength € and gate electrode V. A detecting QD is in the left
side and consists of a one-energy level state with tunneling coupling I' to
reservoir (substrate).

a1
2Cr

q
20k

_ 4, 95 . 9 . 4D
2C, 2Cp 2C¢c 2Cp

—qaVe + g1 Vs + gc V. (A-1)

The numbers of electrons in the two QDs of the qubit and the
detector QD site are described by the operators N,, Ng, and
fig, respectively, such as

Ny = (—qa + g5+ qr)/e, (A-2)
Ng = (=g + qc +qp)/e, (A-3)
Aa = (—qr +qp + qr)/e. (A-4)

The charge distribution is determined by minimizing this
charging energy. When we define o, = Ny, — N s under the
condition N, + Ng = 1, as in Ref. 45, we have

G
4D,
+2(Cp + Cy0)(11q — ngo)} + const., (A-5)
where CO[ECA—FCB—{-CE, CﬂEC3+Cc+CD, CtE
Cp+ Cg + Cr, and nyy = Cy Vsup with

U=——{(Op — Oy)o, +2(CoCs — CH)(ig — nao)*

Oy = CyC; — C%, Oy = C4C, — C3, (A-6)
D, = 0,05 — (CpCi + CpCy)%, (A7)
Cp=—(Cy+ Cp)Cp — 2C4Ck (A-8)
Cn=CoyCp— CsCr+ Cp(Cr — Cp).  (A9)

Thus, we can obtain the coupling V, between the charge
qubit and the detector as
C:Cp,
V, = .
772D,

(A-10)

When the detector is distant from the qubit, we can
approximate Cg = 0 and C¢ = Cj,, and then we obtain

€CD 1

= X —. A-11
Cr(2Cp+Cy) dp ( )

Yy
When we can simply approximate the capacitance Cp ~
eSp/dp (e is the dielectric constant, Sp is the effective
area of the QD, and dp is the distance between the qubit
and the detector QD), we can see that the coupling constant

© 2013 The Japan Society of Applied Physics
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is proportional to the inverse of the distance between the
qubit and the detector QD, similar to pure Coulomb
interaction.
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