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ABSTRACT: We study the nearest-neighbor tight-binding Schrédinger equa-
tion for an electron hopping on a two-dimensional Penrose lattice in a perpendic-
ular magnetic field. The spectrum is studied using three different approaches: (i)
through closed-form expressions for small lattices, (ii) using the angular momentum
decomposition of the Hamiltonian, and (iii) numerically. For any given value of the
angular momentum, we observe no level crossings. According to the Wigner—von
Neuman theorem, this is a clear indication that no other symmetry, hidden or not,
is present. We also derive a surprising result in which destructive quantum inter-
ference occurs at a particular value of the magnetic field and localizes an infinite
number of states with energies £ \/5 This effect does not exist in square lattices.
Both the local topology and the destructive interference are responsible for this

localization.
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INTRODUCTION

The excitation spectra on the one-dimensional (1D) version of quasiperiodic
systems have been investigated extensively.l However, the electronic propertiesz’3
on the 2D canonical quasiperiodic structure, the Penrose lattice, have received
much less attention. Moreover, the bulk of the work? in this area has focused on
systems without external fields. Here we would like to study the behavior of the
electronic spectrum when an external magnetic field is applied. In particular, we
would like to exploit the rotational symmetry of the lattice in order to explicitly
obtain the block-diagonals of the Hamiltonian associated with the different values
of the angular momentum. This problem is not only of interest by itself, but
also directly relates to experimental measurements on 2D superconducting wire

networks and arrays of Josephson junctions?

field.

immersed in a perpendicular magnetic

It has been conjectured that the energy spectrum? of the 2D Penrose lattice
is singular. In particular, the spectrum has an isolated level at E = 0, whose de-
generacy is proportional to the system size, and whose states are strictly localized.
The existence of these localized states? depends on the local topology, but not on

the quasiperiodicity of the lattice.

In this paper, we show, by construction, that there are also strictly localized
states at E = £+/5 at certain magnetic field values. The existence of such states
also depends on the local topology, but the effect of destructive interference plays
a more explicit role. The quasiperiodicity of the lattice guarantees the existence of
many (proportional to the system size) identical local configurations, and therefore

the degeneracy of these states.

Our model is a tight-binding Hamiltonian. Atomic orbitals, |z}, are located on
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the vertices, i, of rhombuses and an electron can only hop to nearest-neighbor sites
which are connected by the edges of thombuses. All transfer integrals, t;;, are set
to unity. Thus, the Schrédinger equation for a wave function |[¢) = Y, ¥;]i) with

an energy E is
> tij exp (idif) ¥ = By
7
where
2T T e
Ay =%, A dl
1
and where the wave function on the left- and right-hand sides of the previous

equation belong to two different sublattices. The flux quantum is denoted by ®o.

De Bruijn® first gave a global and general prescription to generate Penrose
lattices. We construct our Penrose lattices by projecting a 5D cubic lattice into
a 2D subspace. The centers of the cube which intersect this hypersurface are
projected into it. The projected basis vectors constitute a representation of the
pentagonal group. We employ open boundary conditions in which the electron is

confined within the sample, i.e., ¥; vanishes for sites outside the sample.



ANGULAR MOMENTUM IRREDUCIBLE REPRESENTATION

The magnetic field dependence of the electronic spectra for a square lattice has
been studied by Hofstadter’. By using the Landau gauge and Bloch’s theorem, the
2D tight-binding equation can be easily be reduced to a one dimensional problem
known as Harper’s equation. This simplification into a 1D problem cannot be
made in the Penrose lattice case because no obvious choice of gauge will decouple
one direction from the other. We need to look for a different symmetry. Penrose
lattices® do have a vertex with perfect fivefold symmetry. Thus, we will write our
Hamiltonian in a basis which is centered on that vertex. Furthermore, in order to

utilize this symmetry we have used the rotationally symmetric gauge
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Our Hilbert space will be divided into five eigensubspaces, each one of them asso-
ciated with a particular value of the angular momentum. We have derived explicit
expressions for the block diagonal matrices of the Hamiltonian. For instance, for a

lattice with 46 sites, the zero-angular momentum, J = 0, block diagonal matrix is

(o\/500000090\
V5 0 0 0 B8 0 a+ta 0 B 0
0o 0 ©00~y 6 0 07 &
O 0 000 e 0 00 €
o B8 7000 0 v 00
O 0 & 00 0 & 00
0 a+a 0 0 00 0 1 00
o 0 007% 46§ 1 0 4 ¢
o B 000 0 ¥ 00
\o 0 s e00 0 &0 0/
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where

o = SHS
g = ¢HSs
v =of

§ = aaf
e = aafp

and where S) (Ss) refers to the area of a large (small) tile and H refers to the
applied magnetic field. The expressions for the block diagonal submatrices of the
Hamiltonian associated with the J = 1,2,3,4 values of the angular momentum

quantum numbers are

( 0 0 0 B 0 a+ab 0 B8 O
0 0 0 v ¢ 0 0 6 66
0 0 0 0 e 0 0 0 €8
B ¥ 0 0 0 0 ~ 0 O
0 6 € 0 0 0 6§ 0 O
ad+a 0 0 0 O 0 1 0 0
0 0 0 ¥ ¢ 1 0 ~ ¢
36 ~6 0 0 O 0 ¥ 0 O
\ 0 60 e 0 O 0 6 0 O /
where
9 = ei%’lJ

Figure 1 shows the energy levels versus magnetic flux, En(#), for a Penrose lat-
tice with 46 vertices. It was obtained by numerically diagonalizing the Schrodinger

equation for a very large number of values for the magnetic field.

Notice in figure 1 the presence of groups of five energy levels moving in a more
or less coherent way, either monotononically increasing or decreasing. In order to
disentangle this spaghetti of energy levels we need to focus on a single value of the

angular momentum (our only good quantum number).

If we numerically diagonalize the block diagonal matrix corresponding to, say,
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the J = 0 quantum number for the angular momentum, then we obtain the spec-
trum shown in Figure 2. Notice that the energy levels sometimes get very close to
each other and that occasionally it seems that they actually either touch or cross.
A close look at a magnified version of the spectra shows that the energy levels
neither cross nor touch. Furthermore, we know that energy levels corresponding
to the same quantum number repel each other. Thus, the Wigner—von Neumann
theorem? tells us that this lack of level crossing is a clear indication that no other

symmetry, hidden or not, is present.

Moreover, the fact that the levels can get extremely close to each other for
certain values of the magnetic field suggests that other approximate symmetries
might exist. Since the global fivefold symmetry center is unique, the lattice has
no other regions which are perfectly isomorphic to the central one (in spite of
Conway’s local isomorphism theorems). However, very good approximants to it
allow the levels to occasionally get very close. By writing the block diagonal form
around the new local fivefold symmetry centers, we can express the Hamiltonian
as a hierarchy of block diagonals. Only the first decomposition corresponds to
an irreducible representation of the perfect fivefold symmetry and, thus, all the
matrix elements outside the blocks are exactly equal to zero. The second level of
the hierarchy corresponds to an almost perfect global symmetry (quasisymmetry),
thus the off-diagonal elements will not be all zero, buf very small numbers. This
block-diagonalization procedure, can be repeated in order to obtain the other levels

of the hierarchy.

For the sake of comparison, we have computed En(¢) for NxN finite square lat-
tices using the same algorithm and boundary conditions employed for the Penrose
lattice calculations. Figure 3 and 4 show the energy levels versus magnetic flux for

the 5 x 5 and 8 x 8 cases.



CLOSED-FORM SOLUTIONS

For a number of small lattices, closed-form expressions for the energy spectra

as a function of the magnetic fields can be obtained.

For the smallest case, five large thombuses around a common vertex, the energy

levels for the J = 0 angular momentum states are

E=+vV5+4cos?2 A

and E = 0. Also, we have defined A = 3%%&. The energy levels for the J =

1,2, 3,4 angular momentum states are

E = +2cos (A—i—%{).

A more complex example is the familiar Penrose decagon which is obtained by
adding five skinny tiles to the previously considered lattice in order to complete
a regular decagon. Both types of tiles are present in equal numbers. The energy

levels for the J = 0 angular momentum states are

[

1
E=+% {5+4 (coszA-{-coszB) + [(5+4<cos2A+cos2B>)2 —8Ocos2B}§}2 L

For the J = 1,2, 3,4 angular momentum states, the energy levels are

E =42 {cos2 (A-l— -7%]—) +c052 (B+ z_ré{)}z

and E = 0. We use the definitions

2
4=2"pHs, . B=2C H(S +5,)
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LOCALIZATION OF STATES DUE TO
DESTRUCTIVE QUANTUM INTERFERENCE

Let us consider the Penrose decagon described above and an orbital, denoted by
|0 >, which is localized at the central site of the decagon. Let us denote the orbitals
localized one (two) edge(s) away by |1 >,|2 >,..,[5 > (|I' >,|2' >,...,[8' >). For
concreteness, the site at |1’ > will be connected to |1 > and |5 >. When the
Hamiltonian, H, is applied to a state, it provides the kinetic energy that allows it

to hop one edge. We consider the effect of H2|0 >, i.e.

5
HAJ0>=5[0> + > Myl >

a'=1
where

Ml' — 6i(Ao1+Aul) + ei(Aos-*—Asl/) ,

However, since

HAor+A i+ Aps+Ase) _ 40

we have

ei(A51'+A05) — e—i(A115+A50) i(A01+A111) 6—-1:@

= €

where @ is the flux enclosed by a large elementary tile. Thus, we can rewrite
My = Mot au) 1 4 9]

When & = 7, we have destructive interference since the factor inside the square
brackets in the previous equation vanishes. Thus, My = 0 for all values of o
and

H20>= 50>

(H +V5)(H —V5)[0>=0
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Thus, (H—+/5)|0 > is an eigenstate of H with eigenvalue —+/5 and (H+V5)|0 > is
an eigenstate of H with eigenvalue ++/5. Thus, a particular value of the magnetic
flux going through each large tile, localizes the state located at every center of a

Penrose decagon.

Notice that there are an infinite number of decagons of this type in a Penrose
lattice. Thus, the states with energies ++/5 have a degeneracy of finite density
in the thermodynamic limit. This result crucially depends on the local topology
and geometry of the lattice and the applied magnetic field. We urge the reader to
check this result numerically, and also to find other states which become localized
in more complex regions by the combined effect of the local geometry-topology

and the external field.

The above result does not apply, for instance, to the square lattice. In order
to see this, let us consider four square cells around a common vertex. It is clear
that H2 |0 > has additional contributions coming from four different straight paths
along the horizontal and vertical axis. These (two segments each) straight paths

do not cancel for any value of the magnetic flux.
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FIGURE CAPTIONS

Figure 1: Energy levels versus magnetic flux, En(¢), for a Penrose lattice with

46 sites.

Figure 2: Energy levels corresponding to the block-diagonal submatrix of the

Hamiltonian corresponding to states with zero angular momentum.

Figure 3: Energy levels versus magnetic flux, En(¢), for a 5x5 square lattice

with open boundary conditions.

Figure 4: Energy levels versus magnetic flux, En(¢), for a 8x8 square lattice

with open boundary conditions.
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