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SUPPLEMENTARY INFORMATION 

 

A. Preparation of Whispering-Gallery-Mode Resonators and Fiber Tapers 

 

A1. Fabrication of Erbium-doped silica microtoroid. The PT-symmetric optical resonator 

system investigated here is formed by two coupled WGM microtoroids. The passive (lossy) 

microtoroid is made from silica1, whereas the active (with gain) resonator is made from 

erbium-ion-doped silica film, which is formed using sol-gel synthesis2,3. The flow chart for 

the preparation of the sol-gel silica film is as follows (Fig. S1): 

1) Sol-gel precursor solution is prepared by mixing tetraethoxysilane (TEOS) in isopropanol 

alcohol (IPA), water (H2O), and hydrochloric acid (HCl). The weight ratio of 

TEOS:IPA:H2O:HCl is 0.6:6.5:0.7:6.1. 

2) Erbium ions are incorporated by adding erbium nitrate Er(NO3)3 to the precursor solution 

at desired concentration. 

3) The solution is stirred for 3 hours at 70oC during which hydrolysis and condensation 

occur. 

4) The solution is aged for 24 hours at room temperature. 

5) The aged solution is then spin-coated on the silicon wafer to form a uniform layer. 

6) The film is heat treated at 1000oC for 3 hours to form an erbium-doped silica glass.  

The process is repeated multiple times until the desired silica-film thickness is obtained. Note 

that without step 2), the resultant film would be a pure sol-gel silica film. 

 

A2. Fabrication of edge microtoroids. To investigate the PT-symmetric coupled-resonator 

system, we must be able to tune the coupling strength and/or the gain-to-loss ratio. The 

optical gain in the active resonator, which enables us to tune the gain-to-loss ratio, is 

provided by optically pumping the erbium ions with a pump laser4,5. The coupling strength is 

tuned by varying the distance between the two resonators6. This can be achieved by 

fabricating each of the resonators at the edge of a different chip and by controlling the 
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FIG. S1. Preparation of erbium-doped silica film for fabrication of active WGM 

resonators. Any rare-earth ion, such as ytterbium, neodymium, and thulium, can be 

incorporated into the silica matrix using this process by replacing the Er(NO3)3 with a 

soluble compound containing the relevant ion. Without the additional step for rare-earth-ion 

or other gain material, the resultant film would be a plain sol-gel silica film.    
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FIG. S2. Fabrication process of edge-microtoroids on silicon wafer.  Top (upper panel) and 

the side (lower panel) views of the resultant structure during the fabrication are shown. The 

fabrication steps 1-5, 9 and 10 are the steps for standard silica microtoroid fabrication on 

silicon wafer. The steps in the dotted box are necessary for obtaining the edge microtoroids, 

which stand on silicon pillars and hang over the silicon wafer. A passive silica edge-

microtoroid is fabricated starting in step 1 with a thermal silica or sol-gel silica film on 

silicon wafer. Starting in step 1 with rare-earth-ion doped sol-gel silica film on silicon wafer, 

an edge active-microtoroid is fabricated. Si: silicon; SiO2: silica; PR: photoresist; HF: 

hydrofluoric acid; XeF2: xenon difluoride; CO2: carbon dioxide (see text for details).   

 

separation between chips by using nanopositioning systems on which the chips are placed.  

To fabricate the microtoroids at the edges of the chips, we modify slightly the original recipe 

for fabricating on-chip microtoroid resonators1,7. The process, which is illustrated in Fig.S2, 

is the same for both passive and active resonators. It begins with silica free of gain dopants 

on a silicon wafer for the passive resonator and with erbium-doped silica film on a silicon 

wafer for the active one. We fabricate the edge-toroids as follows:  
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1) A photoresist (PR) layer is spin-coated over plain silica (for the passive resonator) or 

erbium-doped sol-gel silica (for the active resonator).  

2) Using UV-photolithography circular disks are patterned on the silica film. 

3) PR is then developed, forming PR disks. 

4) With hydrofluoric (HF) acid as the etchant, silica that is not covered with the PR is 

removed in order to form PR-coated silica disks on silicon wafer. 

5) PR is then removed by washing the wafer with acetone, uncovering the silica disks. 

6) and 7) A new layer of PR is spun coated on the wafer and then the chip is exposed to XeF2 

gas, which isotropically etches silicon. The PR layer forms a protective layer, so XeF2 does 

not etch the structure from the top. Etching only proceeds in a direction parallel to the 

surface.  

8) The PR is washed away with acetone. Steps 6)-8) are repeated until the desired over-hang 

disk structure is formed.  

9) The wafer is immersed in XeF2 gas once more to etch silicon from the top and sides in 

order to form the pillar structure, i.e., silica disks over silicon pillars. 

10) Finally, CO2 reflow heats and melts the silica disks, transforming them into silica 

microtoroids. The resulting structures are microtoroids at the edge of a silicon wafer with 

their pillars on the silicon substrate but with a portion of the silica torus extending beyond the 

wafer.   

 

A3. Fabrication of fiber tapers for add-drop filter (ADF) configuration. A pair of tapered 

optical fibers is used to couple light into and out of the WGM resonators. The coupled 

resonator system is placed between two fiber tapers, similar to the standard add-drop-filter 

(ADF) configuration (Fig. S3 and Fig. S4B). The fiber tapers should be parallel to each other 

and have similar waist size and mode profiles to achieve the best coupling. Their separation 

must be large enough to place the coupled resonators between them. To achieve these, the 

fiber tapers were fabricated by heating and stretching a pair of single mode silica fibers 

simultaneously over a hydrogen flame. The result was two fiber tapers with a very small 

height difference and ~90% transmission. We used a fiber-tip controlled with a 
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nanopositioner to push one of the fiber tapers away from the other until their separation was 

roughly equal to the sum of the diameters of the two resonators. The separation was adjusted 

by pushing the tapers towards or away from each other as well as to and from the resonators 

until the desired coupling conditions were achieved8. An additional nanopositioning stage 

was used to adjust the distance between the resonators.  

 

B. Experimental setup and characterization of the PT-symmetric microcavities 

 

B1. Experimental setup. Our experimental setup consists of seven ingredients (Fig. S3).  

 1) The coupled system of a passive and an active microtoroid. The resonators are 

directly coupled to each other in the 1550 nm band via their evanescent fields. There is no 

direct coupling between the resonators in the 1460 nm band.   

 2) A pair of tapered optical fibers to couple light into and out of the WGM modes of 

the resonator. Each tapered fiber is coupled to one resonator.  

 

FIG. S3. Experimental setup used for the study of PT-symmetric whispering gallery mode 

(WGM) microcavities. μR1: active microtoroid; μR2: passive microtoroid; PD: 

photodetector; WDM: wavelength division multiplexer; FC: fiber connector; TEC: thermo-

electric cooler; OSA: optical spectrum analyzer. 
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FIG. S4. Illustrations of the setups used in the experiments. (A) Setup used to show the PT 

phase transition presented in Fig. 2 in the main text. [A(i) and A(ii)] correspond to two cases 

where the pump is input in the same (or opposite) direction as the probe signal, respectively. 

The results remain the same regardless of the pump direction. (B) Setup used for the 

demonstration of nonreciprocal light transmission as shown in Figs. 3 and 4 of the main text. 

[B(i) and B(ii)] respectively correspond to forward and backward transmission. μR1: active 

microtoroid; μR2: passive microtoroid; PD: photodetector. Signal probe and pump fields are 

denoted with different colors. 

 

 3) Two external-cavity tunable laser sources. The first is used as the probe (signal) in 

the 1550 nm band; the second is in the 1460 nm band and is used to pump the erbium ions in 

the active microtoroid. 

 4) Nanopositioning systems to tune and adjust the coupling strengths between the 

resonators and fiber tapers as well as between the directly-coupled active and passive 

resonators.  

 5) Thermoelectric cooler (TEC) used to tune the resonance of the passive resonator 

via the thermo-optic effect. Initially, the resonances of the two resonators in the 1550 nm 
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band are spectrally separated from each other. Using the TEC, we tune one of the resonance 

lines of the passive resonator to overlap with a resonance line of the active resonator in the 

same band [6]. The resonators do not have overlapping resonance lines in the 1460 nm band, 

so the light from the pump laser is coupled only to the active resonator.  

 6) Photodetectors (PD) connected to an oscilloscope to monitor the transmission 

spectra at the outputs. Pump and probe light are separated using wavelength division 

multiplexers. An optical spectrum analyzer is used to characterize the optical gain and lasing 

from erbium ions.  

 7) A computer to process the transmission spectra and extract information on mode 

splitting (difference between the real parts of the eigenfrequencies of the coupled system) and 

the linewidth difference (difference between the imaginary parts of the eigenfrequencies of 

the coupled system) of the resonance lines. 

We performed two sets of experiments using the setup in Fig. S3 in different 

subconfigurations by proper connections of the input and output ports:  

 a) By moving one of the fiber tapers far from the coupled system, we determined the 

unbroken- and broken-symmetry regions as a function of the coupling strength between the 

resonators and as a function of the gain-to-loss ratio (determined by the pump power). The 

results are shown in Fig. 2 of the main text. Figure S4A illustrates the scheme used here. 

Experiments were performed when the pump and probe (signal) are input in the same 

direction [Fig. S4A(i)] and when they are in opposite directions [Fig. S4A(ii)]. 

 b) By using the ADF configuration, which is essentially a 2-by-2 optical device, we 

studied unidirectional light transmission (nonreciprocal optical transport). Figure S4B depicts 

the illustration of the scheme used here. The pump laser was input at port 1 and the probe 

(signal) was input at port 1 or at port 4. Transmission of the signal from port 1 to port 4 is the 

forward transmission whereas transmission from port 4 to port 1 is the backward 

transmission. 

 

B2. Determining the coupling strength   between the resonators. The coupling strength 

between the resonators is a function of the distance between them. In our experiments, we 

tune the distance between the resonators finely using a nanopositioning system with a step 
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resolution of 100 nm. In the following, we will introduce the theoretical framework for the 

determination and calibration of the coupling strength from the distance between the 

resonators. We performed the experiment using the configuration given in Fig. S4A(i) in 

which one of the resonators is directly coupled to an optical fiber waveguide. Defining the 

intracavity mode fields of the resonators as 1,2ka   for the first and second resonators with 

resonance frequencies 1,2k  , the coupling strength between the resonators as  , and the 

input field as ina , we can write the following rate equations for the coupled-resonators system 

   
11

1 1 1 2

2 2
2 2 2 1

2

2

c
c in

da i a a i a a
dt
da i a a i a
dt

   

 


    

   

    (S.1) 

together with the input-output relations 1out in ca a a  . Here k  denotes the loss or gain of 

the resonators (loss: 0k  ; gain: 0k  ), and 0c   corresponds to the coupling loss between 

the first resonator and the fiber taper waveguide. The rate equations take the form  

   
11

1 1 2

2 2
2 2 1

( ) ,
2

( )
2

c
c in

dA i A i A A
dt
dA i A i A
dt

   

 


    

   

    (S.2) 

 after substituting ,( 1,2)i t
k ka A e k   and  i t i tk k

k
da dAi A e e
dt dt

      . Similarly, for the 

input-output relation we have 1out in cA A A  . Here, 1,2k k     is the detuning between 

the resonance frequencies and the frequency of the input laser light. The coupling of these 

two resonators creates two supermodes  1 2 / 2A A A   and  1 2 / 2A A A    with the 

eigenfrequencies   and   given as 

  
2

21 2 1 2
1 2 1 2

1 1 4 ( )
2 2 2 2

c ci i i          

                    
   (S.3) 

Since in the experiments we tune the resonances of the resonators to be degenerate

1 2 0    , the eigenfrequencies can be re-written as 

     22
0 1 2 1 2

1 16
4 4c c
i        

          
   (S.4) 
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where the expression in the square-root quantifies the effect of the coupling and the interplay 

between the coupling strength and the loss/gain in the resonators. Here we define the 

difference between the eigenfrequencies as the spectral distance  

   
 22

1 2
1 16
2 c            

 
    (S.5) 

There are four different regimes which are characterized by the interplay between the 

coupling strength and the total loss of the system. (i) No coupling between the resonators 

0  . The resonance frequencies of individual resonators are equal and have the value 0 , 

but their losses are different and quantified as 1 c   and 2 for the first and second 

resonators, respectively. (ii) Strong coupling regime where  22
1 216 c       is satisfied. 

In this case, the coupling between the resonators creates two supermodes, whose frequencies 

are up- and down-shifted by / 2  with respect to the initial resonance frequency 0  of 

uncoupled individual resonators, implying that supermodes are identified by the difference of 

their resonance frequencies. The transmission spectrum should exhibit two resonances (mode 

splitting) whose frequency difference (amount of splitting) increases with increasing coupling 

strength  . Coupling does not induce extra loss and the linewidths of the supermodes are 

quantified by the sum of the losses of individual resonators.  (iii) Critical coupling regime 

where  22
1 216 c      . In this regime 0   and the resonance frequencies of the 

supermodes coalesce. (iv) Weak coupling regime where  22
1 216 c       is satisfied. 

Here, coupling induces extra loss to the system, and the two supermodes are identified by the 

difference in their linewidths.  

We measure 0k   and 0c   in the experiments from the resonances in the transmission 

spectra (see Fig. 1d of the main text) of each resonator separately (i.e, without coupling 

between them). Note that k  is related with all the losses (scattering loss, bending loss and 

material loss) in the resonators except for the coupling losses. Thus we need to minimize the 

effect of the coupling losses on our transmission spectra measurements to derive k . This is 

possible when the fiber-resonator coupling is set to deep-undercoupling regime where 

coupling loss is much smaller than the other losses in the system. In the deep-undercoupling 

regime, we obtain the transmission spectra for each of the resonators separately and then find 

NATURE PHYSICS | www.nature.com/naturephysics	 9

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS2927

© 2014 Macmillan Publishers Limited. All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys2927


 
 

10 
 

the linewidths k  and the resonance frequency k  of the mode of interest by Lorentzian 

curve fitting to the resonances obtained in the transmission spectra. Then we calculate the 

quality factor 1,2 / /k k k k kQ         from which the loss parameter k  is calculated. In 

the configuration shown in Fig. S4A(i) and in the model expressed in Eq. S.1, the first 

resonator is coupled to a fiber taper; therefore, the resonator-fiber coupling loss should also 

be estimated in the experimental settings. In order to do this, we move the fiber taper from 

the deep-undercoupling regime closer to the critical coupling condition. This naturally 

induces loss and leads to the broadening of the linewidth of the resonance mode observed in 

the transmission spectrum of the first resonator. Under this condition, the measured quality 

factor is generally referred to as the loaded quality factor and expressed as 1 1 1
1loaded cQ Q Q     

where cQ is the fiber-resonator coupling quality factor and denotes the coupling loss. In other 

words, loss parameters of the system satisfy 1loaded c    . Plugging in this expression the 

value of 1Q  (or 1 ) estimated in the deep-undercoupling regime for the first resonator and the 

newly estimated loadedQ  (or loaded ), we find cQ  (or c ) used in our experiments. Thus in the  

 

FIG. S5. Relation between the coupling strength  and the distance between the 

microtoroid resonators. The zero distance here corresponds to the case when the resonators 

are close to each other within the 100nm step-resolution of the nanopositioning system. 
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expressions in Eqs. S.1-S.4, the only unknown parameter is the coupling strength   between 

the resonators. Note that in the case of optical pumping of the active resonator, photons 

emitted from the gain medium provide gain to the resonance mode of the first resonator, 

leading an increase in 1Q  and decrease in 1  as seen in Fig.1e of the main text.  

In the experiments, we monitored the change in the mode splitting (difference between the 

resonance frequencies of the supermodes) as the distance between the resonators is varied. 

From the experimentally obtained splitting, we estimated the value of   using Eq. S.4. The 

resultant relation between   and the distance between the resonators is given in Fig.S5 where 

we see that the coupling strength exponentially decreases with increasing distance between 

the resonators. This result agrees well with previous reports in the literature6,9,10. A curve 

fitting method to estimate the coupling strength   will be explained in the next section.   

 

B3. Estimating eigenfrequencies of the supermodes from the experimentally obtained 

transmission spectra. Using  the configuration given in Fig. S4A(i), we probed the 

transmission spectra of PT-symmetric coupled resonators system at different coupling 

conditions, and estimated the eigenfrequencies of the supermodes from the measured 

transmission spectra. This is done by curve fitting an analytical expression obtained for 

transmission using coupled-mode theory to the experimentally obtained transmission spectra. 

Starting with the expressions given in Eqs. S.1-S.2 and the input-output relation for the 

system, we find the steady-state normalized transmission 2/out inT A A  as 

    
  

2

2
2

1 2

2 2
1

4 2 2
c

c

i
T

i i
 

   
 

 
     

    (S.5) 

where 1 , 2 and c  are all known from the experiments as explained above, and we used  

1 2 0     and 0    because in the experiments the resonance frequencies of the 

resonators are set to be equal using thermal tuning via the thermo-optic effect. We used the 

expression in Eq. S.5 as the curve fitting function to the experimentally-obtained 

transmission spectra under different coupling strengths   (i.e., distance between the 

resonators). Note that for the ideal PT-symmetry case in which gain in the active resonator 

equals to loss in the passive one (i.e., 1 0c   , 2 0   and 1 2c     ), Eq. S.5 becomes 
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 
 1 2

2

2
2 2 2

2

2 2
1

4 4c

c i
T  

 
  

 
 

     
(S.6) 

When there is no gain in the system (coupled passive resonators), all the parameters except 

for  are known. Therefore, curve fitting the expression in Eq. S.5 to the experimentally-

obtained transmission spectrum with  as the free parameter provides a value for   which is 

then used in Eq. S.4 to obtain the eigenfrequencies of the two supermodes. When the gain is 

present in the system, we used  and 1  as the free parameters for curve fitting. The 

estimated values of  and 1  are used in Eq. S.4 to obtain the supermode eigenfrequencies.       

In Fig. S6, we provide the experimentally obtained transmission spectra together with the 

fitted curves using Eq. S.5 and the eigenfrequencies estimated via Eq. S.4. Clearly, even if 

the resonances coalesce as shown in Fig. S6A, the theoretical fit provides two different 

eigenfrequencies distinguished by the difference in their linewidths. The confidence of the 

curve fitting was always larger than 0.95. 

 

FIG. S6. Theoretical curve fitting to extract the eigenfrequencies in the broken-PT-

symmetric phase. We fitted the transmission function obtained from the theoretical model 

and given in Eq. S.5 to the transmission spectra obtained in the experiments. Estimated 

coupling strengths   and gain-loss parameter 1  are (A) 2.95 MHz   and 

1 13.84 MHz    , (B) 4.16 MHz  and 1 13.07 MHz   ,  and (C) 9.75 MHz   and 

1 14.55 MHz   . The detunings of the calculated eigenfrequencies from the initial resonance 

frequencies are given in the inset and the units are in MHz. Blue denotes the experimental 

data and red denotes the best fit.       
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B4. Threshold coupling strength PT . In Fig. 2 of the main text and Fig. S7 of this 

Supplement, we plotted the real and imaginary parts of the eigenfrequencies as a function of 

the parameter / PT   where  is the coupling strength as discussed above. Here PT  is the 

threshold coupling strength at which the real parts of the eigenfrequencies of the supermodes 

coalesce for the first time and become equal for a fixed gain and loss ratio as the coupling 

strength  (i.e., distance between the resonators) is decreased. Then the value of   satisfying 

 22
1 216 c       is the threshold coupling strength PT , which is found as  

    
1 2

1
4PT c     

       
(S.7) 

It is clear that PT  depends on the gain-loss ratio of the coupled system. For the ideal case 

when gain and loss are balanced (i.e., 1 2c     ),  the threshold coupling constant PT  

becomes 

     
2

1
2PT 

       
(S.8)

 

If one can measure 1 , c  and 2  precisely then the PT  can be calculated using Eq. S.7. 

However, in an experiment, especially when there is gain in the system, one does not know 

the exact value of 1  and may not achieve exactly balanced loss and gain. Moreover, in 

scheme like ours, the coupling strength that can be probed is limited by the step resolution of 

100 nm of the nanopositioning system. Therefore, satisfying the above expression exactly is 

difficult.      

In the experiments, we first bring the loss and the gain as close to each other as possible, and 

then monitor the transmission spectra as we decrease the coupling strength   by increasing 

the distance between the resonators. At each value of distance (i.e., our nanopositioning 

system has a step resolution of 100 nm), we obtain the transmission spectrum and then 

estimate the coupling strength   and 1 via the curve fitting as described in section B3. Then 

using the estimated value of   and 1 , we calculate the real and imaginary parts of the 

eigenfrequencies. The value of  at which the real parts of the eigenfrequencies become the 

same for the first time as   is decreased (i.e., distance between the resonators is increased) is 

the value of PT . Due to the limited resolution of our nanopositioning system, in the 

experiments we may miss the exact point where  22
1 216 c       is satisfied. 
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Therefore, we need to estimate PT from the available information. In the experiments, we 

found out that the value of 1  is almost constant as it should be because we keep the gain 

condition constant by fixing the pump power of the gain medium. Slight fluctuations 1  

come from fluctuations of the pump power and frequency. From these experiments, we 

assigned an average value to 1 . Then we used this value in Eq.S.7 to calculate PT . We 

checked the validity of the calculated PT  by confirming that it falls between two 

experimentally accessible   values 1  and 2  which satisfy  22
1 1 216 c       and 

 22
2 1 216 c      , (i.e., 1 2PT    ).  

In Figs. 2c and 2d, we compare the evolution of the real and imaginary parts of the 

eigenfrequencies of the supermodes for two different values of the loss in the second 

resonator. The value of PT  used in these figures was obtained for the case of high quality 

factor Q=3.0107 resonance mode (resonance mode with lower loss) of the second resonator 

µR2 in order to visually compare the symmetry breaking points of these two different cases. 

Therefore, the symmetry breaking point for the case of lower loss appears at / 1PT    

whereas that for the case with higher loss appears at / 1PT   . This confirms that the higher 

the loss in the passive resonator the higher the threshold for symmetry breaking point, as 

quantified in Eqs. S.7 and S.8.     

        

B5. Typical transmission spectra in the broken- and unbroken-symmetry regions.  Using  

the configuration given in Fig. S4A(i), we probed the transmission spectra of the coupled-

resonators system as a function of the coupling strength after setting the gain and loss as 

close to each other as possible. The results showing the PT-symmetry breaking are provided 

in Fig. 2 of the main text. In Fig. S7, we provide typical transmission spectra obtained in our 

experiments for the broken- and unbroken-symmetry phases shown in Fig.2 of the main text.  

 

B6. Co- and counter-propagating pump and probe light.  In order to check the effect of the 

direction of the pump on the observed PT-symmetric phenomena, we performed experiments 

using the configuration in Fig.S4A(i) and (ii). Typical experimentally-obtained transmission 

spectra in the broken- and unbroken-PT symmetry phases are given in Fig. S8. It is clear that 
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regardless of the propagation direction of the pump laser with respect to the probe, the same 

behavior is observed. This can be explained as follows. WGM resonators support counter-

propagating frequency-degenerate modes, so light emitted from excited erbium ions during 

their transition to the ground state can couple to modes propagating in clockwise and counter-

clockwise directions with equal probability. Thus, regardless of the propagation direction of 

the pump, the weak probe signal is always amplified. 

 

 

Fig.S7. Experimentally obtained transmission spectra in broken-PT- and unbroken-PT-

symmetric regions. The configuration shown in Fig. S4A(i) is used. (A) Mode-splitting, 

corresponding to the difference between the real parts of the eigenfrequencies of the 

supermodes of the coupled WGM-resonator system, as a function of the coupling strength. 

The coupling conditions labeled with square marks and letters (B)-(E) are the conditions for 

which transmission spectra are given in panels (B)-(E). The straight red lines in (A) depict 

the case in which both resonators are passive; the dotted blue lines depict the case in which 

one resonator is active and the other is passive with balanced loss and gain. (B) Both 

resonators are passive (no gain) and the coupling is small. Splitting is barely seen. (C)Both 

resonators are passive and the coupling is strong. Mode-splitting is clearly seen. (D) 

Coupled passive and active resonators in the unbroken-symmetry region. Split resonance 

peaks are clearly seen. (E) Coupled passive and active resonators in the broken-symmetry 

region, showing the coalescence of the supermodes.  
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Fig.S8. Experimentally obtained transmission spectra in broken- and unbroken-PT-

symmetric regions with different pump and probe directions. In these experiments the 

configurations in Fig. S4A are used. (A) and (B)are obtained in the unbroken-symmetry 

region using Fig. S4A(i) and Fig. S4A(ii), respectively. (C) and (D)are obtained in the 

broken-symmetry region using Fig. S4A(i) and Fig. S4A(ii), respectively. The transmission 

spectra are the same regardless of the directions of the pump and probe light fields.    

 

B7. Localization of field in the active resonator in the broken PT-symmetry phase.  Strong 

nonreciprocity observed in our PT-symmetric optical resonators is due to the significant 

enhancement of nonlinearity in the broken symmetry phase. This enhancement, on the other 

hand, originated from the strong field-localization in the broken symmetry phase. Field 

localization here means that regardless of which port is used as the input port, the field is 

always localized in the active resonator (i.e., resonator with gain and with less loss).  

Therefore, the signal at the output port of the fiber taper coupled to this active resonator 

shows a strong resonance peak whereas the signal at the output port of the fiber taper coupled 

to the passive resonator (i.e., resonator without gain) is minimized, if not completely 

eliminated. This is true regardless of whether the input is at the fiber taper waveguide 

coupled directly to the passive or the active resonator. The results of our experiments are 

depicted in Fig. S9 where we see that only when the PT-symmetry is broken, the field is 

localized in the active resonator and thus the signal at the output port of the fiber coupled to it 

shows a strong resonance peak whereas there is a complete absence of resonance peaks at the 

output of the fiber coupled to the passive resonator. In the unbroken phase, both outputs show 

resonance peaks regardless of the input port.  

When there is no gain in the system (both resonators are passive), the output of the fiber 

through which the field is input shows a resonance dip and the output of the other fiber shows 
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a resonance peak [Fig. S9A(a) and S9B(a)]. Resonance dip at port 2 (4) for the input at port 1 

(3) is due to destructive interference between the light transmitted directly to the output and 

the portion coupled to the resonator and then coupled back to the fiber. A portion of the light 

coupled to the resonator from the input fiber then couples to the other resonator and leaks to 

the output port of the other fiber, leading to resonance peaks. 

 

 

Fig.S9. Localization of the optical field in the active resonator in the broken-PT symmetry 

phase.  Fiber taper waveguide with ports 1 and 2 is coupled to the active resonator whereas 

the one with ports 3 and 4 is coupled to the passive resonators. (A) Input is at port 1 (active 

resonator side), and outputs are measured at ports 2 and 4. (B) Input is at port 3 (passive 

resonator side), and outputs are measured at ports 2 and 4. [A(a)] and [B(a)] denote the case 

when there is no gain in the system, [A(b)] and [B(b)] correspond to the case where the gain 

and loss of the system is balanced and the system is in unbroken-PT-symmetric phase 

because coupling strength is large, and finally [A(c)] and [B(c)] correspond to the case 

where the gain and loss of the system is balanced and the system is in the broken-PT-

symmetric phase due to the weaker coupling strength between the resonators. Blue curves 

denote the output at port 2 and red curves denote the output at port 4. It is clear that in the 

broken PT-symmetric phase, the field is always localized in the resonator with gain or with 

low loss, regardless of whether the input is at the passive resonator side or at the active 

resonator side. 
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Fig.S10. Experimentally obtained spectra showing the effect of the weak signal at the input 

port on the output transmission spectra.   This is an enlarged version of the spectra shown in 

Figs. 4[b(ii) and b(iii)] for the backward transmission as depicted in Fig. S4B(ii). For both 

the unbroken- and broken- symmetry cases, the output port 1 remains at the noise level 

without any observable resonance peak when there is no weak signal at the input port 4 (A 

and B). When a weak signal is input at port 4, resonance enhancement is observed for both 

the unbroken- and broken-symmetry cases (C and D).   

 

When the gain and loss are balanced but the coupling strength is large (distance between the 

resonators is small) such that the system is in the unbroken PT-symmetric phase [Fig. S9A(b) 

and S9B(b)], the outputs always show two resonance peaks (mode splitting) regardless of 

whether the field is input at port 1 or port 3. The split resonance modes have the same 

resonance frequencies and similar linewidth in both of the cases, except with slight variations 

in their heights.  
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When the gain and loss are balanced and the coupling strength is weak (distance between the 

resonators is large) such that the system is in the broken PT-symmetric phase [Fig. S9A(c) 

and S9B(c)], only the output port 2 shows a resonance peak regardless of whether the input is 

at port 1 or at port 3. No resonance peak or dip is observed in the output port 4 in both cases. 

This implies that the input field is localized in the active resonator which is directly coupled 

to the fiber taper with the ports 1 and 2.  

 

B8. Effect of the weak probe signal on the output spectra.  In Fig. S10, we give enlarged 

spectra of those shown in Figs. 4[b(ii) and b(iii)] of the main text. It is clear that when there 

is no weak signal at the input port, the output port remains at the noise level with no 

observable resonance dip or peak because our system is driven below the lasing threshold. 

One can say that the photons emitted by the excited ions are consumed by the losses (intrinsic 

and coupling losses) in the system. With the weak signal at the input port, we see a resonance 

enhancement at the output port for both the broken- and the unbroken-symmetry cases. 

 

B9. Supplementary experimental data for nonreciprocal light transmission. For the 

demonstration of nonreciprocal light transmission in our PT-symmetric system, we used the 

configuration given in Fig. 4S(B). We defined the transmission from port 1 to port 4 as the 

forward T1→4  and transmission from port 4 to port 1 as the backward T4→1 transmission. In 

the main text, we provided the results for the T1→4  and T4→1 demonstrating that in the 

broken-symmetry region, forward transmission reduces to zero T1→4 ~ 0 [Fig. 4a(iii)] but the 

backward transmission remains high [Fig. 4b(iii)]. In the experiments, we monitored ports 2 

and 4 when the input was at port 1, and ports 1 and 3 when the input signal was at port 4. In 

Fig. 4 of the main text, we provided only the spectra at port 4 (1) when the signal input was at 

port 1 (4). In Fig. S11 below, we provide the transmission spectra at ports 2 (3) when the 

input signal is at port 1 (4) to give a clear understanding of the signal at the other ports. In the 

broken-symmetry region, for forward propagation we observe amplified signal at output 2 at 

resonance while the signal at output 4 is almost zero. For backward propagation, the 

amplified signal is at port 1; however, the signal at port 3 has a shallow resonance dip.  

 

NATURE PHYSICS | www.nature.com/naturephysics	 19

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS2927

© 2014 Macmillan Publishers Limited. All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys2927


 
 

20 
 

B10. Fluctuations in the heights of resonance peaks. In Fig. 3c (unbroken phase) of the 

main text and in Fig. S11, the heights of the doublets (peaks) for the backward and forward 

transmission show a difference. This difference is attributed to a number of different issues in 

our system. First, the frequency and the output power of our lasers are not actively controlled 

or stabilized. During the scanning of the laser frequency to obtain the transmission spectra, 

the outputs of the lasers fluctuate which is reflected as the fluctuations at the heights of the 

peaks or dips at the resonance frequency. Second, since we do not have active stabilization 

and control mechanisms, there are fluctuations such as thermal fluctuations which swing the 

resonances slightly changing the measured output signal.  In Fig. S12, we provide a set of 

experimental results obtained on the same setup under the same conditions but at different 

 

 

Fig.S11. Experimentally obtained spectra in broken- and unbroken-symmetry regions.  (A) 

Output at port 2 when the input signal is at port 1 for passive photonic molecule [A(a)], in 

PT-symmetric system when the symmetry is unbroken [A(b)]and when it is broken [A(c)]. 

Output at port 4 is given in Fig. 4a of the main text. (B) Output at port 3 when the input 

signal is at port 4 for passive photonic molecule [B(a)], in PT-symmetric system when the 

symmetry is unbroken [B(b)]and when it is broken [B(c)]. Output at port 1 is given in Fig. 4b 

of the main text.   
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times. As it is seen, due to the above issues, the heights of the peaks fluctuate; they 

sometimes have the same heights but at some other times one is higher than the other.  

The crucial thing to point out here is that even if there are fluctuations in the heights of the 

peaks for backward and forward transmissions in the broken and unbroken phases in the 

linear regime (Fig. 3c of the main text), there is no complete absence of transmission peak in 

one direction. The peaks always stay there regardless of the fluctuations. Note that when the 

system is driven to the nonlinear regime, for the broken phase, we see complete absence of 

transmission peak in the forward direction (Fig. 4a of the main text). Similarly, even if there 

are slight fluctuations in the spectra obtained at different times in the broken phase in the 

nonlinear regime for forward and backward transmission, there is always a strong 

transmission in one direction and complete absence of the peak in the other direction.  Such 

fluctuation can be minimized, if not completely eliminated, by active stabilization and control 

of laser frequencies and output powers and thermal fluctuations in the environment, etc. 

 

 

Fig.S12. Transmission spectra obtained at different times when the system is in the linear 

regime. Although the heights of the resonance peaks fluctuate in measurements taken at 

different times, there are always two resonance peaks (split modes) in the backward 

transmission (red spectra) and forward transmission (blue spectra in the inset) directions 

when the system is in the linear regime and  PT-symmetry is unbroken. 
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B11. Comparison of nonreciprocity demonstrated in PT-symmetric microresonators with 

reported experiments utilizing nonlinearity or resonators. Many components or systems 

used in optics are reciprocal, i.e., light can be transmitted in both directions. Nonreciprocal 

devices are of great importance and much needed for optical communication and optical 

signal processing. For example, isolators are used to protect the laser sources and sensitive 

components from back-reflected light; circulators are used to separate and route light in 

bidirectional systems. The ability to control the direction of light flow in such a way that light 

is transmitted in one direction but blocked in the other direction requires breaking reciprocity 

or the time-reversal symmetry. In many optical systems used today, this is achieved using 

magneto-optical effects induced by applied magnetic fields. Unfortunately, magneto-optic 

effect in many materials is very weak. As a result, magneto-optic materials with large sizes 

and high magnetic fields are needed. These make the systems complicated and bulky. As the 

technology progresses drastically, there is a drive and tendency to make the systems smaller 

and smaller, and if possible to achieve on-chip optical processing systems with nano- or 

micro-scale footprints. The absence of magneto-optic effects in materials used in 

conventional optoelectronics processing demands that materials with higher magneto-optic 

effect are suitably integrated into the on-chip nano-or micro-scale structures. However, this is 

not an easy task. Therefore, there is an ever-increasing need for non-magneto-optic 

approaches to achieve nonreciprocal light transmission. Today it is well-known that 

reciprocity can be broken in magneto-optic materials, nonlinear materials and materials 

whose dielectric permittivity and magnetic permeability depend on time. In other words, a 

linear static dielectric system cannot have nonreciprocal response11,12. This is true even when 

gain and loss exist in the system11. Therefore, a system without magneto-optics has to rely on 

either nonlinearity or time-dependent effects to break time-reversal symmetry. In the 

following, we will introduce some of the beautiful experiments demonstrating nonreciprocal 

light transmission and compare their performance with the nonreciprocity achieved in our 

work, which brings PT-symmetric concepts with nonlinearity in coupled optical 

microresonators. Our focus is on demonstrations of nonreciprocity in on-chip waveguides 

and microresonators, and nonreciprocity based on nonlinear effects in different structures.  

B11a. Nonreciprocity based on nonlinear effects. Despite many theoretical proposals, there 

exist only a very small number of experimental demonstrations of nonreciprocal light 

transmission based on nonlinear effects such as second-order nonlinearity (2), Kerr-
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nonlinearity (3) and parametric nonlinearity. Raman amplification in silicon waveguides13,14, 

stimulated Brillouin scattering in silica fiber15 and dispersion-engineered chalcogenide 

waveguides16, (2) in asymmetric waveguides17 and periodically poled lithium niobate 

waveguide18, and a nonlinear, asymmetric, distributed Bragg reflector made from multilayer 

nonlinear thin film19, stimulated inter-polarization scattering in a photonic crystal fiber20, and 

thermal nonlinearity in a pair of silicon microring resonators21,  just to name a few. Among 

these there are three experimental demonstrations18,20,21 that we will briefly summarize 

below. 

Gallo et al.18 demonstrated nonreciprocal behavior relying on the tailoring of second order 

nonlinearity χ(2) with quasi phase matching gratings in a LiNbO3 channel waveguide. The 

gratings were 4 cm long and had a period of 14.7 μm. Moreover, at each end of the channel 

waveguide 1-mm-long mode filters and 1.5-mm-long mode tapers were fabricated. In this 

device, nonreciprocity was observed for input peak powers beyond 1.5 W at λ=1.55μm. The 

contrast, defined as the difference between backward and forward transmissions normalized 

by the sum of the transmissions in both directions at the wavelength of interest, reached 

values as high as C=0.9 at an input power of P=3.1 W.  Insertion loss of the device was ~0.7 

dB/cm. 

Kang et al.20 showed nonreciprocal light transmission in a photonic crystal fiber (length of 

1.5 m and a core of 1.8μm). Here breaking the reciprocity was achieved via the stimulated 

inter-polarization scattering (SIPS) which is a nonlinear process relying on optical excitation 

of a gigahertz guided acoustic mode. In SIPS, photons from a pump wave travelling in the 

forward direction scatter into the co-propagating but orthogonally polarized Stokes wave via 

the excited guided acoustic resonance. Thus in the forward direction the pump is strongly 

attenuated. However, if the pump is launched in the backward direction and counter-

propagates with the Stokes wave, then SIPS does not take place and the pump is transmitted 

with a slight attenuation due to the fiber transmission loss. An extinction ratio of 20 dB was 

demonstrated for powers of ~ 0.31W. 

Fan et al.21, on the other hand, used a system of two silicon microring resonators with quality 

factors of Q~ 27,000 and Q~ 43,800 configured in an add-drop filter geometry and 

asymmetrically coupled to two optical waveguides to demonstrate nonreciprocal light 

transmission. In silicon resonators, two photon absorption (TPA), (3) and thermal 
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nonlinearity are among the processes that can lead to the observed nonreciprocal behavior. 

The authors claimed that in their system thermal nonlinearity was the main reason for the 

observed behavior. As a result with input powers of P=85 µW and P=850 µW, nonreciprocal 

transmission ratios of  ~20 dB and ~27 dB were demonstrated. The forward insertion loss of 

the device was 12 dB.     

B11b. Nonreciprocity in optical microresonators. In addition to the experimental work by 

Fan et al. where nonreciprocity relies on thermal nonlineaity in silicon microring resonators 

and our present work which relies on nonlinearity enhancement in broken PT-symmetry 

phase for nonreciprocal light transmission, there are two more experimental works related 

with optical microresonators worth mentioning here: The works by Bi et al.22 and Tien et 

al.23 where magneto-optical materials are integrated with microresonators. We should 

mention that there are many proposals on how nonreciprocity can be achieved by integrating 

magneto-optical materials into microresonators, waveguides and photonic crystal structures 

either using sputter deposition24, wafer bonding25 or adhesive bonding26. The concept of 

nonreciprocal ring microresonator was introduced by Kono et al.27 to reduce the size of 

isolators and other nonreciprocal devices down to several tens of micrometers and to achieve 

on-chip nonreciprocal devices. Here we will introduce only the works by Bi et al.22 and Tien 

et al.23 which rely on frequency splitting upon the application of magnetic field to silicon 

microresonators with the integrated cerium-substituted yttrium iron garnet (Ce:YIG) films. 

Whispering gallery mode resonators or the ring resonators support two counter-propagating 

modes (clockwise CW and counter-clockwise CCW) at the same frequency. An magnetic 

field applied to the magneto-optical microresonator breaks the symmetry of the resonator and 

lifts the frequency degeneracy22,23,28. As a result, the CW and CCW modes have different 

propagation constants and resonance frequencies, thus leading to non-reciprocal optical 

transmission in the wavelength range near the cavity resonance.  

In their work23 Bi et al. integrated a 100 nm garnet film layer Ce:YIG(80 nm)/YIG(20 nm) 

using a pulsed laser deposition technique onto a silicon racetrack resonator. They then lifted 

the degeneracy of CW and CCW resonant modes by applying a magnetic field perpendicular 

to the direction of light propagation. An extinction of 19.5 dB was achieved by a magnetic 

field strength of 1,500 Oe. 

Tien et al.23  integrated Ce-YIG of thickness 500 nm on the top of a silicon microring 

resonator of radius 900 μm using oxygen plasma enhanced bonding. They achieved an 
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extinction of 9 dB in the 1550 nm wavelength band with an applied magnetic field strength of 

50 Oe.  

B11c. Other interesting methods to achieve nonreciprocity. Among many other interesting 

approaches to achieve nonreciprocal light transmission, the works relying on opto-

mechanical29,30 effects and interband photonic transitions31,32 are worth mentioning here.  

In their work Manipatruni et al.29 showed that optomechanical systems can exhibit 

nonreciprocity via momentum exchange during the interaction of the light field with the 

mechanical structure. The nonreciprocity originates from the asymmetry of the radiation 

pressure induced by the photons in the light field on a movable mirror for incident light in 

opposite directions. They then propose a silicon based micro-optomechanical device that can 

achieve a contrast ratio above 20 dB for an incident light power of 100 mW. This proposal is 

yet to be demonstrated in experiments. 

In contrast to the work of Manipatruni et al.29 where nonreciprocity is based on a nonlinear 

response of an optomechanical system, Hafezi and Rabl30 proposed another optomechanical 

approach which can lead to nonreciprocal behavior even at single photon level. The proposal 

relies on enhanced nonlinear coupling between a mechanical mode of a WGM microring 

resonator and an optical mode with a probe light traveling in the same direction as the strong 

pump field. This leads to different transmission properties for the probe light fields traveling 

in the same or opposite directions. The light in the direction of the pump field is transmitted 

whereas that in the opposite direction is blocked by the resonator. This proposal has not been 

realized yet.       

In 2009, Yu and Fan31 proposed to use interband transitions induced by spatio-temporal 

refractive-index modulations in photonic structures for nonreciprocal behavior without 

magneto-optics. The nonreciprocal behavior relies on the shifts of the frequency and 

wavevector during the photonic transition. In a structure with modulated refractive index, the 

frequency 1  of the light in the forward direction is converted to a higher frequency 2 1  ; 

however, the light propagating in the backward direction is not affected by the modulation 

and stays intact. If an absorption filter that absorbs the light at 2 completely is placed at the 

output, the system will behave as an isolator which blocks the light in the forward direction 

but transmits it in the backward direction. An interesting property of this approach is that it is 
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a linear process and that the photonic transition does not depend on the phase or the 

amplitude of the incident light.  

Although Yu and Fan31  proposed to use a microring resonator for experimental realization, in 

2012 Lira et al.32 demonstrated their proposal and achieved nonreciprocity in a silicon slotted 

waveguide structure that was electrically driven to induce indirect interband photonic 

transition. Here, an indirect interband photonic transition took place between two optical 

modes having different longitudinal wave vectors, and transverse modal profiles with 

different symmetries. By applying an electrical modulation of 10 GHz, corresponding to the 

frequency difference between the optical modes of interest in their slotted waveguide, the 

authors achieved a contrast of 3 dB at an applied electrical signal power of 25 dBm. The 

insertion loss of the system was around 70 dB.   

B11d. What makes our scheme different than above mentioned experimental realizations 

and what are the advantages? In our work, we used two directly coupled microtoroid 

resonators (quality factors of the order of 107) configured in an add-drop filter structure. One 

of the resonators is an active resonator with erbium ions as the embedded gain dopants within 

silica matrix whereas the other has passive silica loss at the λ=1.55μm band. Although the 

demonstrated nonreciprocity in our work also relies on nonlinearity, conceptually it is very 

different than the above works. The key point in our work is the use of PT-symmetric 

concept, where the loss in passive resonator is balanced with the gain in the active resonator 

and the coupling strength between the resonators is adjusted such that the system operates in 

the broken PT phase. As a result, in the broken PT-symmetry phase the optical field is 

strongly localized in the resonator with gain, which in turn enhances the nonlinear process 

(i.e., the nonlinearity can be observed with low power levels). In the unbroken phase there is 

no field localization and hence one needs higher power levels to observe the nonlinearity. 

This is seen clearly in Fig. S9 and Fig. 3a of the main text. There is a significant difference 

between the observed nonreciprocity in the broken- and unbroken-phases.   

Up to date there was no reported experiment in the literature which utilizes PT-symmetric 

structures to achieve nonreciprocal light transmission. Our work is the first experimental 

demonstration bringing together the PT-symmetric concepts with nonlinearity to demonstrate 

nonreciprocal light transmission which is crucial for many optical devices and photonic 

applications.  The advantages of our scheme, which brings together PT-symmetric concepts 

with nonlinearity-induced nonreciprocal light transmission, over the non-PT schemes 
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utilizing nonlinearity are significant reduction in the input power to observe nonreciprocity 

(~1μW in this work versus 3W in Ref. [18], 0.310W in Ref. [20] and ~ 85μW in Ref. [21]), 

higher contrast, smaller footprint and complete absence of the signal in one direction but 

resonantly enhanced transmission in the other direction. Unlike all the experimental works 

mentioned above (those utilizing magneto-optical effects, nonlinearity and interband 

transitions), we observed in this work a complete absence of resonance peak in one direction.  

Our work constitutes the first direct experimental proof of the connection between 

nonreciprocity and PT-symmetry which has been largely confused [see the work by Feng et 

al.33  and comments on this article by Fan et al.11, as well as the paper Wang et al.34 and the 

comment by Petrov et al.35].  

 

C. Imperfect gain/loss balance in PT-symmetric systems 

In PT-symmetric systems, formed by coupled structures such as waveguides or resonators, 

with exactly balanced gain and loss, the phase transition (PT-symmetry breaking) from 

broken to unbroken symmetry is a sharp bifurcation in orthogonal directions in the real parts 

of the eigenfrequencies of the supermodes. This is accompanied by a sharp orthogonal 

coalescence of imaginary parts of the eigenfrequencies. However, in our experiments, we 

observed that the bifurcations were not so sharp and orthogonal as predicted by the theory of 

perfectly balanced systems, but rather there is a smooth gradual separation. We attributed this 

to the imperfection in gain/loss balance.  

To explain this smooth bifurcation, we formulate a theoretical model in which the gain and 

loss are not perfectly balanced36. We construct the equations of motion of linearly coupled 

oscillators x  and y , 

2
2

2 0d x dx x y
dt dt

       

    

2
2

2 0d y dy y x
dt dt

     
     

(S.9) 
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Both oscillators have the same natural frequency  , the parameters   and   are a measure 

of the loss and the gain, and   is the coupling strength. We seek solutions of the form i te  , 

which lead to the quartic polynomial equation  

       4 3 2 2 2 2 42 0i i                    
   

(S.10) 

 

 

Fig.S13. Real and imaginary parts of the eigenfrequencies of the coupled system as a 

function of the coupling strength. The case where both of the oscillators are lossy 

0.01     is depicted in green diamond marks [A(a) and B(a)].  Exactly balanced gain 

and loss cases for small loss ( 0.01   ) and larger loss ( 0.02   ) are shown in [A(b) 

and B(b)]and [A(c) and B(c)], respectively, with brown crosses and blue solid circles. Real 

and imaginary parts of the eigenfrequencies for unbalanced loss and gain are given in (C) 

and (D), respectively. Loss and gain parameters are set as ( 3 0.03   ) and ( 8 0.08  

), respectively, for [C(a) and D(a)] brown cross marks and for [C(b) and D(b)] blue solid 

circle marks.     
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We have numerically solved this equation for 1   at various coupling strengths and gain-to-

loss ratios. The real and imaginary parts of the eigenfrequencies of this coupled system are 

plotted in Fig. S13 as functions of coupling strength   and for chosen values of gain-to-loss 

ratios. We see that for the case of exactly balanced loss and gain, the bifurcation of the real 

and imaginary parts of the eigenfrequencies at the phase transition point is sharp and in 

orthogonal directions (Figs. S13A and S13B). However, for the unbalanced case the 

bifurcations are not abrupt, but rather are smooth (Figs. S13C and S13D). The degree of 

smoothness increases with increasing imbalance between gain and loss. Moreover, for the 

unbalanced loss-and-gain case the eigenfrequencies are never real and there is always a 

nonzero imaginary part.  

It is also of critical importance to notice that for the special case in which the loss and gain 

are exactly balanced, the coupled equations of motion for  x t  and  y t  above can be 

derived from a Hamiltonian H , 

  
     2 2 2 21

2
H pq yq xp xy x y         

    
(S.11) 

where p  and q  are momenta conjugate to x  and y , and 2    . (The existence of a 

Hamiltonian is surprising because the system has loss and gain.) In this case, the energy H  

of the system is exactly conserved, although it is not a simple expression such as the sum of 

the squares of the momenta and the coordinates. Interestingly, if the coupling strength   

becomes strong enough, the frequencies become complex. Thus, there are two regions of 

broken PT symmetry, one for weak coupling and one for strong coupling36. Because the 

system is Hamiltonian, it can be quantized by imposing the requirement that x  and p  (and 

also y  and q ) obey equal-time commutation relations.  One can then find the quantized 

energies of the Hamiltonian. One obtains the remarkable result that the quantum energies are 

real for exactly the same range of parameters that the classical frequencies are real; that is the 

region of unbroken PT symmetry. The quantum energies become complex when the classical 

frequencies are complex; that is in the region of broken PT symmetry36. 

Our experimental results depicted in Fig. 2 of the main text show the same behavior as the 

numerical results for our theoretical model shown in Fig. S13 C(a) and D(a), implying that 

the gain and loss in the experiments are not exactly balanced. In Figs. S13 A(a) and B(a), we 

see that for two coupled lossy oscillators (passive resonators), the difference of the real parts 
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of the eigenfrequencies increases with increasing coupling strength, whereas the imaginary 

parts remain equal. These numerical predictions agree well with the results of our 

experiments as shown in Figs. 2a and b of the main text; that is, the mode splitting 

(difference in the real parts of the eigenfrequencies) increases with increasing coupling 

strength while the difference in the imaginary parts of the eigenfrequencies stays the same. 

Finally, as depicted in Fig. 2c and d, we have observed in the experiments that the higher the 

initial loss (lower Q ) of the resonators, the higher the coupling strength needed to observe 

the transition from broken-symmetry to unbroken-symmetry region. This is indeed what is 

found in the numerical solutions of the characteristic equation of the theoretical model (Fig. 

S13). Thus, the theoretical model introduced here and our experimental observations are 

consistent. Our model is physically realistic because in practical realizations it is almost 

impossible to have exactly balanced loss and gain. 

The observation in our experiments and the theoretical model above is critical in two ways. 

First, imposing exactly balanced loss and gain in coupled systems for extended durations of 

time is not practical. Second, In the broken-symmetry phase, the field propagating in the PT-

symmetric system is always confined in the structure with gain, thereby experiencing a strong 

overall gain and leading to enhanced transmission. At the phase transition point, the change 

in the gain experienced by the field should be abrupt in the ideally balanced gain and loss 

situation. Thus, if the coupling strength is changed by a very small amount around the phase 

transition point, there is a large abrupt change in the real and imaginary parts of the 

eigenfrequencies, leading to an abrupt change in the amplification or the gain experienced by 

the field. In the non-ideal case where the bifurcation is not orthogonal but smoothened, the 

change in the gain/amplification experienced by the field around the phase transition point is 

reduced.   

Finally, we should note here that the smooth bifurcation issue was also discussed by Benisty 

et al.37 from a different perspective: They attributed the smoothness around the phase 

transition point to a complex coupling arising as the gain is tuned in one of the systems.  
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