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Quantum bits, or qubits, form the heart of quantum-
information processing schemes. Because of the quan-

tum parallelism and entanglement that arise from the
superposition of states in two-level qubit systems, re-
searchers expect eventual quantum computers to tackle
tasks, such as factoring large numbers and simulating
large quantum systems, that no ordinary computers can
do in a practical time frame. 

Quantum computing involves preparing, manipulat-
ing, and reading out the quantum states of a many-qubit
system. So it is desirable to have qubits that can be indi-
vidually controlled. Moreover, they should be scalable; that
is, simply adding more qubits should create a larger cir-
cuit capable of more complex calculations. Solid-state
qubits satisfy these requirements.

Fortunately, very small solid-state devices can behave
quantum mechanically. As the size of a bulk conductor be-
comes increasingly smaller, its quasi-continuous electron
conduction band turns into discrete energy levels. An ex-
ample is a quantum dot, in which electrons are confined
to a small semiconducting or metallic box or island com-
posed of millions of atoms. The problem is that the elec-
tron states of that island quickly decohere as the micro-
scopic degrees of freedom strongly interact with the
environment. A bulk superconductor, in contrast, is com-
posed of many paired electrons that condense into a sin-
gle-level state. This superconducting state involves macro-
scopic degrees of freedom and thus exhibits better
quantum coherence. By reducing the size of the supercon-
ductor, one can reduce the coupling of the superconduct-
ing state to the environment and thereby further improve
the quantum coherence. 

Various experiments on superconducting circuits have
demonstrated as much,1–5 and those schemes are regarded
as promising candidates of qubits that can process quan-
tum information (see PHYSICS TODAY, June 2002, page 14).
Not surprisingly, there is a deep analogy between natural
atoms and the artificial atoms composed of electrons con-
fined in small superconducting islands. Both have discrete
energy levels and exhibit coherent quantum oscillations
between those levels—so-called Rabi oscillations. But
whereas natural atoms are driven using visible or mi-
crowave photons that excite electrons from one state to an-

other, the artificial atoms in the circuits are driven by cur-
rents, voltages, and microwave photons. The resulting
electric and magnetic fields control the tunneling of elec-
trons between the superconducting island and nearby elec-
trodes. The effects of those fields on the circuits are the
analogues of the Stark and Zeeman effects in atoms.

Differences between quantum circuits and natural
atoms include how strongly each system couples to its en-
vironment; the coupling is weak for atoms and strong for
circuits, and the energy scales of the two systems differ. In
contrast with naturally occurring atoms, artificial atoms
can be lithographically designed to have specific charac-
teristics, such as a large dipole moment or particular tran-
sition frequencies. That tunability is an important advan-
tage over natural atoms.
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Superconducting Circuits and
Quantum Information
Superconducting circuits can behave like atoms making transitions between two levels.
Such circuits can test quantum mechanics at macroscopic scales and be used to conduct
atomic-physics experiments on a silicon chip.
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Box 1. Parameters of Superconducting Qubits

The ratio of two energy scales—the Josephson coupling
energy EJ and the charging energy EC—determines

whether the phase or the charge dominates the behavior of
the qubit. Moreover, a low enough temperature T (kBT
smaller than the level splitting of the qubit) prevents the
qubit states from thermally smearing. 

The values listed in the table are approximate orders of
magnitude from recent experiments with different circuits.
Here, hn01 is the level splitting of the qubit (that is, the en-
ergy-level difference of the two lowest states E1 ⊗ E0), which
depends on the applied bias. T1 is the average time that the
system takes for its excited state +1¬ to decay to the ground
state +0¬. T2 represents the average time over which the qubit
energy-level difference does not vary. The relaxation and
decoherence times, T1 and T2, are strongly affected by the
environment of the artificial atom. The readout visibility V,
defined as the maximum qubit population difference ob-
served in a Rabi oscillation or Ramsey fringe, can reach
more than 96%.1 The coherence quality factor Q ⊂ pT2n01
is roughly 105, the number of one-qubit operations achiev-
able before the system decoheres.2

Charge Charge–flux Flux Phase

EJ /Ec 0.1 1 10 106

n01 10 GHz 20 GHz 10 GHz 10 GHz

T1 1–10 ms 1–10 ms 1–10 ms 1–10 ms

T2 0.1–1 ms 0.1–1 ms 1–10 ms 0.1–1 ms



Josephson junctions—superconducting grains or elec-
trodes separated by an insulating oxide—act like nonlinear
inductors in a circuit. The nonlinearity ensures an unequal
spacing between energy levels, so that the lowest levels can
be addressed using external fields. Two important energy
scales determine the quantum mechanical behavior of a
Josephson-junction circuit: the Josephson coupling energy
EJ and the electrostatic Coulomb energy EC for a single
Cooper pair. EJ ⊂ IcF0/2p, where Ic denotes the critical cur-
rent of the junction and F0 ⊂ h/2e is the magnetic-flux quan-
tum. The charging energy EC ⊂ (2e)2/2C for a Cooper pair,
where C is either the capacitance of a Josephson junction or
an island, depending on the circuit. In analogy to the usual
position–momentum duality in quantum mechanics, the
phase v of the Cooper-pair wavefunction and the number n

of Cooper pairs are conjugate variables and obey the Heisen-
berg uncertainty relation Dn Dv � 1. 

Box 1 summarizes the four kinds of superconducting
qubits realized in different regimes of EJ/EC. The charge
qubit is in the charge regime EC � EJ, where the number
n of Cooper pairs is well defined and the phase v fluctu-
ates strongly. The so-called flux and phase qubits are both
in the phase regime EC � EJ, in which the phase v is well
defined and n fluctuates strongly. And the charge–flux
qubit lies in the intermediate regime EC � EJ, in which
charge and phase degrees of freedom play equally impor-
tant roles.

Charge and charge–flux qubits
The charge qubit is based on a small superconducting is-
land known as a Cooper-pair box (CPB), which is coupled
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Figure 1. Superconducting qubit circuits and
their potential energy diagrams. 
(a) A Cooper-pair box (CPB; blue) is driven by 
an applied voltage Vg (yellow) through the gate
capacitance Cg to induce an offset charge
2e ng ⊂ Cg Vg. A Josephson junction, the barrier
denoted by the ×, connects the box to a wire
lead. Each junction has a capacitance and a
Josephson coupling energy EJ. The electrostatic
energy of the CPB, EC(n ⊗ ng)2, where
EC ⊂ (2e)2/2C, is plotted as a function of the num-
ber n of excess electron pairs. The lowest energy
states, +0¬ and +1¬ (in red), are degenerate when
ng ⊂ 0.5, and are used as the qubit state basis.
Those states are coupled via the junction energy
EJ, which controls the tunneling between them.
(b) A magnetic-flux “box” (blue) is the magnetic
analogue of the electrostatic CPB. A magnetic
bias simply replaces the electric bias: A current-
driven magnetic field pierces the box with a
strength given by a mutual inductance M.
Whereas an electric field prompts stored elec-
tron pairs to tunnel into or out of the CPB, a
magnetic field pushes magnetic flux quanta F0
into or out of the superconducting quantum
interference device (SQUID) loop. The adjacent
potential energy diagram plots a Josephson 
energy term (proportional to cos v) and an induc-
tive energy term—proportional to (v ⊗ vext)2/2L,
where L is the SQUID’s inductance—as a func-
tion of the phase v of the junction. The lowest
energy states (red) are superpositions of the
clockwise and counterclockwise supercurrent
states +A¬ and +R¬ that flow in the SQUID loop; 
D here is the tunneling energy between the
supercurrent states. Those energy states are
degenerate when the externally applied 
magnetic flux vext equals p.
(c) A three-junction flux qubit works like a mag-
netic flux box, except that one of the junctions
has a slightly different capacitance and coupling
energy. The contour plot shows the potential
energy as a function of two junctions’ phases.
The two red dots inside the potential wells corre-
spond to the qubit basis states +A¬ and +R¬.
(d) A current source biases the junction in a
phase qubit. Logic operations can be achieved
by driving the qubit with a microwave field at
frequency (E1 ⊗ E0)/h. Pulsing the qubit with a
microwave field at a frequency (E2 ⊗ E1)/h pro-
duces a transition from +1¬ to +2¬. One can then
read the qubit’s state by measuring the occupa-
tion probability of state +2¬.
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to the outside world by either one or two weak Josephson
junctions and driven by a voltage source through a gate
capacitance (see figure 1a). To appreciate how the CPB
works, consider a plumbing analogy: The box is like a tank
that stores water—or in our case, superconducting elec-
trons in the form of Cooper pairs. Those charges can be
pushed in and out of the box using a pump (the voltage
source) that moves the charges through a valve (the
Josephson junction) and into the superconducting wire
that acts as a large reservoir of charges. Often that one
junction is replaced by two that are joined to a segment of
a superconducting ring and thereby form a symmetric su-
perconducting quantum interference device (SQUID). A
magnetic flux Fext that pierces the SQUID controls the rate
at which the Cooper pairs flow into and out of the box.

When the box’s offset charge, induced by the gate volt-
age Vg, is about the same as the charge of a single electron,
only two charge states matter: +0¬ and +1¬, which have ei-
ther zero or one extra Cooper pair in the box. A two-level
quantum system thus describes the CPB (see box 2), and
the two energy eigenstates +�¬ are superposition states of
+0¬ and +1¬. The charge qubit can be represented using ei-
ther the charge states {+0¬, +1¬} or the eigenstates {+⊕¬, +⊗¬}.
When the gate-voltage-induced offset charge ng (in units of
2e) increases from 0, the ground state of the system con-
tinually changes from +0¬ to +⊗¬. Similarly, the higher en-
ergy level +1¬ becomes +⊕¬ for increasing ng. At the degen-
eracy point ng ⊂ 0.5, where the energy levels for +0¬ and +1¬
cross, +�¬ ⊂ (+0¬ 
 +1¬)/=2.

Figure 2 shows the energy spectrum of the CPB for
two values of the ratio EC/EJ. The regime near EC/EJ ⊂ 5
is typical of many charge qubits studied in the literature.
Indeed, researchers at NEC Laboratories and Japan’s In-
stitute of Physical and Chemical Research (RIKEN) first
demonstrated quantum coherent oscillations in circuits in
the charge regime1 and experimental results showed that
the qubit can be well approximated by a two-level system. 

When EC/EJ ⊂ 1, both charge and flux degrees of free-
dom play equally important roles. As shown in figure 2b,
the two lowest levels are not well separated from the

higher levels. Because the qubit now operates in the in-
termediate regime between charge and flux, it is often
specified as the charge–flux qubit. In contrast with the
eigenstates of the ideal charge qubit, the charge–flux
qubit’s two lowest eigenstates +�¬ are superpositions of
several charge states, instead of just +0¬ and +1¬. Thus only
{+⊕¬, +⊗¬} can be used as the basis states for the charge–flux
qubit. Researchers at the Atomic Energy Commission
(CEA) in Saclay, France, showed that this qubit can ex-
hibit coherent oscillations with a long decoherence time2—
on the order of 0.5 ms. 

Flux qubit
The phase degree of freedom becomes dominant in the so-
called flux qubit. As sketched in figure 1c, the prototypical
flux qubit consists of a superconducting loop with three
junctions, and the Josephson coupling energy is much
larger than the charging energy for each junction. When a
magnetic field is applied through the loop, a clockwise or
counterclockwise supercurrent is induced to decrease or
increase the enclosed flux such that the fluxoid, which
combines the Josephson phase v with the total magnetic
flux (both external Fext and induced Find), is quantized:
(F0/2p)v ⊕ Fext ⊕ Find ⊂ mF0, where m is an integer. The
two circulating supercurrent states can form the basis
states for the qubit. Five years ago, researchers at Stony
Brook University in New York fabricated a one-junction
flux qubit of the type sketched in figure 1b and demon-
strated its spectroscopic features.3 Flux qubits can come in
one- or many-junction flavors; the one-junction case re-
quires a relatively large loop inductance, which makes the
qubit more susceptible to magnetic-field noise.

For a description of the energy spectrum that arises
in a multi-junction flux-qubit system, see figure 3 (figure
1c pictures the corresponding circuit). In the vicinity of
f ⊂ Fext/F0 ⊂ 0.5, +⊗¬ and +⊕¬, the two lowest levels (the
qubit levels), are well separated from other higher levels,
and are superpositions of the clockwise and counterclock-

Figure 2. Energy levels of a Cooper-pair box versus the offset
charge ng (in units of 2e, twice the charge of an electron) that
is induced by the gate voltage. (a) When EC /EJ ⊂ 5, typical
conditions for the charge qubit, the two lowest energy levels
start to approach each other as the offset charge on the box
increases from 0 to 0.5. As ng slowly increases in that range,
eigenstates of the two levels change from charge states +0¬
and +1¬ to +�¬, superpositions of +0¬ and +1¬. They become
pure charge states again at ng ⊂ 1. When ng is about 0.5, the
two lowest energy levels are well separated from the other
levels. (b) In the case where EC/EJ ⊂ 1, the charge and flux
degrees of freedom play equally important roles. 

Box 2. The Cooper-Pair Box

For the Cooper-pair box (CPB) shown schematically in fig-
ure 1a, the Hamiltonian of the system is

H ⊂ EC (n ⊗ ng)2 ⊗ EJ cos v, (1)

where EC and EJ are the charging and Josephson energies, re-
spectively. The phase drop v across the Josephson junction
is conjugate to the number n of extra Cooper pairs in the
box. In the charging regime EC � EJ, only the two lowest-
lying charge states of the box, differing by one Cooper pair,
are important. The gate voltage Vg controls the induced off-
set charge on the box; ng ⊂ CgVg/2e, where 2e is the charge
of each Cooper pair and Cg the gate capacitance. Around
ng ⊂

1/2, the system can be described like any two-level
atomic-physics system with the reduced Hamiltonian

H ⊂ e(ng) sz ⊗ 1/2 EJ sx , (2)

where e(ng) ⊂ EC (ng ⊗ 1/2). The Pauli matrices
sz ⊂ +0¬∀0+ ⊗ +1¬∀1+ and sx ⊂ +0¬∀1+ ⊕ +1¬∀0+ are defined in
terms of the two basis states corresponding to zero and one
extra Cooper pair in the box. With a two-junction super-
conducting quantum interference device, EJ becomes a 
very useful, tunable effective coupling: EJ (Fext) ⊂ 2EJ0
cos(pFext /F0), where EJ0 is the Josephson coupling energy
for each junction, Fext is the external magnetic flux, and F0
the flux quantum.



wise supercurrent states +A¬ and +R¬. For f < 0.5, +⊗¬ and +⊕¬
approach +A¬ and +R¬; for f > 0.5, +⊗¬ and +⊕¬ approach +R¬ and
+A¬. At f ⊂ 0.5, the states are given by +⊗¬ ⊂ (+R¬ ⊕ +A¬)/=2
and +⊕¬ ⊂ (+R¬ ⊗ +A¬)/=2. As in the case of the charge qubit,
one can use either {+R¬, +A¬} or {+⊗¬, +⊕¬} to equivalently rep-
resent the flux qubit. For the past five years researchers
have experimentally studied the three-junction flux qubit,
and in 2003 researchers at Delft University of Technology
in the Netherlands first observed its quantum coherent
oscillations.4

Phase qubit
The so-called phase qubit usually uses a large current-biased
Josephson junction, as pictured in figure 1d. The bias cur-
rent produces a tilt to the Josephson potential; the Joseph-
son potential itself is proportional to cos v. That tilt reduces
the number of bound states in the potential-energy well. The
ratio EJ/EC is orders of magnitude higher in the phase qubit
than in other qubit types. 

The circuit’s potential energy diagram illustrates a
third energy level not widely separated from the two low-
est levels used for the qubit. The small energy spacing
means that appreciable qubit-state leakage to that third
level can occur. However, the problem can at least partly
turn into an advantage when it comes to measuring the
phase qubit’s actual quantum state. The state of the third
level can easily tunnel out of the potential well and thus
be used for determining the occupation probability of the
qubit levels. Alternatively, one can read out the qubit state
by tilting the potential to allow tunneling directly from +1¬.
Independent research groups from the University of
Kansas and NIST’s Boulder, Colorado, facility have ex-
perimentally demonstrated quantum coherent oscillations
in phase–qubit circuits.5

A phase qubit can also be configured into a circuit sim-
ilar to what’s shown for the magnetic-flux box in figure 1b
by biasing the junction using a flux threading the loop in-
stead of using a current. Such a flux-biased phase qubit
works with levels in a tilted well, as depicted in figure 1d.

Coupling qubits
Two-qubit operations are required for quantum comput-
ing. A natural way to couple circuit-based qubits to build
logic gates is to use capacitors and inductors. Figure 4 il-
lustrates a few circuit configurations that could do the job. 

Researchers from RIKEN and NEC have recently
shown quantum coherent oscillations in two capacitively
coupled charge qubits and demonstrated a working con-
trolled-NOT (CNOT) gate.6 However, controlling the in-
terbit capacitive coupling is a difficult problem.7 An alter-
native is to couple charge qubits via an inductance,8 which
produces a flux-controllable interbit coupling and can be
conveniently used to achieve a CNOT gate (see box 3).

An inductance can also couple flux qubits. Because the
Josephson coupling energies in the flux qubits are stronger
than those in the charge qubits, the circulating supercur-
rents in the qubit loops are larger. Therefore, a much smaller
inductance produces a relatively strong interbit coupling.9
Recently, researchers at the Institute for Physical High Tech-
nology in Jena, Germany, and at Delft experimentally cou-
pled flux qubits using mutual inductances.10

Two phase qubits can be similarly coupled using a mu-
tual capacitance, an experimental achievement made by
research groups at the University of Maryland, the Uni-
versity of California, Santa Barbara, and NIST, Boulder.11

Again, the lowest two levels for each phase qubit are not
widely separated from the third one. That means that en-
ergy levels beyond the qubit are also involved in the cou-
pling and relatively serious qubit-state leakage can occur
for the two-qubit gate. Achieving controllable interbit cou-
pling is still a challenge in general for any type of qubit.

Cavity quantum electrodynamics
A quantized electromagnetic field can coherently exchange
energy with a two-level system, usually in a tiny laser cav-
ity. This energy exchange between the field and the sys-
tem, called Rabi oscillations, occurs at a rate n proportional
to the strength of the system–field coupling. Among such
coherent processes, the most elementary one involves the
interaction of a two-level system with a single photon. The
exchange of energy between the system and the photon is
observable in the “strong coupling” regime, when the pe-
riod 1/n of the Rabi oscillations is much shorter than both
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Figure 3. Energy levels of a three-junction flux qubit versus
reduced magnetic flux f ⊂ Fext /F0. Fext is the external magnetic
flux and F0 the flux quantum, h/2e. (a) The energy-level dia-
gram shows only six levels, the two lowest of which are used
for the qubit. (b) An enlarged view of those levels near f ⊂ 1/2
(green rectangle) illustrates what happens as the reduced mag-
netic flux varies around that value. Away from f ⊂ 1/2, the two
eigenstates approach the clockwise- and counterclockwise-
circulating supercurrent states +A¬ and +R¬; at f ⊂ 1/2, they are
maximal superpositions of the two circulating supercurrent
states. The potential energy minimum shifts from the right-hand
side of the double well for f < 0.5 to the left-hand side for
f > 0.5, where +R¬ becomes the minimum-energy state.
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Box 3. A Controlled-NOT Gate

For the two inductively coupled qubits shown in figure
4b, when the gate voltage is shifted to the degeneracy

point ngi ⊂ 1/2 (i ⊂ 1,2) for each qubit, the Hamiltonian of
the system becomes

H ⊂ ⊗E*
J1 sx

(1) ⊗ E*
J2 sx

(2) ⊕ xsx
(1) sx

(2),

where E*
Ji slightly deviates from EJi and the interbit coupling

x is controllable via the external fluxes F(i)
ext. This 4 × 4

Hamiltonian has four eigenvalues with corresponding
eigenstates +⊕, ⊕¬, +⊕, ⊗¬, +⊗, ⊕¬, and +⊗, ⊗¬, where
+�¬ ⊂ (+0¬ 
 +1¬)/=2. The Hamiltonian also has the interest-
ing property that its eigenvalues change with the interbit
coupling, but the corresponding eigenstates remain un-
changed. Because the energy levels of those four eigenstates
are not equally spaced, a microwave field applied to the
coupled qubits through either gate capacitance can be
tuned to make transitions only between states  +⊗, ⊕¬ and
+⊗, ⊗¬. When a p pulse from such a field is applied, those
states flip to produce a CNOT gate: +⊕, ⊕¬ O +⊕, ⊕¬, +⊕, ⊗¬
O +⊕, ⊗¬, +⊗, ⊕¬ O +⊗, ⊗¬, and +⊗, ⊗¬ O +⊗, ⊕¬. That is, the
state of the second qubit is flipped if the first qubit state is
+⊗¬, and the second qubit is not affected if the first qubit
state is +⊕¬. (See reference 8.)
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the decoherence time of the two-level
system and the average lifetime of the
photon in the cavity. The strong-
coupling limit has been achieved for a
variety of atoms interacting with the
light field in a cavity and forms the
basis of a subject called cavity quantum
electrodynamics (QED).

In principle, any type of two-level
quantum system can substitute for the
atom, and the charge qubit, as a macro-
scopic quantum system, is a natural
candidate. Indeed, we and the Yale
group proposed schemes to process
quantum information by coupling a
charge qubit with a quantized mi-
crowave field. One approach took ad-
vantage of magnetic coupling through a
SQUID loop,12 and the other exploited
the control given by the gate voltage
and capacitive coupling.13

In a more recent experiment, the
Yale group14 carried out those proposals
by using a gate capacitor to couple the
photon to a Cooper-pair box, an accom-
plishment coined “circuit QED” because
it translated the cavity QED concept
onto a solid-state chip (see PHYSICS
TODAY, November 2004, page 25). 
The researchers reached the strong-
coupling regime using a quasi-one-
dimensional transmission-line res-
onator. In contrast to cavity QED, where atoms move
around and only briefly interact with the field, circuit QED
uses a charge qubit that is fixed on the chip. More impor-
tant, the dipole moment that couples the two-level system
with the quantized field can be as much as 105 times larger
for superconducting charge qubits than for alkali atoms.

The experiment can take different forms. Other groups
have modified it by replacing the cavity with a harmonic
oscillator formed by a Josephson junction (or SQUID) and
a nanomechanical resonator.15 Future ways to exploit su-
perconducting qubits include, for example, preparing
Schrödinger cat states of the cavity field by means of its
coupling to a SQUID-based charge qubit, and the exciting
possibility of generating nonclassical photon states using a
superconducting qubit in a microcavity.16 Clearly, the ex-
periments are opening new research directions.

Noise and decoherence
Although superconducting circuits exhibit good quantum
coherence, they still experience significant levels of noise
due to their coupling to the environment. For charge
qubits, the dominant source of decoherence is 1/f noise,
which is presumably due to background charge fluctua-
tions—trapped charges in the substrate and oxide layers
of the Josephson junctions, for instance. For flux and
phase qubits, 1/f noise again seems to be dominant, but its
origins are less clear. When the CPB operates in the
charge–flux regime, the decoherence of the qubit is signif-
icantly reduced.2 Moreover, the decoherence can be sup-
pressed at the degeneracy point by tuning the magnetic
and electric fields2 so that the influence of both flux and
charge noise sources vanishes to first order.

To try to understand the decoherence problem, re-
searchers have used phenomenological theories including
the spin-boson17 and spin-fluctuator18 models in which a
collection of spectrally distributed harmonic oscillators
and a set of particles that fluctuate randomly in a double-

well potential, respectively, describe the noise. Such mod-
els capture some typical features of decoherence in super-
conducting qubits. Nevertheless, understanding the mi-
croscopic mechanisms of 1/f noise requires further
work—for instance, developing microscopic theories be-
yond phenomenological models. Such understanding is im-
portant not only for quantum computing, but also for re-
vealing the underlying physics. The problem has proven to
be quite difficult, however. 

What lies beyond
Decoherence is a major obstacle to superconducting
quantum computing; the efficient and nondissipative
readout of qubit states, however, is also crucial and will
play a central role in future developments. Thus, it is still
too early to say which type of qubit might win the race of
quantum computing. While unveiling the microscopic
mechanism of 1/f noise, one could develop novel methods
to actively suppress the effects of the noise. Also, to in-
crease both decoherence time and readout efficiency of
the system, one can optimize the qubits by varying the
circuit parameters and could couple two or three qubits
with optimal designs; a three-qubit circuit could be used
to test some simple quantum algorithms, such as the
Deutsch algorithm, one of the simplest that illustrates
the nature of quantum parallelism.

So far, all quantum states on the so-called Bloch
sphere—a geometrical representation of the states of a
two-level system—can be addressed; spin-echo techniques,
borrowed from nuclear magnetic resonance, can reduce the
effect of 1/f noise; and readout efficiency greater than 96%
and a coherence quality factor of approximately 105 can be
achieved, albeit not in the same circuit. When techniques
for manipulating two or three qubits become well estab-
lished, the next step will be to build circuits with a larger
number of qubits, increased readout efficiency, and lower
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Figure 4. Coupling qubits. (a) Two charge qubits (blue) coupled by a mutual
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decoherence. Such conditions would allow quantum com-
puting with superconducting qubits.

But even if no quantum computing is ever achieved
using superconducting circuits, they still provide re-
searchers with tools to test fundamental quantum me-
chanics in novel ways. For example, these artificial atoms
can be used to simulate atomic physics using quantum cir-
cuits; researchers have already observed Rabi oscillations
and Ramsey interference patterns that are manifest dur-
ing the phase evolution of a superconducting qubit. More-
over, the devices can also test Bell inequalities, produce
Schrödinger-cat states, and simulate the Einstein-Podolsky-
Rosen experiment. The quantum engineering of macro-
scopic entangled states will surely play a central role in
several future technologies.
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