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*

We report on some analytical and numerical results, on the study of flux quantization in aperiodic superconducting
arrays. In particular, the superconducting—-normal phase boundary, T .(H), is calculated and the origin of its overall and
fine structure is analyzed as a function of the network size. We also propose a new way of analytically analyzing the overall
and the fine structure of T.(H) in terms of short- and long-range correlations among tiles. Some of the results obtained are
compared with experimental measurements done by, in alphabetical order, the groups of Chaikin, Pannetier, and Van

Harlingen.

1. Introduction

Micronetworks made of thin superconducting
wires [1], proximity-effect junctions [2], and tun-
nel junctions [3], exhibit interesting forms of
phase diagrams when they are immersed in an
external magnetic field. The diamagnetic proper-
ties of such micronetworks are very sensitive to
the geometry of the multiply-connected struc-
ture. Fractal [4], disordered and quasicrystalline

[5-8] geometries have recently been investigated

by different groups.

" Here, we study the frustration induced in 2D
quasicrystalline networks by an applied magnetic
field, and its effect on their superconducting
diamagnetic properties. In particular, we calcu-
late the superconducting—normal phase boun-
dary, T.(H), for several of the 2D geometries
which have been studied experimentally [5-7, 9].
‘The agreement between our curves and the ex-
perimental data [5-7,9] obtained so far is very
good. In particular, we study step-by-step in a
progressive way, the effect of adding more and
more tiles to the basic cells of the samples.This
approach allows us to gain insight about the
origin of the overall and fine structure present in
T.(H). Furthermore, we propose a new analyti-
cal and systematic way of analyzing the structure
of the phase boundaries in terms of correlations
among tiles. '

The ratio of the elementary plaquette areas is
equal to an irrational number for all the lattices
considered here. This geometric constraint im-
plies that the magnetic flux cannot satisfy quanti-
zation in all the plaquettes simultaneously (see
also ref. [9]). Thus, a continuous variation of the
applied magnetic field allows the unique pos-
sibility for a fine tuning of the geometry-induced
frustration. We have considered the linearized
Ginzburg-Landau equations [11] (for the super-
conducting networks) and the linearized mean-
field approximation to the frustrated XY Hamil-
tonian [12] (for the Josephson-junction array).
Both of them can be formally written [11, 12] as
a tight-binding Schrodinger equation:

14
ZJaBe‘ B, = €, ,
8

where A,, = (27/®,) £ A-dl, and @, = ch/2e.
The highest eigenvalue is proportional to T .(H).

For the sake of brevity, we will concentrate
here on three types of geometries (1) periodic

-along one direction and quasicrystalline in the

other direction (strip geometry); (2) Penrose
lattice (see fig. 1(a)); and (3) eightfold Penrose
lattice (see fig. 1(b)) [10]. For these two net-
works, the ratio of basic frequencies in the dif-
fraction pattern is equal to the golden mean,
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Fig. 1. (a) Portion of a Penrose pattern. (b) Portion of an eightfold Penrose pattern.

r=(V5+1)/2=2cos(w/5), and the two types
of elementary plaquettes have a ratio of areas
(large to small) and a population ratio (number
of large to number of small tiles) both equal to 7.
We have also studied the 1D analog of the 2D
eightfold symmetric quasicrystalline lattice [8].
The silver mean, { = V2 + 1= cot(w/8), charac-
terizes the quasiperiodicity of these two net-
works. The ratio of areas and the population
ratio, for these two lattices, are equal to V2 and
1/V2, respectively. De Bruijn [10] first gave a
global prescription to generate 2D Penrose pat-
terns. We constructed our fivefold (eightfold)
Penrose lattices by projecting a 5 (8) dimension-
al hypercubic grid into a 2D subspace. The cen-
ters of the hypercubes which intersect a particu-
lar hypersurface are projected into it.

2. Fibonacci strips

In order to obtain T .(H) for the 2D Fibonacci
lattice, it is convenient to use the Landau gauge
A = Bxy, in which an eigenfunction of our tight-
binding equation takes the product form 7, =
, €™ where y, satisfies the 1D equation:
2kJBT U, =Y Tt 2cos(2mfx, — k)¢, ,

with f= @ /P, (or fr) being the reduced mag-
netic flux, i.e. the magnetic flux through a small
(large) cell divided by the flux quantum. For a
fixed value of k, we numerically solve the above
equation for the largest eigenvalue, which is then
maximized by varying k in the range (0, #) to
find the transition temperature.
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The transition from a periodic phase boundary
T.(H) to the richly structured one associated
with an underlying QC geometry can be followed
in fig. 2. The associated lattices have a strip-type
geometry. The ratio of the elementary plaquette
areas is equal to the golden mean. The minima
and maxima of the T (H) curve, for the periodic
ladder geometry with only one type of cell (fig.
2(a)), are quadratic. However, the local maxima
and minima for the quasicrystalline strip systems
(fig. 2(b—e)) tend, in general, to be more peaked
(cusp-like). This suggests that one-cell effects are
responsible for the quadratic (parabolic) ex-
trema, meanwhile the cusp-like behavior is due
to the collective effect of many cells. Fig. 2(b)
shows the T (H) curve for a strip with two types
of elementary plaquettes. From it, we note that
only the main features of the 2D Fibonacci and
Penrose lattices phase boundaries are essentially
determined by the irrationality of the ratio of the
elementary plaquette areas. If we increase the
number of tiles, we obtain more and more fine
structure. Below, we will come back to this point
through analytical means.

2
k=
3
g
2
z
;l_" -
S
}__0
T T T T T 1
o] 2 4 6 8 10 2

Reduced Magnetic Flux

Fig. 2. Phase boundary for lattices with strip-type geometry.
The number of quasicrystalline spaced vertical lines is equal
to successive Fibonacci numbers: (a) 2 vertical lines (ladder
network); (b) 3; (c) 5; (d) 8; and (e) 13.

3. Superconducting Penrose arrays

The use of a periodic direction greately sim-
plifies the calculations. However, neither the
Penrose nor the eightfold Penrose lattices have
periodic directions. Obtaining 7,(H) for these
lattices is more difficult since these two systems
cannot be simplified by using translational in-
variance and, therefore, the problem needs to be
tackled directly. We have numerically solved the
linearized Ginzburg-Landau equations for a
Penrose lattice with 301 nodes (dotted line in fig.
3) and for an eightfold Penrose lattice with 329
nodes (dotted line in fig. 4). This is equivalent to
solving the linearized mean-field equations for
the XY Hamiltonian, or solving the electronic
tight-binding problem; and then plotting the
edge state versus magnetic field. Our choice of
gauge was

2 '
AaB = 50 B(yB _Ya)(xoz +x3)/2a

where x, and y_ are the coordinates of the ath
node. The continuous line in fig. 3 is experimen-
tal data obtained by Springer and Van Harlingen
[6] for an array of 14000 weakly-coupled super-
conducting islands fabricated using direct-write

REDUCED MAGNETIC FLUX

Fig. 3. Superconducting-normal phase boundary for the
Penrose pattern. The solid line is experimental data for a
Josephson-junction array (ref. [4]), and the points aré our
theoretically obtained values for a lattice with 301 nodes. The
vertical axis represents voltage (10nV) for the experimental
data, and T.(0) — T_(H) (arb. units) for the theory.
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Fig. 4. Phase boundary, T.(0) — T.(H), for the eightfold
Penrose pattern. The solid line is experimental data (K) for
an aluminum wire micronetwork (ref. [3]), and the points are
our theoretically obtained values (arb. units) for a lattice with
329 nodes.

electron-beam lithography. They measured the

voltage across the sample (which follows the
behavior of —T_(H)) versus applied transverse
magnetic field. In fig. 3 we have plotted our
theoretical curve and their data, obtained for a
voltage bias of around 40nV. The agreement

between them is very good. Also, detailed com-

parison with the data of Pannetier’s group [7] has
given a very good agreement even for the fine
structure found at small fields. For the 2D
Fibonacci geometry, and also for the Penrose
array case, an average flux of one flux quantum
per elementary tile corresponds [5] to an applied
magnetic field of H,= &y(1+ 1 *) a,, where
a,=area of a small tile. An arrow in fig. 3
indicates the small dip associated with this field
(H/H,=1). Also, the average applied field in
order to have N|(NV,) flux quanta in every large
(small) tile is:

H= &N, +7N)(1+7°) Ya,.

Therefore, the arrangements of the flux quanta
[5] on the array are (N,, N))=(1,1), (1,2),

(2,3), and (3,5) for the indicated values of the.

magnetic field, i.e. H/H,
spectively.

Let us now consider the eightfold symmetric
network shown in fig. 1(b). The continuous line
in fig. 4 is experimental data obtained by
Behrooz et al. [5]. The arrow indicates the mag-
netic field corresponding to one flux quantum in
each elementary tile H,= &,(1+V2)/(2a,).
The fields H = ®y(N, + V2N,)/2a, have been
indicated by (N, N))=(1,1), (3,2), and (7,5)
for H/H,=1, ¢, and { 2, respectively. The fields
corresponding to n + m{ for |n|, {m| <4 (see fig.
4) account for most of the theoretical and ex-
perimental fine structure.

2 3
=1, 7, 77 and 77, re-

4. Analytical approach and conclusions

So far, all our theoretical data were obtained
numerically, However, we have also employed a
novel way to obtain and explain the basic fea-
tures of T.(H). This approach, based on the
Lanczos method [13], is designed to approximate
the largest eigenvalue (to be denoted as E,(H))
for our eigenvalue equations. As we will see, this
method is not only simple, but also makes ex-
plicit the physical origin of the peaks and valleys
of various sizes in T,(H). First, we choose a
state ; which is uniform on the lattice. After-
wards, a second state ¢, is obtained as Q, (Hz/xl)
where Q, projects off the space spanned by ¢,. If
we replace the full Hamiltonian, H , by its restric-
tion, flz, on the linear manifold spanned by
{4, ¥,), then the larger eigenvalue of H, (which
approximates E,(H)) gives a fairly good result in -
locating the relative heights of the main peaks
and dips of the T .(H) curve. If we go one step
further, i.e. to define ;= QZQ (dez) and re-
place A by its restriction, H3, on the linear
manifold spanned by {c,[;l, Y,, Y5}, then the
largest - eigenvalue of ﬁ3 gives a much better
approximation to E,(H) and most of the fine
structure is reproduced, in addition to the main
peaks and dips. In general, higher order trunca-
tions of the Hamiltonian produce better results,
revealing finer structures. In order to make the
following discussion more specific, we will now
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consider a strip-type geometry as an example. A
uniform state ¢, generates the following equa-
tions:

HY =24, + 24, (1)
Hyy =iy + Cy + 45, 2)
Hi, = Dy + Fl + 4, .. . ; (3)
where
C =2{cos 2wfL,) , 0
D=3-C*+2{cos2mf(L,+ L,,,)), (%)

F=(C*— C+2{cosdnf(L,+ L,_,,))
—4C{cos2a@f(L,+ L,,,))
+2(cos2wf(L,+L,,, + Ln+2)>_)/D - (6

We have used the Landau gauge as before,
and the angular brackets denote averages along
the horizontal direction (L, are the lattice spac-
ings). For instance, for the particular case of the
Fibonacci network:

(cos 2mf(L, + Ly1))

1
= % cos 27f(L + §) + — cosdwfL , 7
r

r
and

<COS 27Tf(Ln + Ln+l + Ln+2)>

_(1 l)
—<fr+'r3 cos277f(2L+S)

+ ;1—4 cos4mf(L +25). (8)

The largest eigenvalues, which approximate
T.(H), for the second-, third-, and fourth-order
truncation of the Hamiltonian have been plotted
in fig. 5. The second-order truncation is already
very good, reproducing the overall structure. As
we proceed to higher orders, finer structure be-
gins to emerge and develop. In order to see why

0 5 10 15 20 25 30
H

Fig. 5. Largest eigenvalues, obtained by using the Lanczos

method, of the operators H, (bottom), H,, and H, (top)

versus H for the 2D Fibonacci lattice. The vertical axis

represents 7.(0) — T.(H) in arbitrary units. The curves have

been shifted vertically in order to visualize them better.

this is the case, note that in the second-order
truncation only the single-cell statistics (through
C) comes in, while in the third-order trunction,
correlations between rnearest and next nearest
neighboring cells are involved (through D and
F), and the fourth-order truncation depends on
even longer range correlations. We have there-
fore proved that the overall structure in 7 .(H) is
a result of single-cell statistics. The above rela-
tions also prove, by considering successive higher
order truncations, that longer range correlations
among cells are responsible for the finer struc-
ture. This result is consistent with experimental
[6] results obtained from the evolution of fine
structure in Penrose lattices as a function of
voltage bias. A complete and detailed exposition
of this approach will be presented in full length
elsewhere, including also the computed 7 (H)
curves for all the geometries studied experimen-
tally [5]. Furthermore, a detailed analysis of the
relationship between the full tight-binding elec-
tronic spectra (see figs. 6 and 7 for a crystalline
and quasicrystalline example) and the T (H)
curve will also be presented elsewhere.

The principal results we have obtained are (1)

" numerical calculations, which did not require a

single adjustable parameter, of the supercon-
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Fig. 7. Energy spectra versus applied magnetic field for a tight-binding electron hopping on a Penrose lattice with 46 sites.
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ducting—normal phase boundary for the quasi-
crystalline systems fabricated by several ex-
perimental groups; (2) a very good agreement
between our theoretical results and the ex-
perimental ones; and (3) a proposed new
analytic and systematic way of analyzing T .(H)
which for the first time explicitly shows, in a
detailed and specific manner, the way short-
range correlations among tiles affect the main
peaks, and the way longer range,. correlations
generate finer structure. Finally, some conclud-
ing comments are necessary. In our analysis, we
have neglected superconducting fluctuations.
Nevertheless, we do not expect them to be very
important here because it is known that periodic
superconducting arrays [1-3] in a transverse
magnetic field display mean-field-like behavior.
On the other hand, the size of the lattices we
have studied is either one or two orders of
magnitude smaller than the ones studied ex-
perimentally. We believe that this factor, to-
gether with the imperfections of the fabricated
structures (e.g. the non-uniform width of the
wires), account for most of the discrepancies
between theory and experiment. Also, the finite
width of the strands and the finite measurement
current through the sample may smooth out
some of the unobserved fine structure.
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