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Relativistic Electron Vortex Beams: Angular Momentum and Spin-Orbit Interaction
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Motivated by the recent discovery of electron vortex beams carrying orbital angular momentum (AM),
we construct exact Bessel-beam solutions of the Dirac equation. They describe relativistic and nonparaxial
corrections to the scalar electron beams. We describe the spin and orbital AM of the electron with Berry-
phase corrections and predict the intrinsic spin-orbit coupling in free space. This can be observed as a
spin-dependent probability distribution of the focused electron vortex beams. Moreover, the magnetic
moment is calculated, which shows different g factors for spin and orbital AM and also contains the

Berry-phase correction.
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Introduction.—Vortex beams carrying quantized orbital
AM (OAM) along their axes of propagation are widely
studied and exploited in modern optics [1]. Some of us
previously predicted the existence of free-space vortex
beams for nonrelativistic scalar electrons [2]. More re-
cently, electron vortex beams have been produced experi-
mentally by several groups [3-5], using spiral phase plates
[3] and nanofabricated diffraction holograms [4,5] which
allow generation of beams with an OAM up to 1007 [5].
This opens a promising avenue in electron microscopy [4],
can be employed in quantum problems involving the AM
interaction with external fields [2] and other particles [6],
and deepens the analogy between light and matter waves.

The above studies dealt with the simplest approximation
of a scalar electron and paraxial wave equation. However, a
self-consistent description of the AM properties of the
electron requires the exact Dirac equation, which describes
the spin AM (SAM) intrinsically, and takes relativistic
effects into account. Indeed, in optics, the full vector
Maxwell equations are necessary to describe nonparaxial
vortex beams and the spin-orbit interaction (SOI) phe-
nomena arising upon the focusing or scattering of vortex
beams [7—11]. Although zero-order Dirac wave packets are
studied [12] and higher-order modes are used in confined
guiding potentials [13], the OAM vortex solutions for free
relativistic electrons have not been previously considered.

In this Letter we construct exact Bessel-beam solutions
representing the AM eigenstates of a free Dirac electron.
Using the recent unifying description of the AM and SOI of
electromagnetic waves [11] and the semiclassical theory of
Dirac wave packets [14-16], we give a self-consistent
description of the OAM and SAM properties of the Dirac
electron, and predict a number of SOI phenomena which
can be verified experimentally.

Bessel beams from the Dirac equation.—We start with
the Dirac equation [17] in units with ¢ = 1:
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ihd,f = (- p + Bm)i, (1

where ¢ (r, ) is the Dirac bispinor, e and S are the 4 X 4
Dirac matrices, p = —i#hd, is the momentum operator, and
m is the electron mass. The positive-energy momentum
eigenstates (plane waves) of Eq. (1) are [17]

W ,(r, 1) = W(p)explin~'(p - r — Er)] )

where E = /p?> + m?, and
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Here o are the Pauli matrices, k = p/p is the momentum-
direction vector, and w = (a, B8)7, wiw = 1, is the two-
component spinor characterizing the electron polarization
in the rest frame with E = m. The probability density and
current are defined as

3)

p=yty, i=dtay, “)
so that p,, = 1 and j, = p/E for the plane wave (2) and
(3). The basic states of the polarization, w, can be chosen
either as the helicity eigenstates of A = & - k/2 (which is
natural for massless particles [11]), or as eigenstates of
o, 1.e., the spin z component in the rest frame [17]. Below
we use the latter basic states w®: w!/2 = (1,0)7 and
w12 = (0, 1)7, with eigenvalues s = +1/2.

Bessel beams [18] represent a superposition of mono-
energetic (p = const) plane waves forming a fixed polar
angle 8 = 6 with the z axis, Fig. 1(a). They are uniformly
distributed over the azimuthal angle ¢ € (0,27) with a
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vortex phase dependence et ¢ =0 =1,*2,.... Using
cylindrical coordinates (r, ¢, z) in real space and
(p1, ¢, py) = (psing, ¢, pcosh) in momentum space,
we write the Fourier spectrum for the Bessel beam as

~ 1 .
¥ o(p) = i W(p)d(pL — pro)e’?, &)

10

where p,, = psinfy, pjo = pcosty. The beam field is
given by the Fourier integral of ¢ ,(p), which yields

D 1+—=w

V2 7
1 ——o,cos0yw
E

where A = (1 — %)sin®6.

Equation (7) describes spinor Bessel beams for Dirac
electrons, i.e., the electron counterpart of optical vector
Bessel beams [11,19]. Hereafter, we use modes ¢ with
polarizations w = w*, s = =1/2. The first term in the
square brackets represents a scalarlike Bessel beam of
the order of €: i, = J,(£)e'“¢™®) Fig. 1(b), whereas the
terms proportional to VA describe the polarization-
dependent coupling to other modes of the order of
(€ + 2s). Thus, the latter terms describe the intrinsic
SOI, determined by the strength A, which vanishes both
in the paraxial (6, — 0) and nonrelativistic (p — 0) limits
as A = ng/m. Using the canonical OAM and SAM
operators,

e g (&) +i

h
L =rXp, > = 2 diag(o, o), (8)

one can readily see that in the limit A — 0, the solutions
(7) are eigenmodes of both L, = —ihd, and X, with
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FIG. 1 (color online). (a) The Bessel-beam spectrum (5) forms
a cone of plane waves with a fixed polar angle § = 6, and color-
coded azimuthal phase e“¢ on the monoenergetic sphere
p = const. (b) An example of the probability density and azi-
muthal current distributions for the scalar Bessel beam with
€ = 1 (the dashed line shows the zero of the current).
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where ®(z, 1) =h'(pjoz — Et) and & =kyor, kyo=
p1lo/h. Substituting here Eq. (3) and assuming that
the polarization amplitudes w = (a, B)7 are the same
for all the plane waves, we evaluate the integral (6)
resulting in

0 0
e Ve, (€) + i

0 a\/K

[

eigenvalues € and s, respectively. However, in the general
nonparaxial relativistic case A # 0, the Bessel beams
Y} are eigenmodes of the total AM J =L, + 3
J.y = (£ + )¢y, but not of the OAM and SAM sepa-
rately cf. [11,19]. This also demonstrates the SOI.

The intrinsic SOI of a free Dirac electron manifests itself
in the spin-dependent probability density and current dis-
tributions cf. [11]. Substituting the spinorial Bessel beam
i, Bq. (7), into Eq. (4), we obtain

ey (& D
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FIG. 2 (color online). Spin-dependent distributions of the
probability density (9) and azimuthal current (10) for the
nonparaxial Bessel beams with € =3 (a) and € =1 (b).
The s = *1/2 spin states are indicated by “+ and “—"" signs,
and the SOI parameter is A = 0.3, which corresponds to
p=24m and 60,= /4. The drastic difference between
p7(0) and p7 (0) should be experimentally observable cf. [9,20].
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with & and Z being the corresponding unit vectors. The
distributions p} and |j}| are invariant with respect to the
transformation (€, s) — (—¢, —s), but neither with respect
to (£, s) — (£, —s) nor (¢, s) — (—¢, s), which reflects the
£ - s symmetry typical of SOI. Figure 2 shows the fine spin-
dependent splitting of the density profiles p}(&) originated
from the second SOI term in Eq. (9). In the important
particular case |€| = 1, the SOI term has a radically differ-
ent behavior at £ = 0 for the states 2s = € and 2s = —¢,
and the effect is drastically enhanced. Then the SOI term is
proportional to J3(£) and J3(£) for the two states, resulting
in, respectively, a finite (despite the vortex) and a zero
intensity in the beam center, Fig. 2(b). This effect can be
observed for reasonable experimental parameters, akin to
the tight focusing of circularly polarized optical beams
with [€] =1 [8,9,20]. The azimuthal current (j3}),,
Eq. (10), exhibits similar behavior depending on the
(€, s) quantum numbers, Fig. 2.

Semiclassical theory of the electron AM.—The expecta-
tion values of the OAM and SAM for the Bessel beams (7)
can be determined using canonical operators (8). However,
to reveal general features of the AM of the Dirac electrons,
it is useful to consider the Foldy-Wouthuysen (FW) mo-
mentum representation [14,15,17], separating the positive-
and negative-energy components in the Dirac equation.
The FW transformation is a unitary analogue of the
Lorentz boost to the rest frame: & = Upw(p) ¢/,

UFW=%(‘/@—,BQ'K@). (11)

It diagonalizes the Dirac Hamiltonian (1): U;[W(a ‘p+
Bm)Upw = BE, and yields W' = UL, W = (w, 0)” for the
plane waves (3). Owing to the momentum dependence,
calculations of the coordinate-dependent quantities in the
FW representation brings about additional gauge fields
induced by the transformation (11) [14,15]. Calculating
the operators of the observables O = {r, L, S} in the FW
representation and using projection onto the positive-
energy subspace p* (2 X 2 upper left sector of the matrix
operators), we determine the effective operators for elec-
tron states, which exclude the influence of the negative-
energy levels: O = p* (UL, OUgry) [14,15,21].

In this manner, the operator for the electron position
reads [14-16]:

R =r+hA,

_pXo _m
A= 27 (1 E) (12)

Here A = ip* (Ul d,Ury) is the non-Abelian Berry
connection (gauge-field), which brings about the effective
space noncommutativity, [R’, R/] = ih’e;; F*, with the
corresponding Berry curvature [14-16]

F = —i[ﬂwr(l —%)K(K'U)]. (13)

2E2LE

In a similar way, we derive the OAM and SAM operators
which may be written as (cf. [11]):

L=L+A=RXp, (14)

S=S—A=%S+(l—%>n(:«-s). (15)

Here S = p*(2) = ho /2 is the nonrelativistic electron
spin operator and

AZhﬂlXp:—(l—%)KX(KXS) (16)

is the SOI operator describing the AM part effectively
transferred from the SAM to the OAM: L+ S =L + 8.

The operators R, L, and S describe the corresponding
observables for the positive-energy electron states. Similar
operators were discussed by Pryce in [22]. In the relativ-
istic limit m/E — 0, Egs. (12)—~(16) are quite similar to the
results obtained in [11] for photons, whereas the expression
(15) is similar to the expectation value of the spin of an
electron wave packet derived in [16]. Note that the operator
S yields the helicity operator k(- S) in the relativistic
limit and the spin operator S in the nonrelativistic limit
(1—=m/E)—0.

Using the above operators, we calculate the normalized
expectation values of observables for the Bessel beams:
(0) = (31O1J4) /(| d5). Here the spectrum (5) in
the FW momentum representation reads |{rf) o
w'8(pL — plo)e“® and the convolution means 2D inte-
gration in momentum space [11]. As a result we arrive at
[23] (R) = zZ, (P) = p|oZ,

(L) = h(€ + As)z, (S) = h(s — As)z. (17)
Thus, the expectation values (17) are obtained from the
operators (14)—(16) via the simple mapping: L — h{Z,
S — hisz, and A — hsAZ.

Egs. (17) evidence a spin-to-orbit AM conversion for
nonparaxial relativistic electron beams (cf. the AM con-
version in optics [7—11]). This is a manifestation of the SOI
intimately related to the spin-dependent probability density
(9) (Fig. 2). Indeed, using S — hsZ in the Berry connection
(12) and integrating it along the contour of the Bessel-
beam spectrum in momentum space [Fig. 1(a)], we obtain
the Berry phase ®p = — § A - dp = 27rAs. The (€, s)-
dependent radius of the beam is effectively described by
the quantization condition for the cylindrical caustic:
kigR} =€ + As =(L_)/h, which arises from the total
phase 277¢ + ®p around the beam [11]. Thus, the spin-
dependent parts of the OAM (17) and probability density
(9) both originate from the Berry phase gained after tra-
versing the circular beam spectrum.
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Magnetic moment.—The interaction of localized elec-
tron states with an external magnetic field is characterized
by the magnetic moment originating from the AM. The
one-electron magnetic moment can be calculated as

™) =< [ (r X j)dv/ - f pdv, (18)

where e < 0 is the electron charge. Using the definition of
the probability current (4), Eq. (18) can be represented as
the expectation value (M) = (|M|y)/{f|f) of the
operator M = $r X @ in the coordinate representation.
(This operator resembles the OAM (8) but with the velocity
operator e instead of the momentum p.) Using this
analogy, one can calculate the effective magnetic-moment
operator in the FW momentum representation for positive-
energy electron: M = go*(U;WMUFw). Cumbersome but
straightforward calculations yield

e
M —ﬁ(£+ 28). (19)

Hence, using Eqgs. (17), the magnetic moment for the
Bessel-beam state is

(M) = %({a + 25 — As)a. 20)

Thus, in complete agreement with our suggestion in [2],
the magnetic moment is characterized by a g = 1 factor for
the OAM and a g = 2 factor for the SAM of electron
vortex states. At the same time, the SOI Berry-phase
correction in Eq. (20) disagrees with the previous wave-
packet calculations [15,16] for the case € = 0. This is
explained by the fact that previous approaches neglected
(L), which does not vanish even at £ = 0 due to non-
paraxial corrections. The magnetic moment (20) is an
important observable that manifests itself in the Zeeman
interaction with an external magnetic field.
Discussion.—The above operator calculations of the
expectation values imply a one-electron state, i.e., in fact,
a wave-packet state of finite extent in the propagation
direction [2]. For z-independent infinite beams, the number
of electrons diverges, and one can use the linear densities
of the characteristics per unit z length [1,7]. We calculated
the linear densities of the OAM, SAM, and magnetic mo-
ment per one electron per unit z length: (L.), (S,), and
(M_). To regularize the corresponding integrals over the
Bessel-beam cross section, we modulate the transverse
electron amplitude by a Gaussian of width a, and then
consider the limit ¢ — oo. Analytic calculations for such
electron Bessel-Gauss beams [24] give
(Ly=n(t+As), (S)=hns, (M)y=€+2s. (21)
This coincides with Egs. (17) and (20) in the paraxial limit
but differs by terms of order A. Comparative analysis of the
one-particle expectation values and linear densities in the

nonparaxial beams deserves further consideration and will
be published elsewhere.

To conclude, we have constructed the exact cylindrical
solutions of the Dirac equation, which exhibit nontrivial
spin- and vortex-dependent properties. The intrinsic SOI
phenomena originate from the Berry-phase terms and can
be observed experimentally. We have calculated the
observable OAM, SAM, and magnetic moment for exact
relativistic electron vortex states.
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