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We have theoretically studied oblique surface waves (OSWs) which propagate along the interface between a
dielectric and a layered superconductor. We assume that this interface is perpendicular to the superconducting
layers, and OSWs at the interface can propagate at an arbitrary angle with respect to them. The electromagnetic
field of the OSWs in a layered superconductor is a superposition of an ordinary wave (with its electric field parallel
to the layers) and an extraordinary wave (with its magnetic field parallel to the layers). We have derived the disper-
sion equation for the OSWs and shown that the dispersion curves have end points where the extraordinary mode
transforms from evanescent wave to bulk wave, propagating deep into the superconductor. In addition, we have
analytically solved the problem of the resonance excitation of the OSWs by the attenuated-total-reflection method
using an additional dielectric prism. Due to the strong current anisotropy in the boundary of the superconductor,
the excitation of the OSWs is accompanied by an additional important phenomenon: The electromagnetic field
component with the orthogonal polarization appears in the wave reflected from the bottom of the prism. We show
that, for definite optimal combinations of the problem parameters (the wave frequency, the direction of the incident
wave vector, the thickness of the gap between dielectric prism and superconductor, etc.), there is a complete sup-
pression of the reflected wave with its polarization coinciding with the polarization of the incident wave. Contrary
to the isotropic case, this phenomenon can be observed even in the dissipationless limit. In such a regime, the
complete transformation of the incident wave into a reflected wave with orthogonal polarization can be observed.
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I. INTRODUCTION

Surface electromagnetic waves represent a specific kind of
macroscopic perturbations which propagate along interfaces
between different media. The electromagnetic field in such
waves decay exponentially away from the interface deep into
both media. A very important example of surface waves is
the so-called plasmon polaritons observed at the interfaces
between a normal metal and a dielectric at frequencies of
about the plasma frequency w,, which belongs to the optical
or far-infrared ranges.'”> Plasmon polaritons are central in
numerous resonance phenomena. Examples of these are (i) the
extraordinary transmission of light through metal films with
subwavelength holes;>0 (ii) an “inverse” effect of the resonant
suppression of light transmission through modulated metal
films with thicknesses less than the skin depth;’ (iii) the Wood
anomalies in the reflectivity’*® and transmissivity>®°-1# of
periodically-corrugated metal samples. These optical anoma-
lies could have potential applications for photovoltaics, light
control, filtering, and detection of radiation in far-infrared and
visible frequency ranges.

It would be very desirable to similarly control the electro-
magnetic radiation in the terahertz (THz) frequency range.
The mastering of this range (0.3-10 THz) is a rapidly
developing area of research due to promising applications. In
principle, plasmon polaritons can exist at w < w,. However,
the dispersion curves of plasmon polaritons are very close
to the light line w = c«//¢; in the THz frequency range.
In this case, the surface waves are almost extended,? in the
sense that they are very weakly localized in the dielectric over
distances of about 1 m (here w and « are the frequency and
wave vector of plasmon polaritons, &, is the permittivity of
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the dielectric, and c is the speed of light). Therefore, most of
the electromagnetic energy flows out of the sample, leading
to strong radiation losses. To overcome this disadvantage,
new systems, e.g., layered superconductors instead of metals,
should be considered in order to observe surface waves.

Layered superconductors are strongly anisotropic media
where the current along the crystallographic ab plane is similar
to the current in bulk superconductors, whereas transport
along the ¢ axis is caused by the intrinsic Josephson effect
through the layers (see, e.g., Refs. 15 and 16). Therefore,
layered superconductors are characterized by two different
plasma frequencies.!” One of them is of the order of w,
for normal metals, but the other one is much smaller and it
coincides with the so-called Josephson plasma frequency wy ~
1 THz. As was shown in Refs. 18 and 19, the lower plasma
frequency w; defines the spectrum of surface waves in layered
superconductors. Namely, due to this feature the dispersion
curves of the surface waves in layered superconductors, in
contrast to normal metals, deviate substantially from the light
line, and these waves are well localized in the THz fre-
quency range. Surface Josephson plasma waves (SJPWs) can
propagate along the interface between the external dielectric
and layered superconductor for both geometries, when the
superconducting layers are parallel to the sample surface or are
perpendicular to it. As shown in Refs. 19-21 the spectrum of
SJPWs propagating along the layers consists of two branches,
one above w; and the other below it. The spectrum of surface
electromagnetic waves propagating across the layers was
predicted and studied analytically in Refs. 22 and 23.

In this paper, we study theoretically the excitation of the
oblique surface waves (OSWs) propagating at some angle
with respect to the crystallographic ¢ axis, which is assumed
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FIG. 1. (Color online) Schematic geometry for the excitation of
oblique surface waves. Here k', K", and k are the wave vectors of the
incident, reflected, and oblique surface waves, respectively. Note that
here S stands for superconductor and I stands for insulator.

to be parallel to the interface between a dielectric and a
layered superconductor. We analyze the so-called attenuated-
total-reflection (ATR) method for the OSW excitation using an
additional dielectric prism with permittivity ¢,. The external
electromagnetic wave from a dielectric prism is incident on a
superconductor separated from the prism by a thin dielectric
gap with permittivity &4 < £, (see Fig. 1). In the absence
of a superconductor, the incident wave completely reflects
from the bottom of the prism, if the incident angle ¢ exceeds
the limit angle ¢, for total internal reflection. However, the
evanescent wave penetrates under the prism a distance of
about a wavelength, reaching the layered superconductor and
penetrating it. The wave vector of the evanescent mode is along
the bottom surface of the prism and its value is higher than
w\/@ /c. This feature is the same as for surface waves. Thus,
for a certain resonance incident angle, the spatial-and-temporal
matching (the frequencies and wave vectors coincide) of the
evanescent wave and the surface wave takes place.

It is important to note that the excitation of the oblique
surface wave is accompanied by another important resonance
phenomenon. Evidently, the anisotropy of the current-carrying
capability along the surface of the superconductor results in a
conversion of the polarization of the terahertz radiation after
reflection from the boundary of the layered superconductor.
For example, if the incident wave has a transverse magnetic
(TM) polarization (a wave with the magnetic field parallel
to the sample surface), the reflected electromagnetic field
contains a transverse electric (TE) wave (with the electric field
parallel to the sample surface). Moreover, as was shown in
Ref. 24, the complete transformation of the wave polarization
can be observed at an appropriate choice of the direction of
the incident wave vector.

We stress that this phenomenon is different from the
Brewster effect. In the latter, light with TM polarization,
for a definite incidence angle, is completely transmitted
through a transparent dielectric surface, and thus the reflected
light has only TE polarization. However, in the phenomenon
presented here, the reflected wave has a TE polarization
when the incoming wave does not contain the wave with this
polarization, i.e., when the incoming light is completely TM
polarized. In other words, the reflected wave is TE polarized
because of the conversion of the incident TM wave, but not
because of the separation of the TE wave from the incoming
mixed (TM + TE) wave.
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The ratio of the amplitudes of the reflected TE and TM
waves is controlled by the wave frequency w, angles ¥ and
¢, and the thickness h of the dielectric gap. The main point
is to choose the angles ¢ and ¢ for the incident wave such
that the amplitude of the TM reflected wave vanishes. It
is known that, in the case of an isotropic metal, one can
select the optimal value of the gap thickness % to provide
the complete suppression of the reflected wave in resonance.
Similarly, in the case of an anisotropic superconductor, we can
select the best value of the angle ¥ to provide the complete
suppression of the reflected TM wave in resonance. In the
latter case, one part of the incident energy flux dissipates in
the layered superconductor and the other part is reflected as the
TE wave. The theoretical study of the interplay of the OSWs
excitation and the transformation of the wave polarization after
its reflection from the boundary of the layered superconductor
is the main goal of this paper.

Thus, alayered superconductor plays two important roles in
the phenomenon studied in this paper, which a simple metal or
an isotropic superconductor cannot. First, due to the smallness
of the Josephson current across the layers, the excited oblique
surface waves are well localized in the terahertz frequency
range. Second, due to the strong current anisotropy in the sur-
face of the layered superconductor, the excitation of oblique
surface waves is accompanied by the transformation of the
incident wave polarization after its reflection. Moreover, the
complete transformation of the polarization can be achieved by
the appropriate choice of the direction of the wave incidence.

In the next sections, we derive and analyze the dispersion
relation for the oblique surface waves, and then study analyti-
cally the OSWs excitation by the ATR method and the trans-
formation of the electromagnetic wave polarization. For this
purpose, we calculate the electromagnetic field in the dielectric
prism, in the dielectric gap, and in the layered superconductor,
by solving the Maxwell equations with appropriate material
equations and boundary conditions. The electromagnetic field
in the dielectric prism is presented as a sum of the incident
TM-polarized wave and two reflected waves with TM and
TE polarizations. In the dielectric gap, we consider four
evanescent waves, namely, increasing and decreasing TM-
and TE-polarized waves. The evanescent field in the layered
superconductor consists of the ordinary and extraordinary
decreasing waves. Then, using the continuity conditions for
the tangential components of the electric and magnetic fields
at the two interfaces (i.e., the dielectric gap-dielectric prism
and the layered superconductor-dielectric gap), we express
all wave amplitudes via the amplitude of the incident wave.
Using these expressions, we derive the reflection coefficient
Rty for the TM wave and the conversion coefficient Tty TE
for the mode transformation from TM to TE, as well as the
expression for the portion A of the energy flux which comes to
the excitation of the oblique surface wave and then dissipates
in the superconductor.

II. DISPERSION RELATION FOR THE OBLIQUE
SURFACE WAVES

Let the interface dividing an isotropic dielectric and a
layered superconductor be located in the y = 0 plane (see
Fig. 2). We assume that the dielectric region (y < 0) and the
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FIG. 2. (Color online) Geometry for the oblique surface waves.

layered superconductor region (y > 0) are semi-infinite along
the y axis. Both media are nonmagnetic ones.

We choose the coordinate system in such a way that
the z axis coincides with the crystallographic ¢ axis of the
superconductor. We study oblique surface waves, propagating
along the interface dielectric-layered superconductor at an
angle v with respect to the ¢ axis, with the electric E and
magnetic H fields in the form

E(x,y,z,t),H(x,y,z,t) xexpli(kp — wt)], (1)

where p = (x,z) is the radius vector in the xz plane and k¥ =
(kx,k;) is the wave vector of the oblique surface wave, |k| >
k=w/c.

It is suitable to present the electromagnetic field as a sum
of two terms that correspond to the ordinary and extraordinary
evanescent waves,

E() =E9() +E®®y), HO) =Hy»)+HY). (2

The electric field of the ordinary wave and the magnetic field
of the extraordinary wave are orthogonal to the anisotropy z
axis:

EP(y) =

For each of these waves in the dielectric, the Maxwell
equations give the relations between the components of the
electric E; and magnetic H, fields:

H(y) =0. 3

k kyk,
B =t a b
kay kka, “
2
o _ ko o _ktEy o
dy k dx> dz kkd} dx>
2 2
g0 _ ko o _ Ktk o
dy k dx> dz kxkz dx> (5)
kay k
(© @  p© ©
Hy! = T kk, k eaEyy, Hy = zsdEdex'

Here kK = w/c. In addition, the Maxwell equations give the
same exponential law for the decay of both waves along the y
axis,

EY(3).EY (). HY (). Hy (v) ocexp (ik?y),  (6)

with imaginary normal component of the wave vector,

1/2

kay = —i (ki + k2 — e4k?) (7)

The electromagnetic field inside the layered superconductor
is determined by the distribution of the gauge-invariant phase
difference x of the order parameter between neighboring
layers. This phase difference can be described by a set of
coupled sine-Gordon equations (see, e.g., Refs. 18 and 25-30).
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In the continuum and linear approximation, x can be excluded
from the set of equations for the electromagnetic fields, and the
electrodynamics of layered superconductors can be described
in terms of an anisotropic frequency-dependent dielectric
permittivity with components ¢. and &,, across and along
the layers, respectively. Indeed, as was shown in Ref. 17, the
direct solution of the set of coupled sine-Gordon equations in
the continuum and linear approximations is equivalent to the
solution of the Maxwell equations for the uniform anisotropic
medium with

1
80(9) = 8;(1 — @ + l§>

1 o,V
£qp(82) = 8s(1 - )/2§ + lyzé)_

Here we introduce the dimensionless parameters Q2 = w/wy,
Vab = 47Taab/8swl V2v andv, = 47TGC/8S0)J; Y = Ac/hap > 1
is the current-anisotropy parameter, and A, = ¢/ ,s} /2 and
Aap are the magnetic-field penetration depths along and across
the layers, respectively. The relaxation frequencies v, and v,
are proportional to the averaged quasiparticle conductivities
o, (along the layers) and o, (across the layers), respectively;
w; = (8weDj,/he)'/? is the Josephson plasma frequency. The
latter is determined by the maximum Josephson current density
Je» the interlayer dielectric constant g, and the spatial period
D of the layered structure.

Contrary to the dielectric, the Maxwell equations give
different laws for the decays of the ordinary and extraordinary
waves in the layered superconductor,

EQ(0)HOG) o exp (iKD).

®)

&)
EC(y).HO () oc exp (ik()y)
with
KO = i (k2 + k2 — K2ea) %, (10)
ks? = l'(kf + kf&-/sab — kzgc)l/z, a1

The relationships between the field components in the
layered superconductor are as follows:

k kyk,
0 _ _ 2 r(o) (0) — (0)
Esy - _k(o) Esx ’ st kk(o) Esx ’
sy sy (12)
2 ()2
H(o) k E(o) H(o) — _kx + (ksy) (o)
sy k sX sz kkf-(\),) X
for the ordinary wave and
© 2 ©)?
g0 = 5o po otk ES) g
sy kx sx 0 Sz &, k k sx
o : (13)
[_];;) - _ SabEEi), H® — _SubE(e)
XV Z

for the extraordinary waves.

From the continuity conditions for the tangential compo-
nents of the electric and magnetic fields at the interface y = 0,
we derive the dispersion equation for the OSWs,

K2k (€ap — €a) + €ap(kay — k) (kayk — k7) = 0. (14)

sy
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FIG. 3. (Color online) Dispersion curves 2(ck /w,) of the OSWs
for ¢, =4.56, ¢, =16, y =200, and v,, = v, = 0. Curves 1-6
correspond to ¢ = 0°, 10°, 20°, 30°, 60°, and 90°, respectively.
The hollow circles at Q = Qg & Q) = /&, /(&5 — £4) show the end
points of the dispersion curves. In these points, the extraordinary
wave, which is part of the OSW, is transformed into a bulk wave.
When « — oo, curve 6 asymptotically approaches the frequency

85/(83' + Sd) > L.

Figure 3 illustrates the numerically calculated dispersion
curves of the OSWs for different values of the angle ¢

The hollow circles at Q = Qepg & Q21 = /& /(& — €a)
show the end points of the corresponding dispersion curves.
In these points, the extraordinary wave, which is present in
the oblique surface mode, is transformed into a bulk wave.
Indeed, the wave vector k() vanishes at the end points and
is real and positive for Q > Q4. The analysis of Eq. (14)
shows that Q.,q & 2 for angles ¢ not very close to zero or
/2. For very small ¥ < 1/y <« 1, we have Q¢q ~ 1, and
Qend = Y/&5/(es +e4) > 1for (m/2 —9) L 1/y.

In the main approximation with respect to the parameter
y > 1 and neglecting the dissipation, Eq. (14) gives

Dy (|kdy| + lkay|[KS)| — K2) = 0. (15)

III. EXCITATION OF THE OBLIQUE SURFACE WAVES
USING THE ATR METHOD

In this section, we study analytically the OSWs excitation
using the ATR method. Let the structure under study be
comprised of a dielectric prism with permittivity ¢,, a di-
electric gap with thickness & and permittivity ¢4, and a layered
superconductor described by a frequency-dependent diagonal
tensor of dielectric permittivity with components &,, = &,, =
eap and g, = &, given by Eq. (8) (see Fig. 1). All media are
supposed to be nonmagnetic. We define the coordinate system
so that the prism region occupies the half-space y < 0, the
superconductor region occupies the half-space y > h, and the
z axis coincides with the crystallographic c¢ axis of the layered
superconductor.

Consider now a TM polarized wave incident from a
dielectric prism on a layered superconductor. The incident
angle ¢ exceeds the limit angle ¢, = arcsin[(¢,/¢,)"/?)] for
the total internal reflection. In this case the incident wave
can excite a surface wave if the resonance condition is
satisfied. This condition implies that the tangential component
key % sin ¢ of the incident wave vector is equal to the wave
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vector k of the oblique surface wave,
1/2 _
ke, " sin ¢ = k.

The electromagnetic field in the dielectric prism is a sum of
three terms that correspond to the incident TM polarized wave
and two reflected waves with the TM and TE polarizations.
Thus, the x component of the electric field in the prism can be
presented as

Epe(x,y,2,1) = [E} exp(ikpyy) + (Ef ry + Ef 15)
x exp(—ikyyy)|explitkp — wt)],  (16)

where E!, E' 1\, and E’ . are the amplitudes of the x
components of the electric field for the incident waves and
for the reflected TM and TE waves, respectively; k,, =

ke},/ % cos ¢ is the normal component of the wave vector of
the incident wave.

The electric- and magnetic-field components in the prism
can be expressed via EX, E” 1/, and E” 1. using the Maxwell
equations

2

E, = s [E exp(ikpyy) — XTMexp(—ikpyY)]’ 17
Py
k ; k kx r
E, = k_E exp(ik,,y) + k. Y™~ T CxTE
Z
X exp(—ikpyy), (18)
_%r kk L exp(ikpyy)
L= 2= i
i kp) plKpyy
&, kk, k.k,,
+(= Ptz pr +M ; )exp(—ik ),
( kxkpy x ™M kkz TE py
(19)
2
Hpy = EE; TE €Xp(—ikpy ), (20)
Z
e . . ke r k Y
H),, = __pE)lc exp(ikpyy) + _pExTM + LEXTE
kpy kpy k

x exp(—ikp,yy). 21)

Here and henceforward, we omit the multiplier exp[i(kp —
wt)] in all expressions for the electromagnetic field compo-
nents.

For the dielectric gap region, we define the electromagnetic
field in the same manner as for the prism region, namely, as
the superposition of the TM- and TE-polarized waves with the
following components:

Egxt™ = Brexp(ikayy) + B exp(—ikayy), (22)
2

K . .
Esytv = — P [B1 exp(ikayy) — Baexp(—ikayy)], (23)
dyRkx
k;
Eg;tvm = k—de ™, (24)
X
eakk;, eqkk
Hypry = — =2 Edy ™, Hiztm = d_szdy ™, (25)

Eqxte = Crexp(ikayy) + Crexp(—ikayy), (26)

ky
Eq.te = ——E4x 1E, 27

Z
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ko kg, . .
Hete = == Cr explikayy) — Coexp(—ikayy)l.  (28)
Z
K2 k,
Hyye = o Hyxte, Ha;1e = k—de TE- (29)

The electromagnetic field in the layered superconductor is
the superposition of ordinary and extraordinary waves, and it
is described by the same formulas as in the previous section
[see Egs. (9)—(13)].

Using the continuity boundary conditions for the tangential
components of the electric and magnetic fields at the two inter-
faces (i.e., the dielectric prism-dielectric gap and the dielectric
gap-layered superconductor), we obtain eight linear algebraic
equations for eight unknown amplitudes (for four waves in the
dielectric gap, two waves in the layered superconductor, and
amplitudes E' 1, E" 1 of the reflected waves in the dielectric
prism). Solving these equations, we derive the reflectivity
coefficient

Bl (0.0)?
Row(p.) = % (30)
for the TM wave, the coefficient
B (0,91
TrvoTe(@.0) = % 31)

of the transformation of the incident TM wave to the reflected
TE wave, and the absorptivity

Ap,0) =1 = Rom(p.?) — Trm-1E(9. D). (32)
It is suitable to present these coefficients in the form
(Do + D.)* + (Lty — Lte — I)?

Ry = , 33
™ (Do + D)? + (Lty + L1g + )2 )
4LtmLvm
TrvoTE = . (34
TS S D 4 (L 4 Le kT2 O
4TL

- (Do + D.)* + (Ltm + Lte + T)?

The expressions for the parameters D, L1y, L1g, and I are
very cumbersome. However, they can be significantly simpli-
fied for the case of small dissipation and weak coupling of the
electromagnetic fields in the layered superconductor and the
dielectric prism, when the following inequalities are satisfied:

<1, Cp=exp(—2lkgylh) < 1. (36)
For this case, using the smallness of the parameter y !, we
obtained the following formulas:

g3 cos® ¥
D.=2C,*—
Ep — &4
ety K2, + 22 kg |2 + o (1 — Lol
X 4 272 - ., G
K* + |kdy| kpy
£4C082 0 &, 84 k2 |kgy |k
LTM =4Ch d p€d | d‘\l py’ (38)

Ep —&d K4+ |kdy|2k§y
cacos® O k2 k*|kaylkpy

Lt =2C —=
e " Ep — &4 k2 K4+|kdv|2k%y

£ 2
X [ = + 2(gp —i—ed) —&p edi|, 39)
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85 |kdy|
=T, Cop, Te=
+ Lap 29 |k(°)|
(40
Q2 k5 (Ikay | + [KD])
1—‘ab =Vaobrz———7
2y k3

IV. RESONANCE SUPPRESSION OF THE REFLECTIVITY

Equation (33) together with Egs. (15) and (37)—(40)
describes the resonance behavior of the reflectivity coefficient
Rrm(e,9) when changing the direction of the incident wave
propagation. The resonance suppression of Rty (¢,v) occurs
when the tangential component « of the incident wave vector
coincides with the wave vector of the oblique surface wave.
Indeed, the equation

Do+ D, =0 41

is the dispersion relation for the OSWs in the system under
consideration, which consists of the layered superconductor,
the dielectric gap, and the dielectric prism. Because of the
coupling of the electromagnetic fields in the superconductor
and the dielectric prism, this relation differs slightly from
the dispersion equation Dy = 0 for the OSWs in the system
without the prism.

The parameters L1y, Ltg, and I' in the denominator in
Eq. (30) define the resonance width. These are related to three
channels for the losses of the electromagnetic energy of the
OSWs. The term I' describes the dissipation, the term Ly is
related to the energy leakage through the dielectric prism in
the form of a TM bulk wave, and the term Ltg describes the
leakage in the form of a TE wave.

The resonance suppression of Rry(¢,?) can be complete
if both terms in the numerator in Eq. (33) vanish at the
same angles ¢ and . Namely, the complete suppression of
Rrm(p,v) occurs if the dispersion relation Eq. (41) and the
condition

Lty =Lrg+T (42)

are fulfilled simultaneously. Recall that, in the isotropic
case, the condition for complete resonance suppression of
Rrm(e,9) can be realized for metals or superconductors with
finite dissipation parameter I (see, e.g., Ref. 2). However, in
the anisotropic case considered here, this phenomenon can be
observed even when I' = 0. In the main approximation with
respect to the small parameters y~! < 1 and C), < 1, the
corresponding angles ¢ and ¢ can be found by solving the
set of equations which follow from the equalities Dy = 0 and
Ltv = Lrg,

. . &4 . &4
sin? @ cos> ¢ = sin’> 9 — = 4+ [sin2 g — =
ep ep

g Q2 —1
x [sin2¢ sin2g — ~——— (43
\/1 @ sin” ¢ . @ (43)
4 2

& &
ﬂsinz(p_ 1.

g, Ept &4 .
2cot? 9 = L L Lin*g +
€d &4 &4

(44)
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FIG. 4. (Color online) Graphical solutions of the set of equations
(43) and (44). The red solid curves correspond to the dispersion
relation for OSWs and the blue dashed curves are for the condition
Ltv = L1g. The curves start from the angles ¢,, which are the critical
angles for the total internal reflection from the bottom of the dielectric
prism. The material parameters are chosen as ¢, = 11.6 [this value
corresponds to silicon, which is frequently used as the material for
the dielectric prism for the ATR experiments in the THz frequency
range (Ref. 2)], &, = 16 [this interlayer permittivity corresponds
to Bi;Sr,CaCu,05.5 (Ref. 18)]. Curves are plotted for ¢, = 1 (the
vacuum gap, curves 1), &, = 2.04 (teflon, curves 2), and &, = 4.56
(quartz, curves 3). Other parameters are Q = 1, v,, = v, = 0. The
intersections of red and blue curves occur at ¢ = ¢y, ~ 22.5°, ¥ =
Pine & 30.6° (curves labeled by 1); ¢y =& 34.9°, ¥y, & 28° (curves
2); @it A 76.4°, Ve & 21.6° (curves 3).

The graphical solutions of these equations are presented in
Fig. 4 for different material parameters. Figure 5 demonstrates
the complete resonance suppression of the reflection
coefficient that occurs for the dissipationless case, namely, at
the angles ¢ = @i and ¥ = ¥, which are the solutions of
the set of equations (43) and (44) shown in Fig. 4.

For the lossy superconductor with I" # 0, the complete
resonance suppression of the reflectivity can also be observed.
In this case, the energy flux of the incident TM wave is partially
reflected as the TE wave. The other part A of the energy
[absorptivity A in Eq. (32)] is dissipated in the superconductor
(see Fig. 6).

It is important to note that the phenomenon described here
has the same origin as the wave interaction with an open
resonator.’! The tunneling of an incident plane wave through
an open one-dimensional resonator is characterized by the
reflection and transmission coefficients R and 7 which play
the same role as the coefficients Ry(¢,?) and Tty g in our
analysis. Moreover, the formulas for the coefficients R and T
presented in Ref. 31 are exactly the same as Egs. (33) and (34).
The role of the leakage parameters Lty and Ltg are played by
the inverse leakage Q factors which are related to the transmit-
tances of the two tunnel barriers discussed in Ref. 31. However,
it is necessary to emphasize a principal novel feature of the
phenomenon considered here. We now pay attention to the dual
role of the coupling of the electromagnetic fields in the dielec-
tric prism and in the layered superconductor in the conversion
of the terahertz wave polarization. First, due to the coupling,
the incident TM wave resonantly excites the oblique surface
wave. Then, the OSW supplies the TE bulk wave by the energy
which passes through the dielectric gap due to the same cou-
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FIG. 5. (Color online) Complete resonance suppression of the
reflectivity in the dissipationless regime. The dependence of the re-
flectivity Rry and the transformation coefficient Tpy_.tg on the
incident angle ¢ are shown by the solid red and dashed blue curves for
the same parameters asin Fig. 4: (a) e, = 1,9 = 30.6°;(b) e, = 2.04,
U = 28% (c) &4 = 4.56, ¥ = 21.6°. These three cases correspond to
the three intersections in Fig. 4. The gap thickness /4 is equal to
1.2¢/wy.

pling. Thus, the oblique surface wave serves as an intermediary
between the incident TM and the reflected TE waves in the
phenomenon of the transformation of the wave polarization.
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V. CONCLUSION

We have theoretically studied oblique surface waves which
propagate along the interface between a dielectric and a
layered superconductor. We consider a geometry in which
the interface is perpendicular to the superconducting layers.
We have analyzed the case of arbitrary direction of the OSW
propagation with respect to the layers. In this general case,
the electromagnetic field of the OSWs is a superposition of
ordinary and extraordinary waves. We derived the dispersion
equation for the OSWs, which is the most general dispersion
relation for surface Josephson plasma waves in the geometry
considered. We have also shown that the dispersion curves
have end points where the extraordinary mode transforms
from evanescent wave to bulk wave propagating deep into
the superconductor. In addition, we have analytically solved
the problem of the resonance excitation of the OSWs by the
attenuated-total-reflection method using an additional dielec-
tric prism. Due to the strong current anisotropy in the boundary
of the superconductor, the excitation of the OSWs is accom-
panied by an additional important phenomenon. Namely, the
electromagnetic field with orthogonal polarization appears in
the wave reflected from the bottom of the prism. We show that,
for definite optimal combinations of the problem parameters
(the wave frequency, the direction of the incident wave vector,
the thickness of the gap between the dielectric prism and
superconductor, etc.), there is a complete suppression of the
reflected wave with the same polarization as the incident
wave. This phenomenon is an analog of the so-called Wood
anomalies in the reflectance of isotropic metals known in
optics. However, in the isotropic case, the optimal thickness
of the dielectric gap between the prism and the metal sample
should be chosen for the complete suppression of the reflected
wave. However, in the anisotropic case considered here, this
phenomenon can be more easily observed by the appropriate
choice of the direction of the wave propagation with respect to
the superconducting layers. We obtained the conditions for the
observation of the complete suppression of the reflectivity and
found that, contrary to the isotropic case, this phenomenon can
be observed even in the dissipationless limit. In such a regime,
acomplete conversion of the wave polarization takes place, i.e.,
100% of the energy flux of the incident TM wave reflects from
the bottom of the prism as a wave with TE polarization. Similar
conversion phenomena can be observed for the inverse transi-
tion, from TE to TM modes, as well as for the transition from
incident ordinary waves to extraordinary ones (or vice versa).
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