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Self-induced tunable transparency in layered superconductors
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We predict a distinct nonlinear electromagnetic phenomenon in layered superconducting slabs irradiated
from one side by an electromagnetic plane wave. We show that the reflectance and transmittance of the slab
can vary over a wide range, from nearly O to 1, when changing the incident wave amplitude. Thus changing the
amplitude of the incident wave can induce either the total transmission or reflection of the incident wave. In
addition, the dependence of the superconductor transmittance on the incident wave amplitude has an unusual
hysteretic behavior with jumps. This remarkable nonlinear effect (self-induced transparency) can be observed
even at small amplitudes, when the wave frequency w is close to the Josephson plasma frequency w;.
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I. INTRODUCTION

The recent growing interest in the unusual electrodynamic
properties of layered superconductors (see, e.g., the very re-
cent review Ref. 1) is due to their possible applications, in-
cluding terahertz imaging, astronomy, spectroscopy, chemi-
cal and biological identification. The experiments for the
c-axis conductivity in high-7,. Bi,Sr,CaCu,0Og, 5 single crys-
tals justify the use of a model in which the very thin super-
conducting CuO, layers are coupled by the intrinsic Joseph-
son effect through the thicker dielectric layers.'™ Thus, a
very specific type of plasma (the so-called, Josephson
plasma) is formed in layered superconductors. The current-
carrying capability of this plasma is strongly anisotropic, not
only in the absolute values of the current density. Even the
physical nature of the currents along and across layers is
quite different: the current along the layers is the same as in
usual bulk superconductors whereas the current across the
layers originates from the Josephson effect. This Josephson
current flowing along the ¢ axis couples with the electromag-
netic field inside the insulating dielectric layers, causing a
specific kind of elementary excitations called Josephson
plasma waves (JPWs) (see, e.g., Ref. 1 and references
therein). Therefore, the layered structure of superconductors
favors the propagation of electromagnetic waves through the
layers.

The electrodynamics of layered superconductors is de-
scribed by nonlinear coupled sine-Gordon equations.!0-10
This nonlinearity originates from the nonlinear relation J
«sin ¢ between the Josephson interlayer current J and the
gauge-invariant interlayer phase difference ¢ of the order
parameter. As a result of the nonlinearity, a number of non-
trivial nonlinear phenomena''~!> (such as slowing down of
light, self-focusing effects, the pumping of weaker waves by
stronger ones, etc.) have been predicted for layered super-
conductors. The nonlinearity plays a crucial role in the JPWs
propagation, even for small wave amplitudes, |¢|<1, when
sin ¢ can be expanded into a series as (¢—¢’/6), for fre-
quencies close to the Josephson plasma frequency.

In this paper, we predict a distinct and unusual strongly
nonlinear phenomenon. The reflectance and transmittance of
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a superconducting slab being exposed to an incident wave
from one of its sides depend not only on the wave frequency
and the incident angle but also on the wave amplitude. If the
frequency w of irradiation is close to the Josephson plasma
frequency wj, the transmittance of the slab can vary over a
wide range, from nearly 0 to 1. Therefore, a slab of fixed
thickness can be absolutely transparent (when neglecting dis-
sipation) for waves of definite amplitudes, and nearly totally
reflecting for other amplitudes. This unusual property can be
described as self-induced tunable transparency. Moreover,
the dependence of the transmittance on the wave amplitude
shows hysteretic behavior with jumps. Tunable electromag-
netically induced transparency is also now being studied in
various contexts, including superconducting circuits and
other lambda-type atoms (see, e.g., Refs. 16 and 17).

The large sensitivity of the slab transmittance to the wave
amplitude can be explained using a very clear physical con-
sideration. Let us consider a wave frequency w which is
slightly smaller than the Josephson plasma frequency w;. In
this case, linear JPWs cannot propagate in the layered super-
conductor (see, e.g., Ref. 1). So, the slab is opaque for waves
with small amplitudes, and the transmittance is exponentially
small due to the skin effect. According to Refs. 11-13, the
nonlinearity results in an effective decrease in the Josephson
plasma frequency and, thus, nonlinear JPWs with high-
enough amplitudes can propagate in the superconductor.
Moreover, changing the amplitude of the incident wave one
can attain the conditions when the slab thickness equals an
integer number of half wavelengths. Under such conditions,
the slab becomes transparent with its transmittance equal to
1.

The paper is organized as follows: in Sec. II, we discuss
the geometry of the problem and present the main equations
for the electromagnetic fields both in the vacuum and in the
slab of layered superconductor. In Sec. III, we express the
transmittance 7 in terms of the amplitude of the incident
wave and analyze this dependence in two cases: when the
frequency w of the incident wave is either larger or smaller
than the Josephson plasma frequency w;. In both cases, we
study the unusual hysteretic features of this dependence. The
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FIG. 1. (Color online) Geometry of the problem. A slab of lay-
ered superconductor is irradiated from the upper side by a
p-polarized electromagnetic wave.

results of numerical simulations support our theoretical pre-
dictions.

II. SPATTAL DISTRIBUTION OF THE
ELECTROMAGNETIC FIELD

A. Geometry of the problem

We study a slab of layered superconductor of thickness D
(see Fig. 1). Superconducting layers of thickness s are inter-
layed by insulators of much larger thickness d (s<<d). We
assume the number of layers to be large, allowing the use of
the continuum limit, and not to consider the spatial distribu-
tion of the electromagnetic field inside each layer. The coor-
dinate system is chosen in such a way that the crystallo-
graphic ab plane coincides with the xy plane, and the ¢ axis
is along the z axis. The plane z=0 corresponds to the lower
surface of the slab.

A monochromatic electromagnetic plane wave of fre-
quency w is incident on the upper surface of the slab, and it
is partly reflected and partly transmitted through the slab. We
consider the incident wave of the transverse magnetic polar-
ization, when the magnetic field is parallel to the surface of
the slab,

E={E,0,E}, H={0,H,0}. (1)

The incident angle 6 is considered to be not close to zero so
that both components &, and k, of the wave vector k; are on
the order of w/c.

B. Electromagnetic field in the vacuum

The magnetic field H* in the upper vacuum semispace
(z>D) can be represented as a sum of the incident and re-
flected waves with amplitudes H, and H,, respectively. The
field H' in the vacuum semispace below the sample (z<0) is
the transmitted wave with amplitude H,. The upper (H") and
lower (H') fields and can be written in the following form:

H" = H, cos[kx — wt —k(z—D)]
+H, coslkx — wt + k.(z— D) + a, (2)
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H'=H, cos(kx — wt —kz+ f3). (3)

Here
w . w
k,=—sin 6, k,=—cos (4)
c c

are the components of the wave vector k; of the incident
wave, « and 3 are the phase shifts of the reflected and trans-
mitted waves. Using Maxwell equations, one can derive the
electric field components in the vacuum,

EY=—H,cos 6 cos[kx — wt —k(z— D)]
+H, cos 6 coslkx — wt+ k(z—- D) + a], (5)

EY=-H, sin 6 cos[kx — ot —k,(z— D)]
— H, sin 0 cos[k.x — wt + k.(z— D) + a], (6)

E'=—H, cos 6 cos(kx — wt —k,z+ fB), (7)
E!=—H,sin 0 cos(kx — wt —kz+ f3). (8)

C. Electromagnetic field in the layered superconductor

The electromagnetic field inside a layered superconductor
slab is determined by the distribution of the gauge-invariant
phase difference ¢(x,z,) of the order parameter between the
layers (see, e.g., Ref. 1),

Np PH - Hohede

E‘Y: =
* ¢ dzdt ¢ c at’

9)
Here Hy=®y/2md\,, ®y=mch/e is the magnetic flux quan-
tum, N, and \,=c/w,€"? are the London penetration depths
across and along the layers, respectively. The Josephson
plasma frequency is defined as

8medJ.
W=\ (10)

where J,. is the critical value of the Josephson current density
and € is the permittivity of the dielectric layers in the slab.
We omit the relaxation terms because, at low temperatures,
they do not play an essential role in the phenomena consid-
ered here.

The phase difference ¢ obeys a set of coupled sine-
Gordon equations, which, in the continuous limit, takes on
the following form (see, e.g., Ref. 1 and references therein):

(1-)3 i){%%+sin 4 qf%: . (1

b
o) | w;

In this paper, we study the case of weak nonlinearity:
when the Josephson current density J,. sin ¢ can be expanded
as a series for small ¢, up to the third order, J.sin ¢
~J (¢—¢@*/6). We consider frequencies w close to w; and
introduce a dimensionless frequency,
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close to 1. In this case, in spite of the weakness of the non-
linearity in Eq. (11), the linear terms nearly cancel each
other, and the term @3 plays a crucial role in this problem.
Moreover, when the frequency w is close to the Josephson
plasma frequency w;, one can neglect the generation of
higher harmonics.!!3

It should be also noted that the nonlinearity provides an
effective decrease in w;. Indeed, the expression in the square
brackets in Eq. (11) can be presented in the form
[(wiff 2P/ I+ @], where

2
oS =~ w,(l - %)

For not very small ¢, the frequency of the incident wave can
be greater than the effective Josephson plasma frequency wjff
and, therefore, the nonlinear Josephson plasma waves can
propagate across the superconducting layers.

The z component of the electric field induces a charge in
the superconducting layers when the charge compressibility
is finite. This results in an additional interlayer coupling (so-
called, capacitive coupling). Such a coupling significantly
affects the properties of the longitudinal Josephson plasma
waves with wave vectors perpendicular to the layers. The
dispersion equation for linear Josephson plasma waves with
arbitrary direction of the wave vectors, taking into account
capacitive coupling, was derived in Ref. 18. According to
this dispersion equation, the capacitive coupling can be
safely neglected in our case, when the wave vector has a
component k, ~ w/c along the layers, due to the smallness of
the parameter a/=R,236/ sd. Here R, is the Debye length for a
charge in a superconductor.

We seek a solution of Eq. (11) in the form of a wave
running along the x axis,

o(x,z,0) =a(2)|1 = Q*|V2sin[kx — wt + ()] (12)

with the z-dependent amplitude a and phase 7. We introduce
the dimensionless z coordinate,

Nk
§=ﬁ, oz —ex (13)

A, TR E
and the normalized thickness of the sample 6=D«/\,.

Substituting the phase difference ¢ given by Eq. (12) into
Eq. (11), one obtains two differential equations for the func-
tions 7({) and a({). The first of them is

L
!
7'({)= , (14)
H* ()
where L is an integration constant, prime denotes derivation
over {, and

a3
W=+ an -8 (15)

The sign in this equation is plus for <1 and minus for
0 >1, i.e., it is opposite to the sign of the following impor-
tant parameter, the
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frequency detuning = — 1.

The coupled sine-Gordon Eq. (11) gives also the differen-

tial relation for A({),
L* h

W=a+—5-—. 16

at 3= (16)

Equations (12) and (14)—(16) allow one to calculate the dis-

tribution of the phase difference ¢(x,z,7) and then, using Eq.

(9), the electromagnetic field inside the superconducting

slab.

III. TRANSMITTANCE OF THE SUPERCONDUCTING
SLAB

A. Main equations

In this section, we analyze the transmittance T of a slab of
layered superconductor. We rewrite the expressions for the
magnetic field H* and for the x component E} of the electric
field inside the slab using Egs. (9) and (12),

1-07

H'(x.L.0)=-H, h(§cos[kx - wt + 7({)],

|1 - Q?cos 6

E\(x,{,t) =H,I X A{h()sink,x — wt + p(0)]}' .

(17)
Here we introduce the parameter

_ MK
)\C\Fe cos 6’

which is usually small for layered superconductors. Now we
can find the unknown amplitudes of the reflected and trans-
mitted waves by matching the magnetic fields and the x com-
ponents of the electric field at both interfaces (at z=0 and
z=D) between the vacuum and the layered superconductor.
Using Eq. (17) for the fields in the superconductor and Egs.
(2), (3), (5), and (7) for the fields in the vacuum, we obtain
the following three equations for the amplitudes a(0), a(d)
and their derivatives on both surfaces of the layered super-
conductor,

F_L g 211,/ 2 _ 2
(h(5)+h(5)) +T2[1'(8))? = 4hi, (18)
h*0)=TL, (19)
a'(0)=0. (20)
Here
_Ho_ «
KR VATINY @

is the normalized amplitude of the incident wave. These
three equations, together with the coupled sine-Gordon Eq.
(16), determine the integration constant L for each amplitude
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FIG. 2. (Color online) Dependence of the transmittance T [see
Eq. (22)] on the normalized amplitude A of the incident magnetic
field [see Eq. (21)] for different values of the negative frequency
detuning: (Q—-1)==5X10 (solid curve), —5X10™* (dashed
curve), —5X 1073 (dotted curve). Arrows show the change in the
transmittance when changing A,. The numbers near the points on
the solid T(hg) curve correspond to the same numbers of the phase
trajectories a’(a) shown in Fig. 3. The inset shows the enlarged
region near the point 1. The values of the parameters are 6=2, \,
=4X107 cm, A\,,=2000 A, w,/27=0.3 THz, and 0#=45°.

of the incident wave hy, [see Eq. (14)]. It is important to note
that the constant L defines directly the transmittance 7T of the
superconducting slab. Indeed, according to Eq. (19), we have
m0) T

GO

=—L. 22

The nonlinearity of Eq. (16) leads to the multivalued de-
pendence of the transmittance on the amplitude of the inci-
dent wave. In the following sections, we analyze this unusual
dependence, for both cases of negative ({2 <<1) and positive
(2>1) frequency detunings.

B. Transmittance of a superconducting slab for w < w,

We start with the case when the frequency of the incident
wave is smaller than the Josephson plasma frequency. In this
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FIG. 3. (Color online) Phase trajectories a’(a) for the negative
frequency detuning —1=-5X 107>, The numbers near the curves
correspond to the same numbers of points in the T(hy) plot shown
by the solid curve in Fig. 2. The movement along the phase trajec-
tories in the directions shown by the arrows corresponds to the
growth of the spatial coordinate ¢ (proportional to z), from zero to
o, inside the slab. The solid lines show the portions of the phase
trajectories that correspond to 0<<{< J. The lower and upper sur-
faces of the slab correspond to the solid circles on the trajectories.
The inset in the bottom left shows the enlarged region near the point
(a=0,a’=0). The other parameters are the same as for Fig. 2.

frequency range, the linear Josephson plasma waves cannot
propagate in layered superconductors. This corresponds to an
exponentially small transmittance in the slab, due to the skin
effect. However, the nonlinearity promotes the wave propa-
gation because of the effective decrease in the Josephson
plasma frequency.

Solving Eq. (16) with the boundary conditions (18)—(20),
one can find the constant L and then calculate the transmit-
tance using Eq. (22). Figure 2 demonstrates the numerically
calculated dependence of the transmittance 7 on the normal-
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ized amplitude & of the incident wave. To analyze this de-
pendence, we consider the spatial distribution of the gauge-
invariant phase difference ¢ of the order parameter and the
phase trajectories a’(a). We show these curves a’(a) in Fig.
3. An increase in the spatial coordinate ¢ [which is essen-
tially z, as defined in Eq. (13)] from zero to & corresponds to
moving along the phase trajectory a’(a). The point {=0 (i.e.,
z=0) corresponds to the starting point on the phase trajectory
a'(a). According to Eq. (20), all phase trajectories start from
the points where a’=0. Different trajectories in a’ versus a
can be characterized by the values of a(0) in these starting
points. Each trajectory corresponds to some value of the nor-
malized amplitude A of the incident wave, and, according to
Egs. (15), (19), and (22), the value of a(0) defines the con-
stant L and the transmittance of the slab.

The low-amplitude (quasilinear) branch of the T(h) de-
pendence ranges within the interval 0</hy<(8/27)"? of the
amplitudes of the incident waves. This branch is shown in
Fig. 2 by the red solid curve close to the abscissa. For small
amplitudes hy<<1, we deal with a linear problem, when the
phase difference ¢ and the electromagnetic field in the su-
perconductor can be found in the form of linear combina-
tions of exponential functions of z. In this case, the transmit-
tance T can be found asymptotically for small I,

474
sinh’[8(1 — k72)]+4I'*’

T(hy<1) = r<i. (23)
This transmittance is very close to zero regardless of the
frequency detuning (2—1). As we will see below, the “sinh”
above, for w<w,, will become “sin” for w> w,.

The phase trajectories that correspond to the low-
amplitude solutions occupy the region a < (8/3)"2. For small
hyg, these trajectories are close to the point (a=0,a’=0) (as
an example of such trajectory, see curve 6 in Fig. 3). An
increase in the amplitude A leads to the growth of the length
of the phase trajectory and this length tends to infinity when
ho— (8/27)"2 (see curve 1 in Fig. 3).

The high-amplitude branches of the T(h,) dependence
correspond to the solutions with a(Z) >8"2. Such branches
are shown in Fig. 2 by dotted, dashed, and blue solid curves
for different values of the frequency detuning. The high-
amplitude solutions describe nonlinear Josephson plasma
waves that can propagate in the layered superconductor even
for negative frequency detuning (for ) <1). The correspond-
ing phase trajectories are closed curves (see the closed
curves in Fig. 3 for a>8"?). Note that the value of & is
negative for > 8'2. For this case, we can consider & to be
positive, but the phase of the incident wave must be shifted
by .

The oscillating character of the high-amplitude solutions
results in much higher values of the transmittance, compared
to the case of exponentially small quasilinear solutions. As
seen in Fig. 2, the transmittance varies over a wide range,
from nearly zero to one, depending on the amplitude A, of
the incident magnetic field. It is important to note that the
wavelengths of the nonlinear waves in the superconductor
depend strongly on the incident wave amplitude hj. So,
changing h, one can control the relation between the wave-
length and the thickness of the slab. The transmittance is
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FIG. 4. (Color online) Spatial distribution of the amplitude % of
the magnetic field inside the superconducting plate. Solid and
dashed curves are plotted for the points 5 and 1 shown in Fig. 2,
respectively. Point 1 corresponds to the low-amplitude branch of the
T(hy) dependence, when the transmission coefficient is close to
zero, and the amplitude ~ of the magnetic field near the lower
interface (z=0) of the slab is exponentially small. The transmittance
T for the point 5 is equal to one, and the amplitudes of the fields
near the upper and lower interfaces of the slab coincide. Here, the
frequency detuning is ({1—1)==5X 1073, and the other parameters
are the same as for Fig. 2.

very sensitive to this relation, and one can attain total trans-
parency of the slab choosing the optimal value ig5™ of the
amplitude h.

For high enough amplitudes /4, the sample thickness D is
larger than the half wavelength. In this case, the change in
the coordinate { in the interval 0<<{<§ corresponds to the
movement along a section of the phase trajectory loop (see
the trajectories 2, 3, and 4 in Fig. 3). When decreasing k), the
wavelength increases, the movement along the phase trajec-
tory approaches the complete loop, and the transmittance of
the slab increases. Finally, for a specific value of A, the
wavelength becomes equal to the sample thickness, the phase
trajectory draws a complete loop, and the transmittance be-
comes equal to one (see the trajectory 5 in Fig. 3 and point 1
in Fig. 2).

The amplitude dependence of the transmittance can be
found asymptotically for small values of the parameter I' and
for not very thick slabs, 61,

41‘*2 52 2
T(hy) s ( \Eho + 1) . (24)
In the case of total transparency (T=1) of the slab, for
hg™=2"2T'5, both the electric and magnetic fields take on
the same values on the upper and lower surfaces of the slab.
Thus, the amplitudes of the incident and transmitted waves
are equal. The corresponding spatial distribution of the mag-
netic field is shown by the solid curve in Fig. 4.

The nontrivial feature of the T(h;) dependence can be
seen from its hysteretic behavior with jumps. Let the ampli-
tude A of the incident wave increase from zero. In this case,
the transmittance is close to zero, and the T(h,) dependence
follows the low-amplitude branch shown by the red solid line
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near the abscissa in Fig. 2. When the amplitude reaches the
critical value (8/27)"? (point 1), further movement along
this branch is impossible, and a jump to point 2, on the
high-amplitude branch, occurs. A further increase in the am-
plitude A results in a monotonic decrease in the transmit-
tance.

Afterwards, if the amplitude A, starts to decrease, then the
T(hy) dependence does not follow the same track. Indeed,
when the point 2 is passed, the transmittance continues to
follow the high-amplitude branch. Decreasing the amplitude
hq results in a further increase in the transmittance. When it
becomes equal to one (point 5), it is not possible to continue
the movement along the high-amplitude branch, and a return
jump to the low-amplitude branch occurs.

It should be noted that the jump from the low-amplitude
branch (which corresponds to the exponentially small trans-
mittance) to the high-amplitude one (with much higher trans-
mittance) can be observed when changing the wave fre-
quency o for the constant amplitude H,, of the incident wave.
This jump occurs when the frequency detuning (1—{2) be-
comes equal to the threshold value,

3 H, 2/3
(1 - ch) = _<)\ckx_0) .
4 Hy

C. Mechanical analogy

The problem discussed in this paper has a deep and very
interesting mechanical analogy. Indeed, Egs. (14) and (16)
describe a motion of a particle with unite mass in a centrally
symmetric potential. The amplitude 4({) of the magnetic
field, the phase 7({), and the coordinate { across the layers
of the superconductor play the roles of the radial coordinate
of the particle, its polar angle, and time, respectively. More-
over, the constant L in Egs. (14) and (16) can be regarded as
the conserved angular momentum of the particle.

Integrating Eq. (16) for the radial motion of the particle,
we obtain the energy conservation law for the particle,

(n')*
> + Ue(h) =€ (25)
with the effective potential
L2 2 h o
Uegi(h) = Y™ + i f a(h)dh. (26)

The first term in Eq. (25) describes the kinetic energy of the
radial motion of the particle, £ is the total energy of the
particle. The first term in Eq. (26) is the centrifugal energy
and the last two terms represent the potential of the central
field.

The plot of the dependence U.g(h) is shown in Fig. 5 for
the case of negative detuning ({2<<1). This dependence is
three valued and corresponds to the three branches of the
function a(h) [see Eq. (15)]. Thus, the multivaluedness of the
dependence a(h) results in the multivaluedness of the effec-
tive potential Ugy(h) and, therefore, there exist several pos-
sibilities for the particle motion. In terms of our electrody-
namical problem, this means that several field distributions
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1.0

Effective potential U

32
27

] ]
0.0 0.5 1.0
Coordinate h

FIG. 5. (Color online) Dependence of the effective potential U,
defined by Eq. (26) on the radial coordinate 4. The movement of the
particle in this potential represents the mechanical analog for the
spatial distribution of the amplitude / of the magnetic field in the
superconductor. The main panel shows curves I, II, and III that
correspond to the three branches of the a(h) dependence for the
case of negative frequency detuning, {1 <<1. The inset shows the
U.s(h) curve for the opposite case, ) > 1, when only one branch of
the a(h) dependence exists. The value of constant L is 0.1.

in the superconductor can be realized for the same amplitude
hg of the incident wave.

Curve I in Fig. 5 shows the potential that corresponds to
the low-amplitude solutions of our electrodynamical prob-
lem. The motion of the particle (from right to left) in this
potential is monotonic that corresponds to the monotonic de-
crease in the field deep into the superconductor. According to
Eq. (20), the stop point of the particle (h'=0) corresponds to
the lower boundary of the superconductor.

Since curve I is terminated in the point h=(32/27)"?, it
cannot define the particle motion for high enough #. In this
case, the particle moves in the potential described by curve II
in Fig. 5. This motion is finite and periodical. It corresponds
to the high-amplitude solutions of our electrodynamical
problem. Curve III in Fig. 5 represents a branch of the
U.s(h) dependence which cannot be realized when changing
the amplitude A of the incident wave.

D. Transmittance of a superconducting slab for o> w;

Now we study the transmittance of a slab of layered su-
perconductors for waves with frequencies higher than the
Josephson plasma frequency, 1> 1. Contrary to the case ()
<1, even linear Josephson plasma waves can propagate in
the layered superconductor. Therefore, the transmittance is
not exponentially small and can vary over a wide range,
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FIG. 6. (Color online) Dependence of the transmittance 7 on the
normalized amplitude 4 of the incident wave for different positive
values of the frequency detuning: Q—1=5X 1073 or 6/ 7w=1.2 (dot-
ted curve); Q—1=4.5X107 or &/7m=1.25 (solid curve); Q-1
=1.65X 1073 or &6/ mw=2.1 (inset). Arrows show the change in the
transmittance when changing h,. The sample thickness is D=4.3
X107 cm, and other parameters are the same as in Fig. 2.

depending on the relation between the wavelength and the
thickness of the slab,

AT4
sin?[8(1 — k72)] + 4%

T(hy<1) = r<i1. (27

Note that the sinh in Eq. (23), for @< w;, has now been
replaced by a sin in Eq. (27), for o> w,.

In the nonlinear case, changing the amplitude /4, one can
control the relation between the wavelength and the thick-
ness of the slab and, thus, the transmittance is tunable by the
amplitude of the incident wave. Figure 6 shows the T(h,)
dependences for different positive frequency detunings.

The analysis based on Eq. (15) (with choice of the sign
“~), Egs. (16), (18)—(20), and (22) shows that the depen-
dence T(hg) is reversible when the frequency detuning is
larger than some threshold value, which is defined by the
asymptotic equation
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FIG. 7. (Color online) Solution of the inverse problem: depen-
dences of the amplitude % of the incident wave and transmittance
Tzhi/ hé on the amplitude /7 of the transmitted wave. The values
of the parameters and the numbers near the indicated points are the
same as in the main panel in Fig. 6. The dependences plotted by
dotted curves are monotonic, leading to the single-valued depen-
dence T(hy) (the dotted curve in Fig. 6). The solid-and-dashed
curves show the nonmonotonic behavior that results in the multi-

valued dependence T(h) (the solid curve in the main panel in Fig.
6).

DVesin 6>
(nthr—nx(ﬂ), r<i. (28)

\““’277)\51},

An example of such a reversible T(h,) dependence is pre-
sented by the dotted curve in Fig. 6.
The hysteresis in the T(h,) dependence appears for fre-
quency detunings smaller than the threshold value,
Q< Q. (29)
In this case, the transmittance can reach the value one when
the incident wave amplitude h is first increased and then
decreased. Namely, the incident wave amplitude A is de-
creased after it increases and a jump of T(hy) occurs from the
low-amplitude branch to the high-amplitude one (see the
solid curve and the inset in Fig. 6). One can derive the
asymptotic equation for the optimal value ig™ of h, when
the superconducting slab becomes totally transparent,

_ 3\«6

=18
0 4P

(30)

where
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I—IIL—§B<1 §)~17972
Tl 1= e\ 27e)

and B(x,y) is the Euler integral of the first kind.

E. Mechanical analogy revisited

Returning to the mechanical analogy described in the pre-
vious section, we note that, in the case of positive-frequency
detuning, the dependence of the potential U,y on the radial
coordinate / of the particle is single valued (see the inset in
Fig. 5). This is because the dependence a(h) in Eq. (15) is
single valued in this case. Nevertheless, the dependence
T(hy) can be multivalued even for >1 (see Fig. 6). This
feature seems to be paradoxical. Indeed, the particle motion
is completely defined for any initial conditions. However, an
assignment of the value of A in relations (18)—(20) does not
mean an imposition of definite initial conditions for the par-
ticle motion. To illustrate this nontrivial feature of the elec-
tromagnetic wave transmission through a slab of layered su-
perconductor, let us now consider the inverse problem. We
wish to find the amplitude %, of the incident wave that is
necessary to obtain a given value & of the transmitted wave.
According to Eq. (19), the value of h; defines unambigu-
ously the angular momentum L:hZT/ I" of the particle. On the
basis of the motion Eq. (16) and the boundary condition Eq.
(18), we find that the dependence hy(hy) should be single
valued. Correspondingly, the dependence of the transmit-
tance

T=h3/h}

on the amplitude iy of the transmitted wave is also single
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valued (see Fig. 7). However, this dependence is nonmono-
tonic if the condition Eq. (29) is satisfied. As a result, the
dependence T(h,) appears to be multiple valued.

IV. CONCLUSION

In this paper, we predict a distinct nonlinear phenomenon
in layered superconductors. We show that the reflectivity and
transmittance of a superconducting slab are very sensitive to
the amplitude of the incident wave due to the nonlinearity of
the Josephson relation for the c-axis current. As a result, the
reflectivity and transmittance vary over a wide range, from
nearly zero to one (if neglecting the small dissipation), when
changing the amplitude of the incident electromagnetic
wave. A remarkable feature of this phenomenon is the hys-
teretic behavior of the T(h,) dependence. It is important to
note that, for frequencies close to the Josephson plasma fre-
quency, the tunable transmittance can vary from zero to one
even in the case of weak nonlinearity, when the interlayer
phase difference ¢ is small, ¢<<1.
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