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We consider the propagation of a classical electromagnetic
wave through a transmission line, formed by identical super-
conducting charge qubits inside a superconducting resonator.
Since the qubits can be in a coherent superposition of quan-
tum states, we show that such a system demonstrates interest-
ing new effects, such as a “breathing” photonic crystal with an

oscillating bandgap. Similar behaviour is expected from a
transmission line formed by flux qubits. The key ingredient
of these effects is that the optical properties of the Josephson
transmission line are controlled by the quantum coherent state
of the qubits.

The progress in experimental and theoretical investiga-
tion of mesoscopic structures, in particular superconduct-
ing qubits [1], made it possible now to shift focus to a
more interesting business of building an “artificial matter”,
a structure containing a large enough number of qubits,
which maintain quantum coherence for a long enough time
to demonstrate certain new properties. One can consider a
working quantum computer an ultimate example of such
a structure. Nevertheless we don’t need to go that far. For
starters, we can consider the propagation of electromag-
netic wave through a large set of qubits, considering the
latter as an effective medium. Such media built of classi-
cal artificial components are known as metamaterials. De-
pending on their structure and parameters, they can demon-
strate some strikingly unusual properties (e.g., refraction of
the electromagnetic wave in so-called left-handed materi-
als [2]). We will therefore call a medium built of qubits a
quantum metamaterial.

A simple example of a quantum metamaterial if put a
large number of qubits in a one-dimensional resonator. Of
course, a chain of interacting qubits would do as well, but

we have already seen that putting qubits in resonators pro-
vides several advantages, such as a convenient control and
readout and increased decoherence time, and is therefore
relevant from the experimental point of view.

The propagation of an electromagnetic wave along this
sytem will be affected by the coherent quantum dynamics
of qubits. Should one expect anything unusual?

Let us consider an infinite number of superconducting
charge qubits placed at equal intervals l between two mas-
sive superconductors separated by a distance D of the same
order (Fig. 1) [3]. The superconductors form a waveguide,
and qubits – an effective medium filling it. The magnetic
field of the electromagnetic wave propagating in this struc-
ture must be parallel to the superconducting banks. If ne-
glect – as we do – the energy losses, it must be also nor-
mal to the direction of the wave propagation. Therefore
H = Hyey , and it is conveniently described by the vector
potential A = Azez . We will see that if we choose realistic
parameters, the wavelength of a propagating wave is much
larger than interqubit distance, and therefore one can ne-
glect all dependence on the transverse coordinates. More-
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Figure 1 An example of 1D quantum metematerial. Identical
charge qubits are placed at equal intervals l between bulk su-
perconductors separated by a distance D. Control circuits of the
qubits are not shown.

over, the vector potential within a single cell (say, between
the nth and (n+1)st qubits) is approximately constant and
can be denoted as Azn.

By now we have learned enough about charge qubits to
directly write the energy per unit cell

E =
EJ

2ω2
J

⎡
⎣(2πDȦzn

Φ0

+ ϕ̇n

)2

+

(
2πDȦzn

Φ0

− ϕ̇n

)2
⎤
⎦

− EJ

{
cos

[
ϕn +

2πDAzn

Φ0

]
(1)

+cos

[
ϕn −

2πDAzn

Φ0

]}
+

Dl

8π

(
Azn+1−Azn

l

)2

.

Here the dot denotes the time derivative, and we assume
that the charge qubit has two identical Josephson junctions
with ωJ = eIc/�C each. We took into account that, in the
presence of the vector potential, the superconducting phase
differences across the junctions of the nth qubit, ±ϕn, ac-
quire a gauge term, αn = 2πDAzn/Φ0.

Introducing the dimensionless units E = El/EJ , and
t → ωJ t, we can rewrite Eq. (1) as

E = ϕ̇2
n + α̇2

n − 2 cosαn cosϕn + β2(αn+1 −αn)2, (2)

where

β2 =
1

8πlDEJ

(
Φ0

2π

)2

≡
EEM

EJ
(3)

characterizes the ratio (EEM/EJ) of electromagnetic and
Josephson energies.

Eventually we will consider such properties of a quan-
tum metamaterial as lasing, which would require a quan-
tum description of the electromagnetic field. At this point,

though, we can treat the field classically, and therefore as-
sume that its amplitude is small, i.e., αn � 1. The physical
sense of the latter inequality is that the magnetic flux per
unit cell area HyD×l is much smaller than Φ0. Under such
assumptions, the Hamiltonian for a single qubit is

H = −

(
∂

∂ϕn

)2

− α2
n cosϕn. (4)

As usual, we restrict the states of each qubit to either
its ground state |0〉, with energy E0, or excited state |1〉
with energy E1. We can also introduce the Heisenberg ba-
sis states

{ |0〉 exp (iεt/2), |1〉 exp (−iεt/2)} , (5)

where ε = E1−E0

�ω0

is the dimensionless qubit excitation
energy.

The wave function of the nth qubit, Ψn, is a sum

Ψn = Cn
0 |0〉 eiεt/2 + Cn

1 |1〉 e−iεt/2 . (6)

Using the standard time-dependent perturbation theory, we
see from Eq. (4) that in the presence of the field

i
dCn

k

dt
= α2

n

∑
m=1,2

V n
km(t) Cn

m(t) (7)

with some initial conditions Cn
k (t = 0) = Cn0

k . Here

V n
km(t) = 〈k| cosϕn|m〉

are matrix elements of the field–qubit interaction calcu-
lated in the Heisenberg basis.

Varying the energy (2), we obtain the equation for the
electromagnetic field in the linear approximation:

α̈n−β2 (αn+1 + αn−1 − 2αn)+αn〈Ψn| cosϕn|Ψn〉 = 0.
(8)

This equation together with Eqs. (7) allows to determine
the behaviour of both the field and the qubits, but it is not
yet what we need. Indeed, this equation still contains the
states of individual qubits, while we strive to look at the big
picture. If, as we assumed, the field wavelength exceeds the
length of a single unit cell, it will not “see” separate qubits.
Then, instead of a difference equation (8) for αn(t) and
Ψn(t), we can write a differential equation for α(x, t) and
Ψ(x, t):

α̈ − β2 ∂2α

∂x2
+ V0α = 0, V0 = 〈Ψ(x)| cos ϕ(x)|Ψ(x)〉.

(9)
Here n · l was replaced by x.

Staying within the perturbation theory approach, we
split the electromagnetic wave into the larger incident
wave, α0, and a smaller scattered wave α1. A quantum
state of the system is now described by the wave function

Ψ(x, t) = C0(x, t)|0〉eiεt/2 + C1(x, t)|1〉e−iεt/2. (10)
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In the unperturbed state the coefficients in this equation are
C0

i (x). Splitting, in their turn, the coefficients Ci(x, t) into
the unperturbed solution C0

i (x) and a small perturbation
C1

i (x, t), |C1
i | � 1, and using Eq. (7), we derive

iC1
0 =

∫ t

0

dt′α2
0

(
V00 C0

0 + V01 C0
1e−iεt′

)

iC1
1 =

∫ t

0

dt′α2
0

(
V11 C0

1 + V ∗

10 C0
0eiεt′

)
. (11)

Here the matrix elements Vik = 〈i| cosϕ|k〉 are calculated
using the unperturbed wave functions. Obviously V ∗

10 =
V01.

For the unperturbed EM wave α0, we obtain from
Eq. (9) a usual-looking wave equation

α̈0 − β2 ∂2α0

∂x2
+ V0 α0 = 0. (12)

Nevertheless the specifics of a quantum metamaterial is
hidden in the quantity (V0)

1/2

V0 = |C0
0 |

2 V00+|C0
1 |

2 V11+C0
0C0∗

1 eiεt V10+h.c., (13)

which plays the role of the Josephson plasma frequency.
Now we see directly that the “optics” of electromagnetic
wave propagation through the system is determined by the
quantum state and quantum dynamics of the qubits, which
are supposed to be under our direct control.

Before proceeding, it is wise to check whether the var-
ious assumptions we made are consistent. To begin with,
we completely neglected both dephasing and relaxation in
qubits, and losses in the transmission line formed by the
bulk superconductors. Of course, this only holds as long as
the characteristic time scale of the effect we investigate is
short enough. If use typical enough experimental data on
charge qubits in a superconducting resonator [4], the de-
phasing rate of a qubit is ∼ 5 MHz, the photon loss rate
from the resonator 0.57 MHz, while the Josephson energy
(which provides the scale for the effects we are consider-
ing here) is ∼ 6 GHz, which is orders of magnitude higher.
Therefore our assumptions hold water. Moreover, for this
choice of parameters and sensible dimensions of the sys-
tem D ∼ l ∼ 10μm the parameter β ∼ 30. Since β is the
velocity in the dimensionless wave equation (12), i.e. the
number of unit cells per wavelength, our second assump-
tion, the one which allowed us to derive (12), is also valid.

Now we can safely consider some characteristic solu-
tions of the above equations. For simplicity, we assume that
α0 is a standing wave, α0 = A cos(ωt) cos[k(ω)x].

First, assume that all the qubits are initially in the
ground state |0〉, i.e., C0

0 = 1 and C0
1 = 0. In this case

V0 = V00 and the dispersion law

k(ω) =
1

β

√
ω2 − V00. (14)

Thus, the metamaterial is transparent for the waves with
frequencies exceeding (V00)

1/2, which can be interpreted

as the “ground state” plasma frequency of the medium.
From Eq. (11) we obtain

C1
0 (x, t)

V00

= −
iA2 cos2(kx)

2

{
t +

sin(2ωt)

2ω

}

C1
1 (x, t)

V01

= −
A2 cos2(kx)

2

{
eiεt − 1

ε
(15)

+
ε + eiεt [2iω sin(2ωt) − ε cos(2ωt)]

4ω2 − ε2

}

The initial disturbance of the wave function, in its turn,
produces a disturbance α1 in the propagating wave. For
this perturbation, using Eq. (9), we derive

α̈1 − β2 ∂2α1

∂x2
+ V00α1 + ΔV0α0 = 0, (16)

ΔV0 being the perturbation of the field–qubit coupling.
By means of Eqs. (15) we find

ΔV0(t) = −|V01|
2A2 cos2(kx)

×

{
1

ε
−

2(2ω2 − ε2) cos(εt) + ε2 cos(2ωt)

ε (4ω2 − ε2)

}
. (17)

We see that the electromagnetic wave is in resonance with
the qubit line if its frequency is half the inter-level distance,
ω = ε/2. This is due to the term proportional to α2 in the
Hamiltonian (4). Obviously, this result does not hold near
the resonance, since the condition |C1

i | � 1 is no longer
valid.

An almost identical result is obtained if all qubits are
initially in the excited state |1〉. We should only exchange
0 ↔ 1 and ε ↔ −ε in Eqs. (14)–(17), which leads to

k(ω) =
1

β

√
ω2 − V11, (18)

C1
1 (x, t)

V11

= −
iA2 cos2(kx)

2

{
t +

sin(2ωt)

2ω

}

C1
0 (x, t)

V10

= −
A2 cos2(kx)

2

{
1 − e−iεt

ε
(19)

+
−ε + e−iεt [2iω sin(2ωt) + ε cos(2ωt)]

4ω2 − ε2

}
.

For the electromagnetic wave one gets

α̈1 − β2 ∂2α1

∂x2
+ V11α1 + ΔV1α0 = 0, (20)

where
ΔV1(t) = −ΔV0(t),

and ΔV0(t) is given by Eq. (17).
There is, though, an important difference. If all qubits

are initially in the state |1〉, the metamaterial is an ac-
tive medium, with the complete population inversion. One
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should therefore expect a resonant amplification of the
electromagnetic wave as it propagates along. However, our
formulae predict ΔV1 → 0 at 2ω → ε (and ΔV0 → 0 at
2ω → ε as well). What is wrong?

Fortunately, the “paradox” only reflects the limita-
tions of the first order perturbation approximation, where
|C0

i + C1
i |

2 = |C0
i |

2. In other words, to first order, the
qubit energy simply does not change. To describe the sig-
nal amplification, the higher order terms are essential. On
the other hand, a proper description of such an effect – es-
sentially, a lasing – anyway requires a quantum description
of the electromagnetic field. We will deal with it later on.

Finally, let us prepare the qubits in a superposition
state, C0 = C1 = 1/2. In this case all of them ‘rotate’,
and the matrix element in Eq. (9) is now

V0(t) =
1

4
[V00 + V11 + 2V01 cos(εt)] . (21)

If assume, for simplicity, that the frequency of the elec-
tromagnetic wave is high, ω 	 ε, then its wave vector is a
slowly oscillating function of time

k(ω, t) ≈

√
ω2 −

V00 + V11 + 2|V01| cos(εt)

4β2
(22)

Therefore, if the wave frequency ω is close to the threshold

ωc =
√

V00 + V11/2β,

the metamaterial will alternate between transparent and re-
flecting state with a frequency ε, as the wave vector k(t)
switches between real and imaginary values. In addition,
it will generate electromagnetic waves with frequencies ε
and ω ± ε.

The last example – a transparency which senses coher-
ent transitions between the qubit states – gives us a taste of
what new effects appear in a quantum metamaterial. This
effect is due to the effective plasma frequency of the uni-
form medium being explicitly dependent on the quantum
state of qubits, as can be seen from Eqs. (14,18,22).

Now let us look at a little more advanced arrangement
– a quantum metamaterial photonic crystal. In a photonic
crystal [5] a periodic modulation of the refractive constant
(i.e., the light propagation vspeed) produces a frequency
gap in the spectrum of electromagnetic wave, similar to
the gap in the eletronic spectrum in a periodic lattice. It is
therefore natural to expect the same if the qubits in our sys-
tem are prepared in spatially periodic states. The question
is, will there be anything else?

Suppose the qubits are in either |γ〉 or |δ〉 state, with a
spatial period 2L. The wave then obeys the equation

α̈ − β2αxx + Vγγ α = 0 (23)

or
α̈ − β2αxx + Vδδ α = 0. (24)

The |γ〉 or |δ〉 can be either stationary states (eigenstates of
the qubit Hamiltonian), or their superpositions. In the latter
case, the photonic crystal discussion makes sense only if
the quantum beat frequency is small compared to the fre-
quency of the propagating wave, that is, ε2 � |V00| and
|V11|.

Following the usual band-theory approach for electrons
in a crystal lattice [6], we seek the solution of Eq. (23,24)
in the form of a Bloch wave α(t, x) = u(x, k) exp(ikx −
iωt), where u(x, k) is a periodic function of x with the pe-
riod 2L, and the dimensionless wave vector k is in the first
Brillouin zone, −π/L < k < π/L. Consider the jth ele-
mentary cell of our periodic structure: for xj < x < xj +L
all the qubits are in state |γ〉, and for xj +L < x < xj +2L
in the state |δ〉. In both regions, the solution α(t, x) of
Eq. (23,24) is a sum of exponential terms multiplied by
constants Cj . Using the continuity of α and ∂α/∂x at the
boundaries of different regions and the periodicity of the
Bloch functions u(x, k), we obtain a set of homogeneous
linear equations for Cj . The nontrivial solution of these
equations exists only if the determinant of the set of equa-
tions is zero. Then, after straightforward algebra, we obtain
the dispersion equation for the frequency ω(k) in the form

cos(κγL) cos(κδL) −
κ2

γ + κ2
δ

2κγκδ
sin(κγL) sin(κδL)

= cos(2kL), (25)

where

κ2
γ =

ω2 − Vγγ

β2
, κ2

δ =
ω2 − Vδδ

β2
. (26)

This equation predicts the spectrum ω(k) with gaps if the
difference between κγ and κδ is large enough; that is, |κ2

γ−

κ2
δ| � 1, or

|Vγγ − Vδδ| � β2 . (27)

Thus, in order to form a photonic crystal in the qubit line,
the Josephson energy EJ must be large compared to the
magnetic energy or, according to Eq. (3),

EJ 	
1

8π

(
Φ0

πD l

)2

. (28)

This condition is again consistent with our basic assump-
tions.

The gap in the photonic spectrum depends on the ex-
ternally controllable quantum state of the qubits. We are
therefore dealing with a quantum photonic crystal: Chang-
ing the microscopic quantum state of the qubits changes
the macroscopic electromagnetic response of the system at
will!

Suppose now that one or both of the qubit states are not
the eigenstates |0〉 or |1〉. The system then would exhibit
quantum beats between the two. E.g., let |γ〉 = |0〉 and

|δ〉 =
{
|0〉eiεt + |1〉e−iεt

}
/2.
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Figure 2 Breathing photonic crystal: contour curves of the wave
vector k as a function of ω and εt in the situation described by
Eq. (29). The parameters used here are V00 = V01 = 1, V11 = 2

(units of the qubit Josephson energy EJ ), β = 0.5, L = 2. The
time-dependent gaps in the spectrum are clearly seen.

Then Vγγ = V00 and

Vδδ(t) = [V00 + V11 + 2V01 cos(εt)]/4.

We see that the photonic crystal arises if any of the matrix
elements is of the order of unity. The frequency gap is mod-
ulated by the value of V01/2 with the period Δt = 2π/ε.
If V01 ∼ 1, then the modulation is significant. If

|γ〉 =
{
|0〉eiεt − |1〉e−iεt

}
/2

and
|δ〉 =

{
|0〉eiεt + |1〉e−iεt

}
/2,

then

Vγγ(t) = [V00 + V11 − 2V01 cos(εt)]/4,

(29)

Vδδ(t) = [V00 + V11 + 2V01 cos(εt)]/4.

If V01 ∼ 1, we obtain the gap which is strongly modu-
lated in time from zero, at t = (2n + 1)π/2ε, to its maxi-
mum value, when t = nπ/ε (here n is an integer). This is
a “breathing” photonic crystal (Fig. 2).

Is it possible to replace charge qubits with flux qubits?
One can see no reason why not, but the equations are
slightly different. Consider a set of flux qubits inductively
coupled to a transmission line (i.e., placed inside a strup
line resonator). It is convenient to represent such a system
using the approximation of lumped elements (Fig. 3). Fol-
lowing the approach of Ref. [7], we assign to each node
a flux variable ϕn, such that, e.g., the current between the

Figure 3 Flux qubits in a resonator: Representation with lumped
circuit elements. The length of a single section is d, its self-
inductance L, and capacitance C. The phase velocity in the un-
perturbed line is thus s = dΩ, where Ω2

= 1/LC.

nodes n and n + 1 is given by (ϕn+1 − ϕn)/L, L be-
ing the self-inductance of the section between the nodes.
The coupling to the qubits takes place due to the fluxes
φn = M〈Îp〉 sent by the n-th qubit through the corre-
sponding section of the line, M being their mutual induc-
tance, and Îp the persistent current operator in the qubit
loop. (We could easily include the direct qubit–qubit in-
teraction and take into account the inhomogeneity of the
structure, but these are not important for the current con-
sideration). It is straightforward now to write the equations
of motion for the (classical) field in the line,

ϕ̈n + Ω2(2ϕn − ϕn+1 − ϕn) = Ω2(φn − φn−1). (30)

In the continuous limit, this equation becomes

ϕ̈(x, t) − s2 ∂2ϕ(x, t)

∂x2
= sΩ

∂φ(x, t)

∂x
. (31)

the qubit wave function, Eq. (6), determines the right-hand
side via

φ(x, t) = MI0〈Ψ(x, t)|σ̂z |Ψ(x, t)〉. (32)

This equation will be completed by Eqs. (7) for Ψ(x, t)〉,
but with a different set of Vkm. Note that unlike Eq. (9)
for charge qubits, the unperturbed spectrum of Eq. (31) is
gapless.

What conclusions can we make from the above results?
An extended structure built of qubits behaves with respect
to the propagation of a classical electromagnetic wave in a
way, which reveals quantum coherence of its constituting
elements. Not only one can tweak the parameters of this
medium by changing the qubit states – this is, arguably, no
different from controlling parameters in a classical trans-
mission line. Of more fundamental importance is the re-
sult that the classical field propagation through a quantum
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metamaterial will reveal such essentially quantum effects
as quantum beats due to the system being prepared in a co-
herent superposition of quantum states. One can think of
this as an inversion of the double-slit experiment. There a
quantum particle interacted with a classical scatterer. Here
the situation is reversed. An exciting part is, that this al-
lows us a direct glimpse into the very boundary between
quantum and classical worlds.
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