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We study the critical depinning current Jc versus the applied magnetic flux �, for quasiperiodic (QP)
chains and 2D arrays of pinning centers placed on the nodes of a fivefold Penrose lattice. In QP chains, the
peaks in Jc��� are determined by a sequence of harmonics of the long and short segments of the chain.
The critical current Jc��� has a remarkable self-similarity. In 2D QP pinning arrays, we predict
analytically and numerically the main features of Jc���, and demonstrate that the Penrose lattice of
pinning sites provides an enormous enhancement of Jc���, even compared to triangular and random
pinning site arrays. This huge increase in Jc��� could be useful for applications.
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Recent progress in the fabrication of nanostructures
has provided a wide variety of well-controlled vortex-
confinement topologies, including different regular pin-
ning arrays. A main fundamental question in this field
was how to drastically increase vortex pinning, and thus
the critical current Jc, using artificially produced periodic
arrays of pinning sites (APS) [1–5]. The increase and,
more generally, control of the critical current Jc in super-
conductors by its patterning (perforation) can be of prac-
tical importance for applications in microelectronic
devices.

A peak in the critical current Jc���, for a given value of
the magnetic flux per unit cell, say �1, can be engineered
using a superconducting sample with a periodic APS with a
matching field H1 � �1=A (where A is the area of the
pinning cell), corresponding to one trapped vortex per
pinning site. However, this peak in Jc���, while useful to
obtain, decreases very quickly for fluxes away from �1.
Thus, the desired peak in Jc��� is too narrow and not very
robust against changes in �. It would be greatly desirable
to have samples with APS with many periods (ideally
infinite). This multiple-period APS sample would provide
either very many peaks or an extremely broad peak in
Jc���, as opposed to just one (narrow) main peak (and
its harmonics). We achieve this goal [a very broad Jc���]
here by studying samples with many built-in periods.

Here, we study vortex pinning by quasiperiodic (QP)
chains and by 2D APS located on the nodes of QP lattices
(e.g., a fivefold Penrose lattice) [6]. We show that the use of
the 2D QP (Penrose) lattice of pinning sites results in a
remarkable enhancement of Jc���, as compared to other
APS, including triangular and random APS. In contrast to
superconducting networks, for which only the areas of the
network plaquettes play a role [7], for vortex pinning by
QP pinning arrays, the specific geometry of the elements
that form the QP lattice and their arrangement (and not just
the areas) are important, making the problem far more
complicated.
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Simulation.—We model a three-dimensional (3D) slab,
infinitely long in the z direction, by a 2D (in the xy plane)
simulation cell with periodic boundary conditions. We
perform simulated annealing simulations by numerically
integrating the overdamped equations of motion (see, e.g.,
Refs. [8,9]): �vi � fi � fvvi � fvpi � fTi � fdi . Here fi is
the total force per unit length acting on vortex i, fvvi and fvpi
are the forces due to vortex-vortex and vortex-pin inter-
actions, respectively, fTi is the thermal stochastic force, and
fdi is the driving force; � is the viscosity, which is set to
unity. The force due to the vortex-vortex interaction is
fvvi �

PNv
j f0K1�jri � rjj=��r̂ij, where Nv is the number

of vortices, K1 is a modified Bessel function, � is the
penetration depth, r̂ij � �ri � rj�=jri � rjj, and f0 �

�2
0=8�2�3. Here �0 � hc=2e. The pinning force is fvpi �PNp
k fp�jri � r�p�k j=rp����rp � jri � r�p�k j�=��r̂

�p�
ik , where

Np is the number of pinning sites, fp (expressed in f0) is
the maximum pinning force of each short-range parabolic
potential well located at r�p�k , rp is the range of the pinning

potential, � is the Heaviside step function, and r̂�p�ik �
�ri � r�p�k �=jri � r�p�k j. All the lengths (fields) are expressed
in units of � (�0=�

2). The ground state of a system of
moving vortices is obtained by simulating the field-cooled
experiments (e.g., [10]). For deep short-range (�-like)
potential wells, the energy required to depin vortices is
proportional to the number of pinned vortices, N�p�v .
Therefore, in this approximation, we can define the critical
current as follows: jc��� � j0N

�p�
v ���=Nv���, where j0 is

a constant, and study the dimensionless value Jc � jc=j0.
We use narrow potential wells as pinning sites, with rp �
0:04� to 0:1�. We have also performed dynamical simu-
lations of Jc using a threshold criterion; i.e., Jc is obtained
as the minimum current J / fdi which depins the vortices.
The results obtained using these two criteria are essentially
equal [11], and here we use the ‘‘static’’ criterion defined
above.
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FIG. 1 (color online). (a) The critical depinning current Jc
versus the number of vortices, Nv 
�, for QP chains, Np �
21 (red bottom line), Np � 34 (second from the bottom blue
line), Np � 55 (green line), and Np � 89 (dark blue top line),
for � � aS=aL � 1=�. Here we use fp=f0 � 1:0 and rp � 0:1�.
Independently of the length of the chain, the peaks include the
sequence of successive Fibonacci numbers and their subhar-
monics. (b) The function Jc��=�1� for the same chains (using
the same colors). The curves for different chains display the
same set of peaks, namely, at �=�1 � 1 (first matching field)
and �=�1 � 0:5, as well as at the golden-mean-related values:
�=�1 � �, �=2, ��� 1�=2 � �2=2, ��2 � ��=2 � �3=2, �2 �
�� 1, �2 � 1. This behavior demonstrates the self-similarity of
Jc���.
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1D quasicrystal.—A QP chain [6] can be constructed by
iteratively applying the Fibonacci rule (L! LS, S! L),
which generates an infinite sequence of two line segments,
long L and short S. For an infinite QP sequence [6], the
ratio of the numbers of long to short segments is the golden
mean � � �1�

���
5
p
�=2. Let, e.g., aS � 1 and aL � �,

where aS and aL are the lengths of the short and long
segments, respectively. Then the position of the nth point
where a new segment, either L or S, begins is determined
by xn � n� �n=��=�, where �x� denotes the integer part of
x. To study the critical depinning current Jc in QP pinning
chains, we place pinning sites to the points
where the L or S elements of the QP sequence link to
each other.

The results of calculating Jc�Nv� for chains of differ-
ent lengths and the same � � 1=� are shown in Fig. 1(a).
The plot clearly shows that, for sufficiently long chains,
the positions of the main peaks in Jc, to a significant ex-
tent, do not depend on the length of the chain. The peaks
form a Fibonacci sequence: Nv � 13; 21; 34; 55; 89; 144,
and other ‘‘harmonics’’: Nv � 17; 27:5 (�55=2), 44.5
(�89=2), etc. Of course, longer chains allow one to better
reveal peaks for larger Fibonacci numbers. In Fig. 1(b), the
same curves are rescaled, normalized by the numbers of
pins in each chain. The rescaled Jc curves reproduce each
other and have many pronounced peaks for golden-mean-
related values of �=�1 (�1 is the flux corresponding to the
first matching field, H1, when Nv � Np), as shown in
Fig. 1(b). Therefore, the same peaks of Jc���, for different
chains, are revealed before and after rescaling because of
the self-similarity of Jc���. The self-similarity of Jc���
has also been studied in reciprocal k space and will be
presented elsewhere [11].

Penrose lattice.—Consider now a 2D QP APS, namely,
an APS located at the nodes of a fivefold Penrose lattice.
This lattice is a 2D QP structure, or quasicrystal, also
referred to as Penrose tiling [6]. These structures possess
a perfect local rotational (fivefold or tenfold) symmetry,
but do not have translational long-range order. The unusual
self-similar diffraction pattern of a Penrose lattice exhibits
a dense set of ‘‘Bragg’’ peaks because the lattice contains
an infinite number of periods in it [6]. It is precisely this
unusual property that is responsible for the striking Jc���’s
obtained here.

The structure of a fivefold Penrose lattice is presented in
Fig. 2(a). As an illustration only, a small fivefold symmet-
ric fragment with 46 points is shown. According to specific
rules, the points are connected by lines in order to display
the structure of the Penrose lattice. The elemental building
blocks are rhombuses with equal sides a and angles that are
multiples of � � 36	. There are two kinds of rhombuses:
(i) those having angles 2� and 3� [so-called ‘‘thick’’;
shown empty in Fig. 2(a)], and (ii) rhombuses with angles
� and 4� [so-called ‘‘thin’’; filled in orange in Fig. 2(a)].

Let us analyze whether any specific matching effects
can exist between the Penrose pinning lattice and the inter-
17700
acting vortices, which affect the magnetic-field depen-
dence of the critical depinning current Jc��� (Fig. 2).
Quasicrystalline patterns are intrinsically incommensurate
with the flux lattice for any value of the magnetic field [7];
therefore, in contrast to periodic (e.g., triangular or square)
pinning arrays, one might a priori assume a lack of sharp
peaks in Jc��� for QP APS. However, the existence of
many periods in the Penrose lattice can lead to a hierarchy
of matching effects for certain values of the applied mag-
7-2
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FIG. 2 (color online). (a) An example of a fivefold Penrose
lattice, consisting of thick and thin rhombuses. (b)–(d) The
location of vortices (green dots) and the Penrose-lattice APS
(red open circles connected by black lines) for (b) � �
�vacancy=thin � �v=t � 0:757�1, vortices occupy all the pin-
ning sites except those in one of the two vertices of each thin
rhombus; (c) � � �1, Nv coincides with Np; (d) � �
�interstitial=thick � �I=T � 1:482�1, vortices occupy both the pin-
ning sites and the interstitial positions inside each thick rhombus.
Here fp=f0 � 2:0, rp � 0:1�. (e) The Jc��
 Nv� for Penrose-
lattice arrays with Np � 46; 141; 301. The data points [b], [c],
[d] refer to snapshots in 2(b)–2(d), respectively. The peak [c] at
�1 is suppressed for weaker pinning (magenta dotted Jc curve).
Eventually, all the main peaks disappear for sufficiently weak
pins (black dashed curve). The inset shows the dimensionless
difference, fdiff , of the pinning and the elastic energies versus the
pinning-to-interaction energy ratio, for the broad Jc peak at �v=t

(red dashed line) and for �1 (red solid line). Only fdiff > 0 gives
stable peaks in Jc. (f) The Jc��� for a 301 sites Penrose lattice
(red solid line), (recalculated for flux only on the Penrose area,
AP), triangular (black solid line), and random (green open circles
and solid line) pinning arrays.
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netic field, resulting in strikingly broad shapes for Jc���.
These could be valuable for applications demanding un-
usually broad Jc���’s.

To match the vortex lattice on an entire QP APS, the
specific geometry of the elements that form the QP lattice
is important, as well as their arrangement. While the sides,
a, of the rhombuses are equal, the distances between the
nodes are not equal. The lengths of the diagonals of the
rhombuses [Fig. 2(a)] are 1:176a, �a � 1:618a (for the
thick rhombus), ��� 1�a � a=� � 0:618a, and 1:902a
(for the thin rhombus). Based on these distances, we can
predict matching effects [and corresponding features of the
function Jc���] for the Penrose-lattice APS.

First, there is a ‘‘first matching field’’ (we denote the
corresponding flux as �1) when each pinning site is occu-
pied by a vortex [Fig. 2(c)]. Although the sides of all the
rhombuses are equal to each other, nevertheless, this
matching effect is not expected to be accompanied by a
sharp peak. Instead, it is a broad maximum [peak [c] in
Fig. 2(e)] involving three kinds of local ‘‘commensurabil-
ity’’ effects of the flux lattice: with the rhombus side a;
with the short diagonal of a thick rhombus, 1:176a, which
is close to a; and with the short diagonal of a thin rhombus,
which is a=� � 0:618a. For the overall square cell used,
some of the vortices are outside the Penrose sample; these
mimic the applied magnetic field and determine the aver-
age vortex density in the entire cell. Because of the addi-
tional vortices outside the Penrose APS, our computed
Jc��� is reduced by a factor � � AP=A � 0:575 [see
Fig. 2(e)], where AP and A are the areas of the Penrose
lattice and of the cell.

Another matching [Fig. 2(b)] is related with the filling of
all the pinning sites on the vertices of the thick rhombuses
and only three out of four of the pinning sites on the
vertices of thin rhombuses, i.e., one of the pinning sites
on the vertices of the thin rhombuses is empty. For this
value of the flux, matching conditions are fulfilled for two
close distances, a (the side of a rhombus) and 1:176a (the
short diagonal of a thick rhombus), but are not fulfilled for
the short diagonal, a=�, of the thin rhombus. Therefore,
this 2D QP feature is related to �, although not in such a
direct way as in the case of a 1D QP pinning array. This
2D QP matching results in a very wide maximum
(arrow [b] in Fig. 2(e)] of the function Jc���. The position
of this broad maximum (denoted here by �vacancy=thin �

�v=t � 0:757�1) could be found as follows. The ratio of
the numbers of thick and thin rhombuses is determined by
the Fibonacci numbers, and in the limit of large pinning
arrays, Np ! 1, this ratio tends to �. The number of
unoccupied pinning sites is governed by the number of
thin rhombuses. However, some of the thin rhombuses are
separated from other thin rhombuses by a single thick one
[single thin rhombuses; see Fig. 2(a)], while some of the
thin rhombuses have common sides with each other [or-
ange arrow-shaped double thin rhombuses in Fig. 2(a)].
Therefore, the number of vacancies (i.e., unoccupied pins)
7-3
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is then the number of single thin rhombuses Ns
rh plus one-

half of the number Nd
rh of ‘‘double’’ thin rhombuses,

Nun
p ��v=t� � Ns

rh � N
d
rh=2, where Nun

p is the number of
unoccupied pinning sites at � � �v=t.

For higher vortex densities (� � �interstitial=thick �

�I=T � 1:482�1) a single interstitial vortex is inside
each thick rhombus [see Fig. 2(d)]. These interstitial vor-
tices can easily move; thus Jc has no peak at �I=T. The
position of this feature is determined by the number of
vortices at � � �1, which is Nv��� � Np, plus the num-
ber of thick rhombuses, Nthick

rh � Nrh=�.
In order to better understand the structure of Jc��� for

the Penrose pinning lattice, we compare the elastic Eel and
pinning Epin energies of the vortex lattice at H1 and at (the
lower field) Hv=t, corresponding to the two maxima of Jc
[Figs. 2(e) and 2(f)]. Vortices can be pinned if the gain
Epin � Upin�npin of the pinning energy is larger than the
increase of the elastic energy [12] related to local com-
pressions: Eel � C11��aeq � b�=aeq�

2. The shear elastic
energy (/C66) provides the same qualitative result [11].
Here, Upin 
 fprp, npin is the density of pinning centers,
��H 
 H1� � H=H1 � B=��0npin�, and ��H >H1� � 1
is the fraction of occupied pinning sites (� � 1 for H �
H1, and � � 0:757 for H � Hv=t), aeq � �2=

���
3
p
�npin�

1=2

is the equilibrium distance between vortices in the trian-
gular lattice, b is the minimum distance between vortices in
the distorted pinned vortex lattice (b � a=� for H � H1

and b � a for H � Hv=t), and C11 � B2=�4��1� �2k2��

is the compressibility modulus for short-range deforma-
tions [12] with characteristic spatial scale k � �npin�

1=2.
The difference of the pinning and elastic energies is
Epin � Eel � �fdiffnpin�2

0=�4��
2�, where fdiff �

4��2Upin=�2
0 � ��1� b��

���
3
p
npin=2�1=2�2. Near match-

ing fields, Jc has a peak when fdiff > 0 (and no peak
when fdiff < 0). Since only two matching fields provide
fdiff > 0, then our analysis explains the two-peak structure
observed in Jc shown in Figs. 2(e) and 2(f). For instance,
for the main matching fields, fdiff��v=t� � 0:0056,
fdiff��1� � 0:0058, and fdiff��I=T� � �0:09. Note that
for weaker pinning, the two-peak structure gradually turns
into one very broad peak, and eventually zero peaks for
weak enough pinning [see Fig. 2(e)]. The Jc peaks corre-
sponding to higher matching fields are strongly suppressed
because of the fast increase (/B2) of the compressibility
modulus C11 and, thus, the elastic energy with respect to
the pinning energy; the latter cannot exceed the maximum
value Upinnpin. The subharmonic peaks of Jc, which could
occur for lower fields H <Hv=t, are also suppressed due to
the increase of C11 associated with the growing spatial
scales 1=k of the deformations.

For comparison, we show the Jc��� for the Penrose
lattice (itself, i.e., calculated only for AP), triangular, and
17700
random pinning arrays [Fig. 2(f)]. The latter is an average
over five realizations of disorder. Notice that the QP lattice
leads to a very broad and potentially useful enhancement of
the critical current Jc���, even compared to the triangular
or random APS. The remarkably broad maximum in Jc���
is due to the fact that the Penrose lattice has many (infinite,
in the thermodynamic limit) periodicities built in it [6]. In
principle, each one of these periods provides a peak in
Jc���. In practice, as in quasicrystalline diffraction pat-
terns, only a few peaks are strong. This is also consistent
with our study. Furthermore, the pinning parameters can be
adjusted by using as pinning centers either antidots
‘‘drilled’’ in the film [1,3] or blind antidots [4] of different
depths and radii. Thus, our results could be observed
experimentally.

Conclusions.—The critical depinning current Jc��� was
studied in QP chains and in 2D QP arrays (the fivefold
Penrose lattice) of pinning sites. A hierarchical and self-
similar Jc��� was obtained. We physically analyzed all the
main features of Jc���. Our analysis shows that the QP
lattice provides an unusually broad critical current Jc���
that could be useful for practical applications demanding
high Jc’s over a wide range of fields. Our proposal can
easily be extended, mutatis mutandis, to other related
systems, including colloidal suspensions interacting with
pinning traps provided by arrays of optical tweezers [13].
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