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Phase Locking, Devil’s Staircases, Farey Trees, and Arnold Tongues
in Driven Vortex Lattices with Periodic Pinning
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(Received 4 September 1998)

Using numerical simulations, we observe phase locking, Arnold tongues, and devil’s staircase
vortex lattices driven at varying angles with respect to an underlying superconducting periodic pin
array. This rich structure should be observable in transport measurements. The transverseV sId curves
have a devil’s staircase structure, with plateaus occurring near the driving angles along sym
directions of the pinning array. Each of the plateaus corresponds to a different dynamical phase
distinctive vortex structure and flow pattern. [S0031-9007(98)08095-8]

PACS numbers: 74.60.Ge, 64.70.Rh, 74.60.Jg
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Numerous nonlinear driven systems in physics, a
tronomy, and engineering exhibit striking responses wi
complex phase-locking plateaus characterized by devi
staircases, Arnold tongues, and Farey trees [1–4]. He
we present the first evidence that these structures can
observed in bulk superconductors.

Driven vortex lattices (VLs) interacting with either ran-
dom or periodic disorder have attracted growing intere
due to the rich variety of nonequilibrium dynamic phase
which are observed in these systems. These phases
clude the elastic and plastic flow of vortices which can b
related to VL order and transport properties [5–9]. Pe
riodic pinning arrays interacting with VLs are now at-
tracting increasing attention as recent experiments w
patterns of holes [10] and magnetic dots [11] have pr
duced interesting commensurability effects and enhanc
pinning. These systems are an excellent realization of
elastic lattice interacting with a periodic substrate that
found in a wide variety of condensed matter systems i
cluding charge-density waves, Josephson-junction arra
and Frenkel-Kontorova-type models of friction (see, e.g
[12]). An interesting aspect of periodic pinning arrays tha
has not been addressed so far is how the symmetry pr
erties of the array affect the transport properties as the V
is driven at different angles.

We find that as a slowly increasing transverse forc
is applied to a VL already moving in the longitudina
direction, the VL undergoes a remarkable series oflocking
transitions that significantly affect both the VL ordering
and transport properties. These locking phases occ
when the direction of the vortex motion locks with a
symmetry direction of the pinning array. As the VL passe
through these phases, the transverse velocity compon
as a function of increasing transverse drive shows a ser
of plateaus which form a devil’s staircase structure [1
3]. At the boundaries of certain locked phases the V
undergoes a transition to aplastic flow phase in which
defects are generated in the VL. In the locked phases t
VL undergoeselastic flow in static 1D channels and the
overall VL has a variety of orderings, including triangula
and square.
0031-9007y99y82(2)y414(4)$15.00
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Simulation.—We consider a 2D slice ofNy 3D rigid
vortices interacting with a square array ofNp parabolic
wells, with lattice constanta, and periodic boundary con
ditions. We integrate [8] the equations of vortex motio
fi ­ fyy

i 1 f
yp
i 1 fd ­ hvi. The total forcefi on vor-

tex i includes interactions with other vorticesfyy
i , pin-

ning f
yp
i by parabolic wells, and an applied driving forc

fd ­ fxx̂. The vortex-vortex interaction between vorte

i and the otherNy vortices is fyy
i ­

PNy

j­1 f0K1sjri 2

rjjyldr̂ij , whereK1sryld is a modified Bessel function
l is the penetration depth,f0 ­ F

2
0y8p2l3, r̂ij ­ sri 2

rjdyjri 2 rjj, and we seth ­ 1. Here,fp is the max-
imum pinning force, andrp is the radius of the pinning
well. All lengths, fields, and forces are given in units
l, F0yl2, and f0, respectively. For most of the result
presented here the number of vortices is close to the n
ber of pinning sites,Ny ­ 1.062Np . We have conducted
a series of simulations with different pinning paramete
so that accurate phase diagrams of the dynamic ph
can be obtained. In order to investigate finite size effe
we have examined system sizes varying between36l 3

36l and108l 3 108l, with Ny betweenNy ­ 550 and
Ny ­ 4955.

Voltage-current response.—First, the VL ground state
at zero applied driving force is found by simulated anne
ing (i.e., by cooling the VL from highT ). After a low
energy ground state is found, a slowly increasing drivi
force, fx , is applied along the horizontal symmetry ax
of the square pinning. We find that increasingfx in in-
crements of0.001f0 every 400 MD (molecular dynamics
steps, fromfx ­ 0 to fx ­ 3.0f0, is slow enough that the
vortex dynamics does not depend on the rate of increas
fx. Oncefx is brought to3.0f0 it is held constant while
a force, which we labelfy , is applied in the transverse o
y direction. We increasefy from 0 to 3.25f0, also in in-
crements of0.001f0 every 400 MD steps. The total driv
ing force has a net magnitude offd ­ s f2

x 1 f2
y d1y2 at an

angleu ­ tan21s fyyfxd with respect to thex direction.
We compute the average velocity of the moving vortic

in both the longitudinalVx ­ s1yNyd
PNy

i­1 vi ? x̂ and the
© 1999 The American Physical Society
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transverseVy ­ s1yNyd
PNy

i­1 vi ? ŷ directions, asfy is in-
creased. Velocity versus driving plots correspond to e
perimentally measurable voltage-currentV sId curves.

In Fig. 1(a) we present a typical plot ofVx andVy. For
fy & 0.4f0, Vy ­ 0 indicating that the VL ispinned in
the y direction even though the VL is moving in thex
direction. Depinning in the transverse direction occurs
fy ­ 0.4f0, as indicated by the sharp jump up inVy. We
label this critical transverse depinning forcefc

y . A jump
up inVx is also observed atfc

y . As fy is linearly increased,
Vy does not grow linearly but instead in a remarkable
series ofjumpsandplateausof varying sizes [3]. Along
the plateausVy is constant or increasing very slowly
indicating that the vortex motion islocked in a certain
direction for a finite range of increasingfy . The small
jumps and dips inVx correspond to the onset of plateau
in Vy . The plateaus inVy occur when the ratio offy to fx

is near a rational value:fyyfx ­ pyq, wherep andq are
integers. In Fig.1(a) the largest plateaus occur atpyq ­
0, 1y3, 1y2, 2y3, and1. Figure 1(b) shows a blowup of
a region in Fig. 1(a) for values offy ­ 0.6f0 to 2.1f0,
where additional plateaus atpyq ­ 1y5, 1y4, 2y5, 3y7,
and3y5 are highlighted. For larger system sizes we fin
exactly the same behavior inVy and Vx as observed in
Fig. 1, indicating that it is independent of the system siz

Vortex dynamics and the origin of the plateaus.—
To understand why the plateaus occur as well as t
VL dynamics in the plateau and nonplateau regions,
Figs. 2(a)–2(d) we plot the vortex trajectories for ratio
nal ratios offyyfx ­ 0, 1y2, 1, and the irrational ratio
fyyfx ­ 2py11 ­ 0.571 . . . . In Fig. 2(a), wherefy ,

fc
y , the vortex motion traverses pin sites periodically an

it is along only thex direction—with the vortex flow re-
stricted in 1D pathsalongthe pinning rows. This periodic
1D motion persists up tofy ­ fc

y , at which point the vor-
tices also begin to flow in they direction. In Fig. 2(b),
for pyq ­ 1y2 where a large plateau inVy is observed in

FIG. 1. (a) Average longitudinalVx (upper curve) and trans-
verseVy velocities versus the transverse driving forcefy for
a 36l 3 36l sample with a square pinning array, density o
field lines B satisfying ByBf ­ 1.062, matching fieldBf ­
0.4F0yl2, density of pinning sitesnp ­ 0.4yl2, fp ­ 2.5f0,
a ­ 1.57l, andrp ­ 0.3l. fx is fixed atfx ­ 3.0f0. Plateaus
are seen inVy near values wherefyyfx ­ pyq, wherep and
q are integers. The largest plateaus (at0y1, 1y3, 1y2, 2y3,
and1y1) are clearly seen. (b) shows a blowup ofVy from (a),
for fy ­ 0.6f0 to 2.1f0, where additional plateaus at1y5, 1y4,
2y5, 3y7, and3y5 can be seen more clearly. The overall struc
ture in Vy is that of a devil’s staircase [1–3].
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Fig. 1, the vortices again exhibit periodic motion and flo
in 1D channelsalongthe pinning sites—and along a sym
metry axis of the pinning array at an angleu ­ tan21s1y2d
from the x axis. A similar periodic 1D motion is seen
in Fig. 2(d) for fyyfx ­ 1, with the VL motion at 45±

from thex axis. In Fig. 2(c), at the irrationalfyyfx ratio,
the vortex trajectories are different than those observed
Figs. 2(a), 2(b), and 2(d). Here the quasiperiodic vort
trajectories drift over time, eventually covering the samp
(i.e., ergodiclike motion). In general, the plateau regio
(with rationalfyyfx) in VysId correspond to periodic 1D
vortex trajectories, while the nonplateau regions produ
quasiperiodic trajectories [1,2,13].

To understand how the vortex motion locks into certa
driving angles, we first consider the casefyyfx ­ 0.
Here the vortices move along the pinning rows in 1
paths, with each vortex traversing a distancea 2 2rp

between pinning sites, as seen in Fig. 2(a). An applicat
of a transverse forcefy causes the moving vortices to
drift a small distance in they direction. Once the vortices
interact with the pinning sites, they feel a force that mov
them towards the center of the pinning site which kee
them locked along thex direction. Whenfy is large
enough,fc

y * fx tansrpyad [13], the vortices are able to
break off from moving only along thex direction and start
moving in they direction as well.

As fy is increased beyondfc
y , the net driving force

vector will be at an angle with the horizontal. Because
the symmetry of the square pinning array, along the ang
where u ­ tan21spyqd, the vortices encounter pinning
sitesperiodicallyspaced a distanceau apart. This distance
is related to the pinning lattice constanta by au ­ asp2 1

q2d1y2. Along these commensurate angles, the vort
motion will be periodic and locked in 1D channels in
similar manner as thefyyfx ­ 0 case. The force needed
to depin the vortices from the commensurate angles w
vary since au varies. For values whereau is small,
the vortices will move only a small distance betwee
pinning sites, so a higher depinning force is needed. F
large au the vortices will move a much longer distanc
before encountering the pinning sites, so a much sma
depinning force is needed. This is in agreement with Fig
where thelargestplateaus (due to enhanced pinning) occ
for values ofpyq that produce the lowest distance betwee
pinning sites, that is, thesmallestau (i.e.,pyq ­ 0y1, 1y1,
and1y2).

The onset of certain plateaus coincides with a va
ety of structural transitions in the VL. We quantify this
angle-dependent evolvingtopological orderby using the
Voronoi (or Wigner-Seitz) construction to obtain the frac
tion of vortices with coordination numbers six,P6, and
four, P4. In Figs. 3(a) and 3(b) we show the evolutio
of P6 and P4 as fy is increased, for the same system a
in Fig. 1. Forfy , fc

y , P6 ø 0.68, indicating a mostly
triangular VL. At fy ­ fc

y , a dip in P6, along with di-
rect observation of the VL flow, shows that the VLdis-
ordersdue toplasticdeformations. Right after the initial
415
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FIG. 2. The vortex trajectories for a subset of the system in Fig. 1 at the plateau regions (a)fyyfx ­ 0, (b) fyyfx ­ 1y2, and
(d) fyyfx ­ 1y1, and at the nonplateau region (c)fyyfx ­ 2py11 ­ 0.571 . . . . At the plateau regions, the vortices move in 1D
channels, periodically along the pinning rows, while at the nonplateau regions the vortices exhibit quasiperiodic trajectories.
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dip in P6 the VL suddenly regains considerable triangula
ordering, as indicated byP6 ø 0.95. Small dips inP6 can
be seen near the1y4, 1y3, and2y3 locking regions. At the
1y2 locking region the VL is considerably disordered, a
indicated by the sharp drop inP6. This is consistent with
Fig. 3(c), where both the vortex positions and Voron
polygons are shown for a12l 3 12l region in the1y2
locking region. At the1y1 locking regionP6 drops almost
to zero while P4 increases to about0.9, indicating a
structural phase transition from a triangular to asquare
VL. Here, thefy ­ fx symmetric drive is what produces
a moving square VL. The less symmetric drives (2fy ­ fx

and3fy ­ fx) produce more distorted squares [13]. Fo
the special case whenfy ­ 0 and for theB used in Fig. 3,
correlations between nearby VL rows are strong, and n
2y3 of the VL has triangular order (which diminishes fo
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FIG. 3. The fraction of (a) sixfoldP6 and (b) fourfold P4
coordinated vortices versus transverse driving forcefy , for the
same system as in Fig. 1. Large drops inP6 can be seen atfc

y ,
as well as at the1y2 and 1y1 locking regions. Smaller dips
in P6 can be seen at the1y4, 1y3, and 2y3 plateaus regions.
At the 1y1 transition P4 rises toø0.9 indicating a transition
to a square VL. In (c), (d), and (e) both the vortex position
and Voronoi polygons for a subset of the VL can be seen f
(c) the1y2 locking region, where a disordered VL is observed
(d) right before the1y1 plateau, with a triangular VL; and
(e) at the1y1 plateau, with a square VL.
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weakerB’s). In Figs. 3(d) and 3(e) the vortex positions
and Voronoi polygons are shown for (d) rightbeforethe
transition to the1y1 locking region and (e)in the 1y1
locking region showing the triangular and square orderin
of the VL, respectively. Rightat the boundaries of the
1y1 phase, the VL is strongly disordered and has a simila
structure to Fig. 3(c).

Phase diagrams with Arnold tongues.—We have de-
rived five phase diagramswhich indicate the evolution
of the plateau regions versus the following parameter
fp, np, rp , commensurability, and disorder. These five
phase diagrams are all very similar, and thus here w
present only one: Fig. 4(a). This is obtained by conduc
ing a series of simulations in which the maximum pinning
force fp is varied between0.25 # fpyf0 # 2.75. The
phase diagram shows 18 clearly defined (shaded)Arnold
tonguesor plateaus [1–4]. Asfp is decreased the widths
of the tongues also show a corresponding decrease. F
fpyf0 . 2.5 several locking phases are lost (i.e., 1y6, 4y7,
5y6) due to overlapping by other locking regions. Fo
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FIG. 4. (a) Phase diagram, for the system in Fig. 1, showin
Arnold tongues (shaded), i.e., the widths of the locking region
versusfp . As fp decreases, the tongues (locking regions wit
periodic trajectories) shrink. In (b) and (c) the width of the firs
locking region orfc

y is shown versus pinning lattice constanta
(b) and disorderdry2a (c).
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fpyf0 , 1.0 only the strongest plateau regions can be r
solved within the accuracy of our calculations.

The phase diagram in Fig. 4(a) has thesamestructure
as Arnold tongues [1–4] found in phase-locking system
where the widths of the tongues, or locking region
increase as the nonlinear coupling increases. Here,
coupling is between the vortices and the pinning array, a
is increased with increasingfp, rp , np, density of vortices
(i.e., the commensurabilityByBf), and pin-location order
[13]. In Fig. 4(b) we present the width of the0y1 locking
region for varying pinning density in units of the pinning
lattice constanta. As a decreases the width of the locked
region increases. This can be understood by consider
that asa decreases the vortices in the locked region w
move a smaller distance between pinning sites; thus
higher transverse force is needed to break the vortic
away from the locked region. The widths of the othe
locked regions show the same behavior as the0y1 region
for increasinga [13].

We have also examined the effects of pin disorder
the width of the locking regions by conducting a serie
of simulations in which the pinning sites are random
displaced up to an amountdr away from the perfectly
square pinning lattice. We consider the case wheredr ­
ay2 to be a good approximation to a random pinning arra
In Fig. 4(c), we examine how the width of the0y1 locking
region,fc

y , decreases asdr is increased. It is of interest to
compare our results for large disorder with Ref. [6(a)]
which a nonzero transverse critical forcefc

y was predicted.
RecentT ­ 0 MD simulations have observed extremel
small transverse barriers [6(b)]. We find that for larg
disorder,dr ­ ay2, a true transverse barrier (i.e.,Vy ­ 0)
is not observed. Also, for a triangular array of pins, th
plateaus occur foru ­ tan21f

p
3 pys2q 1 1dg.

In conclusion, we have found that as an increasing tra
verse force is applied to a strongly driven VL interac
ing with a periodic pinning array, the VL undergoes
remarkable series of locking transitions in which both th
VL order and flow patterns change. As the VL pass
through these transitions,Vy exhibits a striking series of
plateaus forming a devil’s staircase structure. The wid
variations of these plateaus with different pinning form
Arnold tongues which can be indexed via a Farey tr
construction. These locking effects occur whenever t
VL is driven along a symmetry angle of the pinning ar
ray. For a square pinning array, the locking phases o
cur when driving in the longitudinal direction is a rationa
ratio, fyyfx ­ pyq. These predictions can be tested e
perimentally, and we hope that this work will motivat
several novel experiments. Moreover, other candidate s
tems where these predictions may be accessible inclu
driven Wigner crystals interacting with a periodic arra
of donors, driven colloids interacting with optical-trap ar
rays, spin- and charge-density waves, Josephson-junc
arrays, and solid friction experiments.

We thank F. Marchesoni, M. Bretz, and especially C.
Olson for useful discussions.
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