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Phase Locking, Devil’s Staircases, Farey Trees, and Arnold Tongues
in Driven Vortex Lattices with Periodic Pinning
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Using numerical simulations, we observe phase locking, Arnold tongues, and devil's staircases for
vortex lattices driven at varying angles with respect to an underlying superconducting periodic pinning
array. This rich structure should be observable in transport measurements. The travi$iecseves
have a devil's staircase structure, with plateaus occurring near the driving angles along symmetry
directions of the pinning array. Each of the plateaus corresponds to a different dynamical phase with a
distinctive vortex structure and flow pattern. [S0031-9007(98)08095-8]

PACS numbers: 74.60.Ge, 64.70.Rh, 74.60.Jg

Numerous nonlinear driven systems in physics, as- Simulation—We consider a 2D slice aV, 3D rigid
tronomy, and engineering exhibit striking responses withvortices interacting with a square array 8f, parabolic
complex phase-locking plateaus characterized by devil'svells, with lattice constant, and periodic boundary con-
staircases, Arnold tongues, and Farey trees [1-4]. Herglitions. We integrate [8] the equations of vortex motion
we present the first evidence that these structures can fie= ;" + £ + 1, = nv;. The total forcef; on vor-
observed in bulk superconductors. tex i includes interactions with other vorticd$", pin-

Driven vortex lattices (VLs) interacting with either ran- ning f;” by parabolic wells, and an applied driving force
dom or periodic disorder have attracted growing interest, = f,X. The vortex-vortex interaction between vortex
dut_e to the rich variety of nonequilibrium dynamic phasesi and the otherN, vortices isf’’ = Zj'viﬁoKl(ll‘i _
which are observed in these systems. These phases in-, .. . o .
clude the elastic and plastic flow of vortices which can be'/ |/VF;, whereKi(r/A) is mOS"f'eOL BSesAseI function,
related to VL order and transport properties [5-9]. Pe-! IS the penetration deptlfy = ®g/8m°A°, ; = (r; —
riodic pinning arrays interacting with VLs are now at- r;)/Ir; — 1;l, and we sety = 1. Here,f, is the max-
tracting increasing attention as recent experiments witihum pinning force, and,, is the radius of the pinning

patterns of holes [10] and magnetic dots [11] have proyvell. All lengths, fields, and forces are given in units of

) )
duced interesting commensurability effects and enhancef ®o/A%, and f, respectively. F(_)r most of the results
resented here the number of vortices is close to the num-

inning. These systems are an excellent realization of a o .
P g y er of pinning sitesy, = 1.062N,. We have conducted

elastic lattice interacting with a periodic substrate that i X - ; . : L
a series of simulations with different pinning parameters

found in a wide variety of condensed matter systems in< h h di fthe d ic oh
cluding charge-density waves, Josephson-junction array§O that accurate phase diagrams of the dynamic phases

and Frenkel-Kontorova-type models of friction (see, e.g.ca" be obtained. In order to investigate finite size effects

12]). An interesting aspect of periodic pinning arrays that'€ have examined syst(_em sizes varying betw&@h X
[12) gaspectotp pInning array 364 and 108 X 108, with N, betweeny, = 550 and

has not been addressed so far is how the symmetry pro
. . v = 4955,
erties of the array affect the transport properties as the V .
Voltage-current response-First, the VL ground state

Is driven at different angles. At zero applied driving force is found by simulated anneal
We find that lowly i ing t f ) ; : i
e find that as a slowly increasing transverse forc ing (i.e., by cooling the VL from highr"). After a low

is applied to a VL already moving in the longitudinal . ; . -

direction, the VL undergoes a remarkable seriglodking energy grpund state is found, a slpwly Increasing dnvmg

transitionsthat significantly affect both the VL ordering force, /., is applleq along th? horlzontal symmetry axis
lﬂ’f the square pinning. We find that increasifigin in-

and transport properties. These locking phases occ .
when the direction of the vortex motion locks with a Crements 0D.001f, every 400 MD (molecular dynamics)

symmetry direction of the pinning array. As the VL passeSStepS’ frony. =0t f; =3.0fo,Is slow enough '_[hat the
through these phases, the transverse velocity compone Qrex dy”a”?'cs does not depeno_l on the rate of Increase of
as a function of increasing transverse drive shows a series: Oncef{c is brought t03.'0f0 Itis h'eld canstant while

of plateaus which form a devil's staircase structure [1_a fc_)rce,_ which we labef,, is applied in the transverse or
3]. At the boundaries of certain locked phases the v direction. We increasg, from 010 3.25fo, also in in-
undergoes a transition to @lastic flow phase in which crements 00.001 o every 400 MD step;s. Th2e 1tgtal driv-
defects are generated in the VL. In the locked phases tH@9 force has ?lnet magnitude of = (f; + f;)/" atan

VL undergoeselastic flow in static 1D channels and the angled = tan™'(f,/f.) with respect to ther direction.
overall VL has a variety of orderings, including triangular W& compute the average velocity of the moving vortices

and square. in both the longitudinaV, = (1/N,,)Z§V;1 v; - % and the
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transverséd/, = (1/Nv)Zf~V:"1 v; - § directions, ag, isin-  Fig. 1, the vortices again exhibit periodic motion and flow
creased. Velocity versus driving plots correspond to exin 1D channelslongthe pinning sites—and along a sym-
perimentally measurable voltage-currét) curves. metry axis of the pinning array at an angle= tan™'(1/2)

In Fig. 1(a) we present a typical plot f andV,. For from thex axis. A similar periodic 1D motion is seen
fy = 0.4fy, V, = 0 indicating that the VL ispirinedin in Fig. 2(d) for f,/f, = 1, with the VL motion at 48
the y direction even though the VL is moving in the from thex axis. In Fig. 2(c), at the irrationdl, /f, ratio,
direction. Depinning in the transverse direction occurs athe vortex trajectories are different than those observed in
fy = 0.4fo, as indicated by the sharp jump upWf. We  Figs. 2(a), 2(b), and 2(d). Here the quasiperiodic vortex
label this critical transverse depinning forge. A jump  trajectories drift over time, eventually covering the sample
up inV, is also observed &. As f, islinearly increased, (i.e., ergodiclike motion). In general, the plateau regions
V, doesnot grow linearly but instead in a remarkable (with rational f,/f.) in V,(I) correspond to periodic 1D
series ofjumpsand plateausof varying sizes [3]. Along Vvortex trajectories, while the nonplateau regions produce
the plateausV, is constant or increasing very slowly, quasiperiodic trajectories [1,2,13].
indicating that the vortex motion ilckedin a certain To understand how the vortex motion locks into certain
direction for a finite range of increasing,. The small driving angles, we first consider the cagg/f. = 0.
jumps and dips irV/, correspond to the onset of plateausHere the vortices move along the pinning rows in 1D
in V. The plateaus i¥, occur when the ratio of, to f, ~ paths, with each vortex traversing a distance- 2r),
is near a rational valuefy, /f. = p/q, wherep andg are  between pinning sites, as seen in Fig. 2(a). An application

integers. In Fig.1(a) the largest plateaus occup 4 =  of a transverse forcg/, causes the moving vortices to
0,1/3,1/2,2/3, and1. Figure 1(b) shows a blowup of drift a small distance in the direction. Once the vortices
a region in Fig. 1(a) for values of, = 0.6/, to 2.1fo, interact with the pinning sites, they feel a force that moves

where additional plateaus at/q = 1/5, 1/4,2/5,3/7, them towards the center of the pinning site which keeps
and3/5 are highlighted. For larger system sizes we findthem locked along the: direction. Whenf, is large
exactly the same behavior ivi, and V, as observed in enough,fs = f,tan(r,/a) [13], the vortices are able to
Fig. 1, indicating that it is independent of the system sizebreak off from moving only along the direction and start
Vortex dynamics and the origin of the plateaws. moving in they direction as well.

To understand why the plateaus occur as well as the As f, is increased beyongy, the net driving force
VL dynamics in the plateau and nonplateau regions, irvector will be at an angle with the horizontal. Because of
Figs. 2(a)—2(d) we plot the vortex trajectories for ratio-the symmetry of the square pinning array, along the angles
nal ratios of f,/f, = 0, 1/2, 1, and the irrational ratio where § = tan"'(p/q), the vortices encounter pinning
fy/fx =2m/11 = 0.571.... In Fig. 2(a), wheref, <  sitesperiodicallyspaced a distaneg, apart. This distance
/¢, the vortex motion traverses pin sites periodically ands related to the pinning lattice constanby ay = a(p® +
it is along only thex direction—with the vortex flow re- ¢%)"/2. Along these commensurate angles, the vortex
stricted in 1D pathsalongthe pinning rows. This periodic motion will be periodic and locked in 1D channels in a
1D motion persists up t6, = f¢, at which point the vor- ~similar manner as th¢, /f. = 0 case. The force needed
tices also begin to flow in the direction. In Fig. 2(b), to depin the vortices from the commensurate angles will
for p/q = 1/2 where a large plateau ivi, is observed in vary sinceay varies. For values where, is small,
the vortices will move only a small distance between
pinning sites, so a higher depinning force is needed. For
large ay the vortices will move a much longer distance
before encountering the pinning sites, so a much smaller
depinning force is needed. Thisisin agreementwith Fig. 1
where thdargestplateaus (due to enhanced pinning) occur
for values ofp /q that produce the lowest distance between
pinning sites, that is, themallesty (i.e.,p/q = 0/1,1/1,
1 1,/1, 16 20 andl/z)-

The onset of certain plateaus coincides with a vari-
\';'e%el‘-/ \sz)lo%?{ieersgvirlgﬂsgittﬁgiqg Es(ifrréir C(i:l’l;l\;:/r'le) ?(;‘U%;rfg:‘s' ety of structural transitions in the VL. We quantify this
a 361 X 36A sample with a square pinning arrgy, density of angle—d_epend_ent evol\{lrt@pologlcal_orderby using the
field lines B satisfying B/B,, — 1.062, matching fieldB, —  YOronoi (or Wigner-Seitz) construction to obtain the frac-
0.4®/A2, density of pinning sites:, = 0.4/A2, f, = 2.5f0, tion of vortices with coordination numbers siRs, and
a = 1.57A,andr, = 0.3\. f, isfixed atf, = 3.0fo. Plateaus four, P4. In Figs. 3(a) and 3(b) we show the evolution

are Se_efl invy nez#rhvallues V\/thellrﬁ‘tv/fx =(Q a1;1/ ql./\th?;%P 26}%(1 of P¢ and P, as f, is increased, for the same system as
g are integers. The largest plateaus @at, 1/3, 1/2, 2/3, i Ei — re - L Jiaati

and1/1) are clearly seen. (b) shows a blowupaf from (a), n Fig. Il' \Z?rf;& > fy_’ Pf ((;._68_, Indlca;tlng a _mhoztlly
for f, = 0.6f, to 2.1f,, where additional plateaus &f5, 1/4, triangular . tfy = fy, adipinPg, along wit ar-
2/5,3/7, and3/5 can be seen more clearly. The overall struc-€Ct observation of the VL flow, shows that the \dis-

ture in V, is that of a devil's staircase [1-3]. ordersdue toplastic deformations. Right after the initial
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FIG. 2. The vortex trajectories for a subset of the system in Fig. 1 at the plateau regiofg fa)= 0, (b) f,/f, = 1/2, and
(d) f,/f« = 1/1, and at the nonplateau region (£)/f. = 2a/11 = 0.571.... At the plateau regions, the vortices move in 1D
channels, periodically along the pinning rows, while at the nonplateau regions the vortices exhibit quasiperiodic trajectories.

dip in Pg the VL suddenly regains considerable triangularweakerB’s). In Figs. 3(d) and 3(e) the vortex positions
ordering, as indicated b§s = 0.95. Small dips inPc can  and Voronoi polygons are shown for (d) righeforethe

be seen near thi/4, 1/3, and2/3 locking regions. Atthe transition to thel/1 locking region and (e)n the 1/1

1/2 locking region the VL is considerably disordered, aslocking region showing the triangular and square ordering
indicated by the sharp drop . This is consistent with of the VL, respectively. Righat the boundaries of the
Fig. 3(c), where both the vortex positions and Voronoil/1 phase, the VL is strongly disordered and has a similar
polygons are shown for &2A X 12\ region in thel/2  structure to Fig. 3(c).

locking region. At thel/1 locking regionP¢ drops almost Phase diagrams with Arnold tonguesWe have de-

to zero while P, increases to aboud.9, indicating a rived five phase diagramsvhich indicate the evolution
structural phase transition from a triangular tesguare of the plateau regions versus the following parameters:
VL. Here, thef, = f, symmetric drive is what produces f,, n,, r,, commensurability, and disorder. These five
amoving square VL. The less symmetricdrives(= f,  phase diagrams are all very similar, and thus here we
and3f, = f,) produce more distorted squares [13]. Forpresent only one: Fig. 4(a). This is obtained by conduct-
the special case whefy = 0 and for theB used in Fig. 3, ing a series of simulations in which the maximum pinning
correlations between nearby VL rows are strong, and nedorce f, is varied betwee.25 = f,/fo = 2.75. The

2/3 of the VL has triangular order (which diminishes for phase diagram shows 18 clearly defined (shadedpld
tonguesor plateaus [1-4]. Ag, is decreased the widths
of the tongues also show a corresponding decrease. For
fp/fo > 2.5 several locking phases are lost (i.€/614/7,

. 5/6) due to overlapping by other locking regions. For

3
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FIG. 3. The fraction of (a) sixfoldP?s and (b) fourfold P, o3 =l
coordinated vortices versus transverse driving fofgefor the = =
same system as in Fig. 1. Large dropsincan be seen L 01 4 : | T
as well as at the /2 and 1/1 locking regions. Smaller dips Lattice Constant a Displacement 3r/2a

in Pg can be seen at theé/4, 1/3, and2/3 plateaus regions.

At the 1/1 transition P, rises to~0.9 indicating a transiton FIG. 4. (a) Phase diagram, for the system in Fig. 1, showing
to a square VL. In (c), (d), and (e) both the vortex positionsArnold tongues (shaded), i.e., the widths of the locking regions
and Voronoi polygons for a subset of the VL can be seen fowversusf,. As f, decreases, the tongues (locking regions with
(c) the 1/2 locking region, where a disordered VL is observed; periodic trajectories) shrink. In (b) and (c) the width of the first
(d) right before thel/1 plateau, with a triangular VL; and locking region orf; is shown versus pinning lattice constant
(e) at thel/1 plateau, with a square VL. (b) and disordebr/2a (c).
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fp/fo < 1.0 only the strongest plateau regions can be re-[1] H.G. Shuster Deterministic ChaogVCH Verlag, Wein-

solved within the accuracy of our calculations. heim, 1988); E. Ott,Chaos (Cambridge, New York,
The phase diagram in Fig. 4(a) has temestructure 1993); P. Bak, Phys. Tod&39, No. 12, 38 (1986).

as Arnold tongues [1—4] found in phase-locking systems [2] Such structures are found in numerous nonlinear systems

where the widths of the tongues, or locking regions, in nature [1] and are indicative of phase locking (i.e.,

when the ratiow, known as the winding number, of
two competing frequencies is a rational numbefq).

Orbits are periodic whew is rational, and quasiperiodic
(space filling, or ergodic, for large times) otherwise

increase as the nonlinear coupling increases. Here, the
coupling is between the vortices and the pinning array, and
is increased with increasing,, r,,, n,, density of vortices

(i.e., the commensurabilitg/B ), and pin-location order [1]. Note that here there isi0 external acdriving
[13]. InFig. 4(b) we present the width of tig1 locking as in previous systems (e.g., charge density waves and
region for varying pinning density in units of the pinning Josephson junctions) that exhibited these phase-locking
lattice constan&. As a decreases the width of the locked plateaus [1]. Here the two frequencies are internal: from

region increases. This can be understood by considering the VL motion along ther andy directions.

that asa decreases the vortices in the locked region will [3] The overall structure of the transverse voltagg/) is
move a smaller distance between pinning sites; thus a thatofa devil's staircasg1], in which plateaus appear at
higher transverse force is needed to break the vortices rational ratios off,/f. = p/q with the largest plateaus
away from the locked region. The widths of the other occurring whenp/q has the smallest denominator, in

. . . agreement with Fig. 1. The hierarchy of plateau sizes
Iocl_<ed regions show the same behavior asitheregion follows the Farey tree construction [1], which orders
for increasinga [13].

. . . all rationals in[0,1] with increasing denominatorg
We have also examined the effects of pin disorder on  5ccording to the rule that the largest plateau between

the width of the locking regions by conducting a series  , /4 andp’/q'is (p + p')/(q + ¢') and orders all mode-

of simulations in which the pinning sites are randomly locking steps withw = p/q according to their decreasing
displaced up to an amourdtr away from the perfectly widths [1].

square pinning lattice. We consider the case widare= [4] Note that Arnold tongues are typically studied in the
a/2 to be a good approximation to a random pinning array. ~ context of nonlinear circle maps wittwo degrees of
In Fig. 4(c), we examine how the width of tg1 locking freedom [1]. Here we haveery manydegrees of freedom
region, f¢, decreases a& is increased. Itis of interest to which are interacting with each other and also with

numerous sites in the substrate. Moreover, our dynamics

compare our results for large disorder with Ref. [6(a)] in is continuous not adiscretemap. Thus, our VL system

which a nonzero tra_nsversg critical forﬁ)éwas predicted. is far more complex than the standard discrete 2D maps
RecentT = 0 MD simulations have observed extremely used to describe phase-locked structures.
small transverse barriers [6(b)]. We find that for large 5] | Balents et al., Phys. Rev. B57, 7705 (1998):

disorder,6r = a/2, atrue transverse barrier (i.&, = 0) S. Spencer and H.J. Jenseibjd. 55 8473 (1997);
is not observed. Also, for a triangular array of pins, the A.E. Koshelev and V.M. Vinokur, Phys. Rev. Left3,
plateaus occur fof = tan '[\/3 p/(2¢ + 1)]. 3580 (1994).

In conclusion, we have found that as an increasing trans{6] (a) T. Giamarchi and P. Le Doussal, Phys. Rev5SRB
verse force is applied to a strongly driven VL interact- 11356 (1998); (b) K. Moon, R.T. Scalettar, and G.T.

ing with a periodic pinning array, the VL undergoes a __ Zimanyi, Phys. Rev. Lett77, 2778 (1996).

remarkable series of locking transitions in which both the [7] S: Bhattacharya and M.J. Higgins, Phys. Rev. L&,
VL order and flow patterns change. As the VL passes 21691;5(1993)' U. Yaroret al., Nature (London)376, 753
through these_ transitionf’i/,y ex'hibits a striking series O.f [8] E: Re)iéhhardt, C.J. Olson, and F. Nori, Phys. Rev. Lett.
plateaus forming a devil’s staircase structure. The width 78, 2648 (1997).

variations of these plateaus with different pinning form 9] £ Nori, Science271, 1373 (1996); C. Reichhardit al.,
Arnold tongues which can be indexed via a Farey tree = phys. Rev. B58, 7937 (1998)54, 16 108 (1996).
construction. These locking effects occur whenever th¢l0] T. Matsudaet al., Science271, 1393 (1996); K. Harada
VL is driven along a symmetry angle of the pinning ar- et al., ibid. 274, 1167 (1996); M. Baeret al., Phys. Rev.
ray. For a square pinning array, the locking phases oc-  Lett. 74, 3269 (1995); J.Y. Liret al., Phys. Rev. B54,
cur when driving in the longitudinal direction is a rational R12714 (1996); A. Castellancet al., Appl. Phys. Lett.
ratio, f,/f« = p/q. These predictions can be tested ex- 71 962 (1997).

perimentally, and we hope that this work will motivate [11] J:I. Martn et al,, Phys. Rev. Lettr9, 1929 (1997); D.J.
several novel experiments. Moreover, other candidate sys._. VM0rgan and J. B. Kettersoibid. 80, 3614 (1998).

L . . 12] Charge Density Waves in Solidsdited by L. P. Gorkov
tems where these predictions may be accessible include and G. Gruner (Elsevier, New York, 1989): S. E. Hebboul

driven Wigner crystals interacting with a periodic array and J.C. Garland, Phys. Rev. &, 5190 (1993); L. M.

of donors, driven colloids interacting with optical-trap ar- Floria and F. Falo, Phys. Rev. Lei8, 2713 (1992); O. M.
rays, spin- and charge-density waves, Josephson-junction  Braun,et al., ibid. 78, 1295 (1997).
arrays, and solid friction experiments. [13] C. Reichhardt and F. Nori (unpublished). Magnified
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