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Topological Invariants in Microscopic Transport on Rough Landscapes: Morphology,
Hierarchical Structure, and Horton Analysis of Riverlike Networks of Vortices
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(Received 4 September 1998)

River basins as diverse as the Nile, the Amazon, and the Mississippi satisfy certain topological
invariants known as Horton’s laws. Do these macroscopic (up to103 km) laws extend to the micron
scale? Through realistic simulations, we analyze the morphology and statistical properties of networks
of vortex flow in flux-gradient-driven superconductors. We derive a phase diagram of the different
network morphologies, including one in which Horton’s laws of length and stream number are
obeyed—even though these networks are about109 to 1015 times smaller than geophysical river basins.
[S0031-9007(98)08235-0]

PACS numbers: 64.60.Ht, 74.60.Ge, 92.40.Fb
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The nature of river basins [1–4], including their physi
cal structure and evolution, has been a problem of ma
interest to civilized societies throughout history. Horton’
laws are perhaps one of the most intriguing properti
of river networks [1–4]. In order to apply them to a
network, the individual streams composing the netwo
must be identified and labeled with an order numbe
as in the top left corner of Fig. 1(a). The lowest orde
streams are the smallest outlying tributaries on the edg
of the network, according to the Strahler ordering schem
At each point where two tributary streams join, a ne
stream begins. Whenever two tributaries of the sam
order meet, the outgoing stream has an order number o
higher than that of the tributaries. If two tributaries o
different orders meet, the outgoing stream has the sa
order number as the higher ordered tributary. Eventual
all streams in the network combine to form the highe
order (main) stream. The number of streams of ord
w is Nw , while Lw is the average length of streams o
orderw. Horton’s laws state that the bifurcation ratioRB

and the length ratioRL, given by RB ­ NwyNw11 and
RL ­ Lw11yLw , are constant, or independent ofw. These
ratios also provide the fractal dimension [1–3] of the river
DF ø logRBy logRL. Geophysical river basins [1–3]
typically have values ofRB ø 4 and RL ø 2. Do these
(Horton’s) laws apply to microscopic landscapes? He
we present evidence that these macroscopic laws
obeyed at the microscopic scale by riverlike networks
flowing quantized magnetic flux.

Vortex River Basins.—Near the depinning transition,
magnetic vortices in type-II superconductors move
intricate flow patterns that have been seen both in co
puter simulations and in experiments, including fingerlik
or dendritic shapes as well as the filamentary flow o
vortices in riverlike paths and networks (see, e.g., [5–7
and references therein). Despite the ubiquity of th
riverlike pathways produced by the vortex motion, ver
little work has been done towards characterizing th
morphology of these flow patterns. Moreover, concep
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and ideas used for decades to characterize geophy
river basins havenot been applied to the study of th
microscopic flow through tree-shaped channel networ
This is surprising since the underlying physics of vorte
and geological rivers offers strikingsimilarities: driven
nonequilibrium dissipative systems displaying branch
(or ramified) transport among metastable states on a ro
landscape [8]. One is driven by the Lorentz force a
the other by gravity. Like geophysical rivers, vortex flo
basins exhibit sinuosity (i.e., tortuosity), anabranchin
braiding, occasional sudden floods, and other featu
that make them remarkably similar to geophysical rive
[1]. Indeed, some satellite photographs of river bas
are strikingly similar to the channels produced by vort
motion. However, significantdifferences also exist,
including: flow direction, quantized flux flow versu
continuum water flow, compressible vortex lattice vers
incompressible fluid, negligible inertia with overdampe
vortex dynamics versus massive fluid, nonerosion
versus erosional landscape, peripheral flux sources ve
uniform rain, and correlated long-range versus sho
range interactions (so the rapidly varying vortex-vort
repulsion landscape smooths out the underlying sta

FIG. 1. Snapshots of northbound vortex pathways: (a) Hor
nian (when the pinning force,fp , is stronger than the vortex-
vortex repulsionfyy ; i.e., at low B and highfp); (b) braided
(whenfp is comparable tofyy : B ø 3Bfy2 [7]); and (c) dense
(when pinning is much weaker thanfyy ; i.e., for B . 2Bf, or
at any field for lowfp). Here,np ­ 0.75yl2. The matching
field Bf occurs when the number of vorticesNy equals the
number of pinning sitesNp . Bf is used to quantify the relative
strength of pinning versus vortex-vortex repulsion [7].
© 1999 The American Physical Society 3641
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pinscape). This strongly correlated vortex dynamic
generates flux motion that can be either continuou
flow-type, like water, or intermittent stick-slip-type
motion—depending on the balance of forces. Also
vortices typically move over relatively flat landscape
with many divots, as opposed to the mountain-rang
like very rough landscapes of some geophysical river
Moreover, vortex river basins occur inside materials a
approximate scales between 1 to 100mm, much smaller
than geophysical river basins (of up to103 km)—and also
spanning a smaller range of length scales. Thus, giv
thesenumerous similarities and differences,it is very
uncleara priori which macroscopic results carry over to
the microscopic domain.

By conducting realistic simulations of slowly driven
vortices moving over many samples, we have identifie
several distinct network phases. These vortex basi
appear in the initial penetrating front of vortices [6,7]
Remarkably, we find that for a wide range of paramete
networks of vortex channels obey Horton’s lawsjust
as geophysical river networks do. This is remarkabl
given the many physical differences between basins
flux quanta and geophysical rivers and that they mov
over very different types of potential-energy landscape
Unlike previous work, here we first present a detaile
list of analogies and differences between river basins a
networks of vortex channels. Afterwards, we prese
the firstmorphologicalphase diagram for vortex motion.
Finally, we analyze the hierarchical structure of the vorte
channels.

Simulation.—We model a transverse 2D slice (in the
x-y plane) of an infinite zero-field-cooledT ­ 0 super-
conducting slab containing flux-gradient-driven 3D rigid
vortices that are parallel to the sample edge [6,7]. Vo
tices are added at the surface at periodic time interva
and enter the superconducting slab under the force of th
own mutual repulsion [6,7]. The slab is36l 3 36l in
size, wherel is the penetration depth. The vortex-vortex
repulsive interaction is correctly modeled by a modifie
Bessel function,K1sryld. The vortices also interact with
972 nonoverlapping attractive parabolic wells of radiu
jp ­ 0.3l. The density of pinsnp is np ­ 0.75yl2. All
pins in a given sample have the same maximum pinnin
force fp, which ranged fromfp ­ 0.3f0 to fp ­ 6.0f0
in 13 different samples. For each sample type, we co
sidered five realizations of disorder. Thus, the five poin
at each pinning force, delineating the broad crossov
boundary between Hortonian and braided phases in Fig.
refer to these five realizations of disorder. A sixth poin
indicating the average value from the five trials, is no
visible when it overlaps with another point. We measur
all forces in units off0 ­ F

2
0y8p2l3, magnetic fields in

units of F0yl2, and lengths in units of the penetration
depthl. Here,F0 is the flux quantum.

The overdamped equation of vortex motion i
fi ­ fyy

i 1 f
yp
i ­ hvi , where the total forcefi on vortex

i (due to other vorticesfyy
i , and pinning sitesf

yp
i ) is given
3642
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FIG. 2. The vortex river network morphological phase dia
gram for pinning forcefp versus magnetic fieldB for np ­
0.75yl2 (thus, hereBf ­ 0.75 F0yl2). In regions of very
low pinning force, dense vortex river networks dominate. F
higher pinningfp ’s, the Hortonian rivers become braided whe
B grows. For samples with a significant amount of pinnin
it is the initial front (with low local density of field linesB,
B , 3Bfy2 [7], and thus dominant pinning forcefp) which
branches out in a Hortonian manner. Behind this initial fro
follows the (intermediate-B) braided region. Further behind
follows the (large-B) dense-flux regime. The inset shows th
shift in the Horton-braided boundaryfp ­ 3.0f0 as the pinning
density,np , is changed. Asnp is increased, the Horton-braided
boundary shifts towards higherB. The broad crossover bounda
ries are in the region of triangles and rhombuses. The (pow
law fit) lines are just guides to the eye. The dense-braid
crossover at high fields (dashed line) is an extrapolation of
power-law-fit for low fields; the former is very difficult to com-
pute because it requires a large number of vortices monito
over very long times.

by fi ­
PNy

j­1 f0K1sjri 2 rjjyldr̂ij 1
PNp

k­1s fpyjpd 3

jri 2 r
s pd
k jQfjp 2 jri 2 r

s pd
k jgr̂ik . Here, Q is the

Heaviside step function,ri (vi) is the location (velocity)
of the ith vortex, r

s pd
k is the location of thekth pinning

site,jp is the pinning site radius,Np (Ny) is the number
of pinning sites (vortices),r̂ij ­ sri 2 rjdyjri 2 rjj,

r̂ik ­ sri 2 r
s pd
k dyjri 2 r

s pd
k j, and we takeh ­ 1.

Morphological characterization.—In order to identify
and characterize the vortex river networks formed as
flux-gradient-driven front initially penetrates the sampl
we divide our simulation area into a300 3 300 grid.
Each time a vortex enters a grid element, the coun
associated with that element is incremented. All gr
elements that are visited at least once by a vort
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are considered part of the network [6]. The maximum
number of vortices in the sample is approximately 120
The pinning densitynp and radiusjp were kept constant
at np ­ 0.75yl2 andjp ­ 0.3l, while the pinning force
fp varied from sample to sample. We also performe
additional simulations in whichfp was kept constant and
np varied fromnp ­ 0.15yl2 to np ­ 2.15yl2.

We observed three distinct vortex river network mor
phologies, depending on thelocal magnetic fieldB and
the pinning forcefp , as indicated in one of our main re-
sults: the “morphological phase diagram” in Fig. 2. In
Fig. 1 the vortex trajectories are presented for the thr
morphologies. In samples with low pinning force val
ues, fp & 0.75f0 (see Fig. 2), vortices flow throughout
the sample, producing dense vortex river basins. The
become space-filling for large times—or large fields sinc
the external field is slowly ramped up. An example o
the vortex channels in this regime, as they appear af
160 000 MD steps, is shown in Fig. 1(c). If the simu
lation is allowed to proceed for a larger number of MD
steps, the channels eventually fill the entire region show
in Fig. 1(c). For stronger pinning,fp * 1.0f0, and
low vortex densitiesB & F0yl2 ø 3Bfy2, we observe
branched “Hortonian” river networks that follow Horton’s
laws of stream number and length [see Fig. 1(a)]. A
higher magnetic fieldsB * F0yl2 ø 3Bfy2, the vortex
rivers become highly braided or interconnected and are
longer Hortonian in morphology [see Fig. 1(b)]. Unlike
the dense networks of Fig. 1(c), where preferred vorte
paths are uncommon, in the braided regime vortices co
sistently move along certain pathways, while in some a
eas of the sample vortex motion rarely occurs..

For low pinning forces in the dense network regime
vortex motion occursboth interstitially (with the vortices
moving only in the areas between pinning sites) and b
means of depinning. If vortex depinning is occurring i
a landscape with traps of comparable strength,no favored
paths for flux motion can form, leading to the observe
dense pathways. The Hortonian and braided regimes a
once the pinning is strong enough that predominant
interstitial motion occurs. That is, pinned vortices almo
never depin. Other vortices are prevented from movin
close to a pinned vortex by the vortex-vortex repulsio
which has a longer (by nearly 2 orders of magnitude
range than the attraction of each pinning site. Sin
there are regions of the sample (i.e., at or near pinn
vortices) where flux motion does not occur, the flow o
the moving vortices must be concentrated in certain we
defined regions or rivers, leading to the formation of eith
Hortonian or braided rivers.

The broad crossover between Hortonian and braid
rivers occurs when the flux density has increased enou
that a large fraction of the pinning sites are occu
pied. In Fig. 2, the crossover region increases fro
B ø 0.9 F0yl2 for fp ­ 1.0f0, to B ø 1.3 F0yl2 for
fp ­ 6.0f0. In each case, the crossover occurs at vort
densities higher (3Bfy2 & B , 2Bf) than the matching
0.
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field Bf ­ 0.75 F0yl2, whenNp ­ Ny [11]. This is in
agreement with the results for the inset of Fig. 2, whic
shows that the transition from Hortonian rivers to braide
rivers occurs at higher vortex densities asnp (and thereby
the matching field) is increased. Additional support fo
this interpretation comes from examining the fractionRups
of unoccupied pinning sites [Fig. 3(a)]. At the matching
field, Bf ­ 0.75 F0yl2, only about65% of the pins are
occupied [7,11]. The pins are not fully occupied until a
field of B ø 1.4 F0yl2 ø 2 Bf is applied—when the po-
tential energy landscape experienced by the moving vo
tices becomes much more uniform.

Horton analysis.— In order to determine whether the
vortex river networks we observe obey Horton’s laws, w
performed Hortonian analysis on five different realization
of disorder for each of eight different pinning forcesfp

falling within the Hortonian regime. In each trial, a
branching river was identified for analysis. The number
Nw and lengthsLw of streams of orderw ­ 1 to 4
were recorded [9]. Representative plots of the type us
to determine the length ratio,RL ­ Lw11yLw , and the
bifurcation ratio,RB ­ NwyNw11, are shown in Fig. 4. In
the best fit exponential regressions used to extractRL and
RB, the average correlation coefficient was0.99, indicating
a good fit to the Hortonian relationships. The averag
values for RB and RL throughout the Hortonian river
region wereRB ­ 3.99 6 0.18 andRL ­ 2.04 6 0.12, in
excellent agreement with geophysical rivers [1,10].

The characteristics of the Hortonian river networks ar
dependent on the pinning forcefp. In Fig. 3(b) we plot
the length ratiosRL, and fractal dimensionsDF , for each
pinning force in the Hortonian region. The branching
ratio (not shown) is roughly constant asfp is varied.
Changing the pinning force alters the ease with whic

FIG. 3. (a) FractionRups of unoccupied pinning sites (ups)
versusB for six samples with differentfp ’s. We find a change
in the rate at which pins become occupied with increasing fiel
it decreases noticeably forB . Bf. (b) The length ratioRL
andDFydc ­ logRBy logRL, versus the pinning force,fp . The
stream dimension,dc, is one. Only the trend in the fractal
dimensionDF can be observed from above because the err
bars forRL andDFydc are60.1. The lines are power-law best
fit curves, which only provide a guide to the eye. The formul
for DF gives values slightly above 2, because it assumes th
Horton’s laws hold at all length scales, while our vortex basin
only span a very limited range of length scales.
3643
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FIG. 4. The number of streamsNw of order w, and their
lengths Lw , for vortex river networks with three different
pinning forcesfp . Six different fp ’s gave virtually identical
plots—all obeying Horton’s laws.

individual vortices can be depinned, and thereby chang
RL andDfydc. As the pinning force decreases, it is mor
likely that some vortices will be depinned and form ne
pathways of vortex motion. This will decrease the leng
of the higher order rivers by cutting short how far th
vortex channels propagate before bifurcating. Therefo
RL will decrease with decreasingfp. Since a larger
number of paths are created theDf will increase with
decreasingfp, in agreement with Fig. 3(b).

In conclusion, we have analyzed the morphologi
of flux-flow channels slowly driven to its marginally
stable state, as a function of flux density and disord
strength. We have identified three distinct morphologi
[12] which include: A (largeB) dense network regime,
where flow can occur anywhere; a braided netwo
regime, where flow is restricted to certain regions; and
(low B) Hortonian network regime, where Horton’s law
of length and branching ratio are obeyed in agreeme
with geophysical rivers. Indeed, it seems promising
analyze tree-shaped channel flow at the microscopic le
adapting concepts that have already been successfu
treating macroscopic river basins. These types of analy
are largely unexplored. The direction and success of su
an approach constitutes an open and fascinating area.

C. J. O. (APM) acknowledges support from the GSR
of the microgravity division of NASA (NSF-REU). We
thank the Maui Supercomputer Center, R. Riolo, and t
UM-PSCS for providing computing resources. We than
F. Marchesoni, M. Bretz, E. Somfai, D. Tarboton, an
S. Peckham for their useful comments.

*Corresponding author.
Electronic address: nori@umich.edu

[1] I. Rodriguez-Iturbe and A. Rinaldo,Fractal River Basins:
Chance and Self-Organization(Cambridge, New York,
1997).

[2] G. Korvin, Fractal Models in the Earth Sciences
(Elsevier, Amsterdam, 1992); D. L. Turcotte,Fractals
and Chaos in Geology and Geophysics(Cambridge
University Press, Cambridge, 1992); J. Feder,Fractals
(Plenum, New York, 1988); B. B. Mandelbrot,The
Fractal Geometry of Nature(Freeman, San Francisco
1983).
3644
es
e
w
th
e
re

es

er
es

rk
a

s
nt

to
vel
l in
ses
ch

P

he
k
d

,

[3] R. E. Horton, Bull. Geol. Soc. Am.56, 275 (1945);
D. G. Tarboton, R. L. Bras, and I. Rodriguez-Iturbe, Wate
Resour. Res.24, 1317 (1988); 25, 2037 (1989); 26,
2243 (1990); S. D. Peckman,ibid. 31, 1023 (1995); D. G.
Tarboton, J. Hydr.187, 105 (1996); J. G. Masek and D. L.
Turcotte, Geology22, 380 (1994); I. Yekuteli and B. B.
Mandelbrot, J. Phys. A27, 285 (1994).

[4] E. Somfai and L. M. Sander, Phys. Rev. E56, R5 (1997);
S. Kramer and M. Marder, Phys. Rev. Lett.68, 205
(1992); A. Rinaldoet al., ibid. 70, 822 (1993); J. Watson
and D. S. Fisher, Phys. Rev. B55, 14 909 (1997).

[5] F. Nori, Science278, 1373 (1996); T. Matsuda,ibid. 278,
1393 (1996); H. J. Jensenet al., Phys. Rev. B38, 9235
(1988).

[6] C. J. Olson, C. Reichhardt, and F. Nori, Phys. Rev. Let
80, 2197 (1998).

[7] C. Reichhardtet al., Phys. Rev. B53, R8898 (1996).
[8] Recent efforts have been made to link river basins t

self-organized criticality [1]. Indeed, whenNp . Ny

(the Hortonian regime in Fig. 2), the adiabatic dynamic
of vortices also exhibits avalanches with power-law siz
distributions [C. J. Olson, C. Reichhardt, and F. Nori
Phys. Rev. B56, 16 108 (1997)].

[9] Streams of orderw ­ 5 and above were very rare in our
samples because our landscapes are flat, with small pa
bolic potentials on it. Thus, the vortex microscopic land
scape is very different from the quite rough mountainlike
landscapes used to model some geophysical river basi
Therefore, Horton’s laws for vortices do not extend ove
a wide range of length scales.

[10] The random topological model, among others, sugges
that many networks fit Horton’s laws. However, these
models ignore the fundamentally important role of the
third dimension: the landscape elevation. Also, thes
models ignore the physical laws that describe the carvin
of individual channels. For macroscopic river basins, th
role of both chance and necessity for Horton’s laws have
been lucidly discussed in [1]. Also, it is unclear how
these arguments can be extended to the microscopic sc
because the motion of flux quanta is highly correlated
For instance, one vortex can interact with a very larg
number of other quanta within a large radius, given byl.
This type of collective correlated motion is absent from
the simple random topological network models. Also
the lack of “uniform rain” and erosion inside materials,
common in river basin models, makes it difficult to
make comparisons with previous work on river basins
Moreover, there is no consensus on the precise conditio
required to obtain Horton’s laws at the macroscopic leve
(let alone at the microscopic quantum regime). Thes
issues are beyond the scope of this paper and will b
explored elsewhere.

[11] This is due to the fact that a fraction of pinning sites
remains unoccupied at the matching field, as shown
experiments and simulations [7]. This is a consequenc
of the random spatial distribution of the pinning. If one
pinning site is very close to a second site containin
a vortex, the repulsive force of the trapped vortex wil
prevent the empty pin from being occupied until the
vortex density increases further.

[12] Videos with examples of vortex river networks appear in
http://www-personal.engin.umich.edu/ n˜ ori


