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Topological Invariants in Microscopic Transport on Rough Landscapes: Morphology,
Hierarchical Structure, and Horton Analysis of Riverlike Networks of Vortices
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River basins as diverse as the Nile, the Amazon, and the Mississippi satisfy certain topological
invariants known as Horton’s laws. Do these macroscopic (updickm) laws extend to the micron
scale? Through realistic simulations, we analyze the morphology and statistical properties of networks
of vortex flow in flux-gradient-driven superconductors. We derive a phase diagram of the different
network morphologies, including one in which Horton's laws of length and stream number are
obeyed—even though these networks are abdUto 103 times smaller than geophysical river basins.
[S0031-9007(98)08235-0]

PACS numbers: 64.60.Ht, 74.60.Ge, 92.40.Fb

The nature of river basins [1-4], including their physi- and ideas used for decades to characterize geophysical
cal structure and evolution, has been a problem of majoriver basins havenot been applied to the study of the
interest to civilized societies throughout history. Horton’smicroscopic flow through tree-shaped channel networks.
laws are perhaps one of the most intriguing propertieghis is surprising since the underlying physics of vortex
of river networks [1-4]. In order to apply them to a and geological rivers offers strikingimilarities: driven
network, the individual streams composing the networknonequilibrium dissipative systems displaying branched
must be identified and labeled with an order number(or ramified) transport among metastable states on a rough
as in the top left corner of Fig. 1(a). The lowest orderlandscape [8]. One is driven by the Lorentz force and
streams are the smallest outlying tributaries on the edgekbe other by gravity. Like geophysical rivers, vortex flow
of the network, according to the Strahler ordering schemebasins exhibit sinuosity (i.e., tortuosity), anabranching,
At each point where two tributary streams join, a newbraiding, occasional sudden floods, and other features
stream begins. Whenever two tributaries of the saméhat make them remarkably similar to geophysical rivers
order meet, the outgoing stream has an order number orjg]. Indeed, some satellite photographs of river basins
higher than that of the tributaries. If two tributaries of are strikingly similar to the channels produced by vortex
different orders meet, the outgoing stream has the sanmaotion. However, significantdifferences also exist,
order number as the higher ordered tributary. Eventuallyincluding: flow direction, quantized flux flow versus
all streams in the network combine to form the highesttontinuum water flow, compressible vortex lattice versus
order (main) stream. The number of streams of ordemcompressible fluid, negligible inertia with overdamped
w is N,,, while L,, is the average length of streams of vortex dynamics versus massive fluid, nonerosional
orderw. Horton's laws state that the bifurcation rag  versus erosional landscape, peripheral flux sources versus
and the length ratidk;, given by Rz = N,,/N,,+1 and  uniform rain, and correlated long-range versus short-
R; = L,,+1/L,,, are constant, or independentof These range interactions (so the rapidly varying vortex-vortex
ratios also provide the fractal dimension [1-3] of the riversrepulsion landscape smooths out the underlying static
Dr =~ logRg/logR;. Geophysical river basins [1-3]
typically have values okz = 4 andR; = 2. Do these
(Horton’s) laws apply to microscopic landscapes? Here(a
we present evidence that these macroscopic laws ar ju 1
obeyed at the microscopic scale by riverlike networks of
flowing quantized magnetic flux.

Vortex River Basins—Near the depinning transition,
magnetic vortices in type-ll superconductors move in 4.0 : :
intricate flow patterns that have been seen both in comgg 1. snapshots of northbound vortex pathways: (a) Horto-
puter simulations and in experiments, including fingerlikenian (when the pinning forcef, , is stronger than the vortex-
or dendritic shapes as well as the filamentary flow ofvortex repulsionf” ; i.e., at low B and highf,); (b) braided
vortices in riverlike paths and networks (see, e.g., [5—7](whenf, is comparable t"” : B =~ 3B, /2 [7]); and (c) dense
and references therein). Despite the ubiquity of thehen pinning is much weaker thdf”; i.e., for B > 2By, or

. . . at any field for lowf,). Here,n, = 0.75/A%. The matchin
riverlike pathways produced by the vortex motion, verygqq };d) occurs W{é’r)] the number of vortices, equals thg

little work has been done towards characterizing theyumber of pinning sitea/,. B, is used to quantify the relative
morphology of these flow patterns. Moreover, conceptstrength of pinning versus vortex-vortex repulsion [7].
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pinscape). This strongly correlated vortex dynamics 6 . . ; ; o7+
generates flux motion that can be either continuous- 215 ' — ] /
flow-type, like water, or intermittent stick-slip-type f|¢>=‘?’-0fo /
motion—depending on the balance of forces. Also, 5 [,
vortices typically move over relatively flat landscapes Horton /
with many divots, as opposed to the mountain-range- 1.15 /

like very rough landscapes of some geophysical rivers. M
Moreover, vortex river basins occur inside materials at / 1
approximate scales between 1 to 106, much smaller Braided /
than geophysical river basins (of up6® km)—and also 0.15 //

K3

N
p

spanning a smaller range of length scales. Thus, given 3 ¢ 0O 1 2 3 .
thesenumerous similarities and differences,is very ° B 2
e . - (@ /1)
uncleara priori which macroscopic results carry over to = 0 Braided
the microscop.ic doma'in.. . ' . 2 | Hortonian W |
By conducting realistic simulations of slowly driven Ri iver Networks
) 4 . o iver Networks » A
vortices moving over many samples, we have identified /‘«b
several distinct network phases. These vortex basins
appear in the initial penetrating front of vortices [6,7]. Tr FOY Nt |
Remarkably, we find that for a wide range of parameters W/M
networks of vortex channels obey Horton's layust ] Dense River Networks
as geophysical river networks do. This is remarkable, 0 : : : : :
given the many physical differences between basins of 03 05 07 0-92 1.1 1.3
flux quanta and geophysical rivers and that they move B (®/)\)

over very different types of potential-energy landscapes. ) ) )
Unlike previous work, here we first present a detailed™!C: 2f. The _VO”]?X river network morpho'f(?gl'ca:‘ phase dia-
list of analogies and differences between river basins an r%n/] Azor(tﬂl?:mr?ergg:;f r ‘(;e7r55‘£0 /n;\?)gneltrllc nlaegifnsoro;lpv&y
networks of vortex channels. Afterwards, we presenioy pinning force, dense vortex river networks dominate.  For

the firstmorphologicalphase diagram for vortex motion. higher pinningf,’s, the Hortonian rivers become braided when
Finally, we analyze the hierarchical structure of the vortexB grows. For samples with a significant amount of pinning,
channels. it is the initial front (with low local density of field linesB,

: —— : : B < 3B4/2 [7], and thus dominant pinning forcg,) which
Simulation—We model a transverse 2D slice (in the branches out in a Hortonian manner. Behind thi[s initial front

x-y plane) of an infinite zero-field-coolefi = 0 super-  fojiows the (intermediate) braided region. Further behind,
conducting slab containing flux-gradient-driven 3D rigid follows the (largeB) dense-flux regime. The inset shows the
vortices that are parallel to the sample edge [6,7]. Vorshiftin the Horton-braided boundagy, = 3.0/, as the pinning

tices are added at the surface at periodic time intervalglensity.n,, is changed. A, is increased, the Horton-braided

: undary shifts towards high&:. The broad crossover bounda-
and enter the superconducting slab under the force of the es are in the region of triangles and rhombuses. The (power-

own mutual repulsion [6,7]. The slab BA X 36A in  ja fit) lines are just guides to the eye. The dense-braided

size, wherel is the penetration depth. The vortex-vortex crossover at high fields (dashed line) is an extrapolation of the

repulsive interaction is correctly modeled by a modifiedpower-law-fit for low fields; the former is very difficult to com-

Bessel functionk(r/A). The vortices also interact with pute because it requires a large number of vortices monitored

972 nonoverlapping attractive parabolic wells of radius®Ver Very long times.

&, = 0.3\ The density of ping, isn, = 0.75/A%. All

pins in a given sample have the same maximum pinningy f;, = Zj'vllfOKl(lri —rjl/DE; + zi’;l(fp/fp) X

force f,,, which ranged fromf, = 0.3f, to f, = 6.0f, I, — (p)|®[ e - (p)l]A_ H O is th

in 13 different samples. For each sample type, we conti Tk & i = T ULk ere, IS the

sidered five realizations of disorder. Thus, the five pointg_leaVISIde step fur(],?t"_)m" (vi) is t.he location (V(_EIO(_:'ty)

at each pinning force, delineating the broad crossove?f the ith vortex,r, is the location of thecth pinning

boundary between Hortonian and braided phases in Fig. 8it€. £, is the pinning site radiusy, (N,) is the number

refer to these five realizations of disorder. A sixth point,o‘c pinning sites (vortices),f;; = (r; — r;)/Iri — 1yl

indicating the average value from the five trials, is notéy; = (r; — r.”’)/Ir; — r.”)|, and we taken = 1.

visible when it overlaps with another point. We measure Morphological characterizatior—In order to identify

all forces in units off, = ®3/872A%, magnetic fields in and characterize the vortex river networks formed as the

units of ®y/A?, and lengths in units of the penetration flux-gradient-driven front initially penetrates the sample,

depthA. Here,® is the flux quantum. we divide our simulation area into 300 X 300 grid.
The overdamped equation of vortex motion isEach time a vortex enters a grid element, the counter

£, =" + 1" = nv;, where the total forc€; on vortex associated with that element is incremented. All grid

i (due to other vorticef!”, and pinning site§;”) is given  elements that are visited at least once by a vortex
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are considered part of the network [6]. The maximumfield B, = 0.75 ®,/A%, whenN, = N, [11]. This is in
number of vortices in the sample is approximately 1200agreement with the results for the inset of Fig. 2, which
The pinning density:, and radiust, were kept constant shows that the transition from Hortonian rivers to braided
atn, = 0.75/A* and &, = 0.3, while the pinning force rivers occurs at higher vortex densitiesrgs(and thereby
fp varied from sample to sample. We also performedhe matching field) is increased. Additional support for
additional simulations in whiclf, was kept constant and this interpretation comes from examining the fractiyy,

n, varied fromn, = 0.15/A>ton, = 2.15/A%. of unoccupied pinning sites [Fig. 3(a)]. At the matching
We observed three distinct vortex river network mor-field, B, = 0.75 ®,/A?, only about65% of the pins are
phologies, depending on tHecal magnetic fieldB and  occupied [7,11]. The pins are not fully occupied until a

the pinning forcef,, as indicated in one of our main re- field of B =~ 1.4 ®,/A* ~ 2 B, is applied—when the po-
sults: the “morphological phase diagram” in Fig. 2. Intential energy landscape experienced by the moving vor-
Fig. 1 the vortex trajectories are presented for the thredces becomes much more uniform.
morphologies. In samples with low pinning force val- Horton analysis— In order to determine whether the
ues, f, = 0.75f, (see Fig. 2), vortices flow throughout vortex river networks we observe obey Horton’s laws, we
the sample, producing dense vortex river basins. Thegeerformed Hortonian analysis on five different realizations
become space-filling for large times—or large fields sinceof disorder for each of eight different pinning forcg¢s
the external field is slowly ramped up. An example offalling within the Hortonian regime. In each trial, a
the vortex channels in this regime, as they appear aftdsranching river was identified for analysis. The numbers
160000 MD steps, is shown in Fig. 1(c). If the simu-N,, and lengthsL, of streams of ordew =1 to 4
lation is allowed to proceed for a larger number of MD were recorded [9]. Representative plots of the type used
steps, the channels eventually fill the entire region showio determine the length ratic®;, = L,,+1/L,,, and the
in Fig. 1(c). For stronger pinningf, = 1.0fy, and bifurcation ratioRg = N,,/N,,+1, are shownin Fig. 4. In
low vortex densitiess < ®,/A*> = 3B,/2, we observe the best fit exponential regressions used to ex®acand
branched “Hortonian” river networks that follow Horton’s Rjp, the average correlation coefficient wa%9, indicating
laws of stream number and length [see Fig. 1(a)]. Ata good fit to the Hortonian relationships. The average
higher magnetic field8 = ®,/A?> ~ 3B,/2, the vortex values for Rz and R, throughout the Hortonian river
rivers become highly braided or interconnected and are neegion wereRg = 3.99 * 0.18 andR;, = 2.04 £ 0.12,in
longer Hortonian in morphology [see Fig. 1(b)]. Unlike excellent agreement with geophysical rivers [1,10].
the dense networks of Fig. 1(c), where preferred vortex The characteristics of the Hortonian river networks are
paths are uncommon, in the braided regime vortices cordependent on the pinning forgg,. In Fig. 3(b) we plot
sistently move along certain pathways, while in some arthe length ratio®R,, and fractal dimensionB®r, for each
eas of the sample vortex motion rarely occurs.. pinning force in the Hortonian region. The branching
For low pinning forces in the dense network regime,ratio (not shown) is roughly constant &5 is varied.
vortex motion occurdoth interstitially (with the vortices Changing the pinning force alters the ease with which
moving only in the areas between pinning sites) and by
means of depinning. If vortex depinning is occurring in

a landscape with traps of comparable strengthfavored 1 ‘ ' 2.2 ] 2.2
: ; - of, = 1.0f,

paths for flux motion can form, leading to the observed 0.8 B rarysil A o

dense pathways. The Hortonian and braided regimes aris | % | . P_50f 21\ .0 121

once the pinning is strong enough that predominantly 0.6 %y ) A=) « O

interstitial motion occurs. That is, pinned vortices almost .5 o, Soa 2| 12 o

never depin. Other vortices are prevented from moving 0.4 T . |E A

close to a pinned vortex by the vortex-vortex repulsion, g2 | f % | 819 119

which has a longer (by nearly 2 orders of magnitude) () B, O:’ (b) A

range than the attraction of each pinning site. Since 0 "0z 1 15 "8 i 53 4 5 '8

there are regions of the sample (i.e., at or near pinnec B (@) ' /1,

vortices) where flux motion does not occur, the flow of _ _ o _

the moving vortices must be concentrated in certain wellFIG. 3. (&) FractionR,,s of unoccupied pinning sites (ups)

defined regions or rivers, leading to the formation of eithel€rsusB for six samples with differenf,’s. We find a change

Hortonian or braided rivers in the rate at which pins become occupied with increasing field:
: . .. it decreases noticeably f& > B,. (b) The length ratioR,,

_ The broad crossover betweer_1 Horto_nlan and braidegndp, /d. = logR,/l0gR;,, versus the pinning force,. The

rivers occurs when the flux density has increased enougdtream dimensiond,, is one. Only the trend in the fractal

that a large fraction of the pinning sites are occu-dimensionD, can be observed from above because the error

pied. In Fig. 2, the crossover region increases fro ars forR; andDr/d. are+0.1. The lines are power-law best

- > = ~ 2 it curves, which only provide a guide to the eye. The formula
B =09P/A" for f, = 1.0fo, to B = 1.3dy/A" for for Dy gives values slightly above 2, because it assumes that

fp = 6.0fo. In each case, the crossover occurs at vorteXorton's laws hold at all length scales, while our vortex basins
densities higher3B,4/2 < B < 2B,) than the matching only span a very limited range of length scales.
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FIG. 4. The number of stream¥, of order w, and their
lengths L,,, for vortex river networks with three different
pinning forcesf,. Six different f,'s gave virtually identical
plots—all obeying Horton’s laws.

(5]

individual vortices can be depinned, and thereby changed6]
R; andDy/d.. As the pinning force decreases, it is more
likely that some vortices will be depinned and form new
pathways of vortex motion. This will decrease the length
of the higher order rivers by cutting short how far the
vortex channels propagate before bifurcating. Therefore
R; will decrease with decreasing,. Since a larger
number of paths are created tifg will increase with
decreasing ), in agreement with Fig. 3(b).

In conclusion, we have analyzed the morphologies
of flux-flow channels slowly driven to its marginally
stable state, as a function of flux density and disorder
strength. We have identified three distinct morphologies
[12] which include: A (largeB) dense network regime,
where flow can occur anywhere; a braided networl;lo]
regime, where flow is restricted to certain regions; and
(low B) Hortonian network regime, where Horton’s laws
of length and branching ratio are obeyed in agreement
with geophysical rivers. Indeed, it seems promising to
analyze tree-shaped channel flow at the microscopic level
adapting concepts that have already been successful in
treating macroscopic river basins. These types of analyses
are largely unexplored. The direction and success of such
an approach constitutes an open and fascinating area.
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Recent efforts have been made to link river basins to
self-organized criticality [1]. Indeed, whew, > N,

(the Hortonian regime in Fig. 2), the adiabatic dynamics
of vortices also exhibits avalanches with power-law size
distributions [C.J. Olson, C. Reichhardt, and F. Nori,
Phys. Rev. B56, 16 108 (1997)].

Streams of ordew = 5 and above were very rare in our
samples because our landscapes are flat, with small para-
bolic potentials on it. Thus, the vortex microscopic land-
scape is very different from the quite rough mountainlike
landscapes used to model some geophysical river basins.
Therefore, Horton’s laws for vortices do not extend over
a wide range of length scales.

The random topological model, among others, suggests
that many networks fit Horton’s laws. However, these
models ignore the fundamentally important role of the
third dimension: the landscape elevation. Also, these
models ignore the physical laws that describe the carving
of individual channels. For macroscopic river basins, the
role of both chance and necessity for Horton’s laws have
been lucidly discussed in [1]. Also, it is unclear how
these arguments can be extended to the microscopic scale
because the motion of flux quanta is highly correlated.
For instance, one vortex can interact with a very large
number of other quanta within a large radius, giveniby
This type of collective correlated motion is absent from
the simple random topological network models. Also,
the lack of “uniform rain” and erosion inside materials,
common in river basin models, makes it difficult to
make comparisons with previous work on river basins.
Moreover, there is no consensus on the precise conditions
required to obtain Horton’s laws at the macroscopic level
(let alone at the microscopic quantum regime). These
issues are beyond the scope of this paper and will be
explored elsewhere.

This is due to the fact that a fraction of pinning sites
remains unoccupied at the matching field, as shown in
experiments and simulations [7]. This is a consequence
of the random spatial distribution of the pinning. If one
pinning site is very close to a second site containing
a vortex, the repulsive force of the trapped vortex will
prevent the empty pin from being occupied until the
vortex density increases further.

Videos with examples of vortex river networks appear in
http://www-personal.engin.umich.edudnn



