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Phonon Squeezed States Generated by Second-Order Raman Scattering
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We study squeezed states of phonons, which allow a reduction in the quantum fluctuations of
the atomic displacements to below the zero-point quantum noise level of coherent phonon states.
We investigate the generation of squeezed phonon states using a second-order Raman scattering
process. We calculate the expectation values and fluctuations of both the atomic displacement and
the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically
measurable quantities, such as changes in the dielectric constant. These results are compared with recent
experiments. [S0031-9007(97)04745-5]

PACS numbers: 63.20.—e, 42.50.Dv, 42.50.Lc, 42.65.Dr

Nonclassical photon states such as various forms dhteraction V that leads to the SORS process is [11]
. . 1 ',7 !
squeezed states have attracted much attention during the— —; Sup Zz(;/ P ngﬁ t.u QqjQ oy EraErs. Here,
past decade [1]. These novel states are attractive becauge, and E, s are electric field amplitudes along and

they have new statistical and quantum mechanical propg directions with frequencies; and w,. The second-
erties. For instance, some of theS(_e states can aCh'e\S?der polarizability tensorPg"é_q"/ satisfieng’[;_q"I _
lower quantum noise than the zero-point fluctuations of the g/ 4; —qjq
vacuum or coherent states. Thus they provide a way ofes =~ = Pap . Recall that the complex normal
manipulating quantum fluctuations and have a promisingn°de ope{atquj of the phonons is related to the phonon
future in different applications ranging from optical com- creationb_4; and annihilationbq; operators byQq; =
munications to gravitational wave detection [1]. In recentp,; + biq,-. If the incident photon fields are not attenu-
years, squeezed states are also being explored in a variefjed we can treat the optical fields as classical waves, and
of non-quantum-optics systems, including ion-motion andaiso consider the different pairs afq modes as indepen-
classical squeezing [2], molecular vibrations [3], polaritonsdent, and treat them separately. Thus, for one particu-
[4,5], and phonons in crystals [6—8]. References [7,8] protar pair of +q modes, the complete Hamiltonian for the
pose a second-order Raman scattering (SORS) process o phonon modes involved in the SORS process has the
phonon squeezing: if the two incident light beams are iform [11] Hy = Hy — {47! Zaﬁ Pg’ﬁ_quaEZIB}Qquq;
coherent states, the phonons generated by the SORS = i 1 i
in a two-mode squeesed state.g Here we cgnsider both t?@@iﬁtgﬁan ?gqiﬁ%b%;dlé_qb—q} s the frei Phonon

g1 and —q, wq = ()

continuous wave case studied in [7] and the impulsive casg,)/2, and the branch labejsand j have been dropped.
studied in [9]. The experimental realization of squeezed Here we consider two different cases. The first is when
phonons [9] via a SORS process has brought attention ihe incident photons are in two monochromatic beams
the subject of squeezed phonon states [10]. [7]; i.e., with electric fieldsE; = E; codw;t + ¢); j =
Regarding detection methods, Refs. [7,8] proposed that 5 |y the second case the incident photons are in an
if the first-order Raman scattering is either very weak orytrashort pulse whose duration is much shorter than the
prohibited, the second-order stimulated Raman scatterin'ghonon period [9].
process can be used to generate two-mode phonon quadraSqueezed phonons via continuous wave SORSt
ture squeezed states. Moreover, squeezed phonons coyd now first consider the continuous wave (cw) case.
be detected by measuring the intensity of the reflecte@ecause the photons are monochromatic, we can take a
probe light [7,8]. This method has been used to deteciotating wave approximation [12] and keep only the on-
phonon amplltu_des, since thq reflectivity is closely relateGegonance terms in the Hamiltonian. The off-resonance
to the atomic displacements in a crystal. The same argysrms contribute only to virtual processes [13] at higher
ment applies for the transmittivity. Measuring a transmit-g ders.  This approximation is appropriate for times

ted probe light pulse, Ref. [9] observed squeezed phonongych longer than the phonon period. The simplified
produced by an impulsive SORS. The intensity of the cWygmiitonian has the form

SORS signal for many materials might be too weak to be
detected with current techniques, but might be accessible ~ H(™ = Hy — Aq{bgb—qe* "% + cc },
in the future.

The SORS process originates from the quadratic term Aq 1
in the polarizability changeSP,z. The photon-phonon 16
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where ¢, and Aq refer to the overall phase and am- Notice that the light-phonon coupling strengiy in the
plitude, respectively, of the product of the second-ordecw case has units of energy, whil§ here has units of.
polarizability and the incident electric fields. Recall thatTo further simplify the problem, we assume that oniyg
Pg’[;q is real; therefore the phas#;, has noq depen- modes are involved in the process. Such a simplification
dence. It originates solely from the two photon modesis possible when the photon depletion and the phonon
The Schrédinger equation for theq-mode phonons is anharmonic interaction are negligible, so that different

i)y = Ha™ (1) lg(1)), and its time-evolution Pairs of phonon modes are independent from each other.
operator can be solved by a transformation into the inThe Hamiltonian is now
teraction picture. The result can be expressed as [7] 5_[(1/ = Hy — A{lé(t)Qquq, 3)

|ihq (1)) = elHlat/iM} e{fihqh—q—lqbibfq}w,q(())), (2) and the Schrodinger equation for these two phonon
modes isifid,|iq(1)) = H{ lipq(1)). This equation can
where ¢, = —iAqte %2/l . Notice that the second be solved by separating the free oscillator terms and
factor in the time-evolution operator is a two-modethe two-phonon creation and annihilation terms. The
guadrature squeezing operator [14]. resulting time-dependent wave function is
In the cw case considered here, the amplitude of the Ly

; : o tH, iA H,
squeezing factofy grows linearly with time. However, |y (5)) = exp[,—q}e a 4
this initial linear growth will be eventually curbed by sub- ih R wq
sequent phonon-phonon scattering and optical pump de- X exp{Z!*bab—q — £LbIDT Mg (07)). (4)
pletion. In other words, the expression for the squeezing 4 e
fact.orgq is valid for times much larger than one phonon .. £ = _i/\:le—i/\"l/ﬁ/h_ Hence the effect of the op-
pe_nod, but much Sma”er than phof‘on lifetimes (becausafal pulse is clear: it first applies a two-mode quadra-
this treatment considers nondecaying phonons). Indee

£ th th rate i ¢ fast h 4 to th re squeezing operator on the initial state, then rotates
It this growth rate Is not fast enough compared 10 & q iqte by changing its phase [15]. The state will then

phonon decay rate, the squeezing effect may never rEI"Feely evolve after = 0*. This result is consistent with

;/heal itself ‘F‘ ar]: ei<pe.rim(;antt. 'f‘ a((jidt;tiotnh, theh phasd?ffOfRef. [9] where the time-evolution operator is expressed in
€ squeezing factor 1S determined by he phase diltelzsmg of reg| phonon normal mode operators [11], instead
ence of the two incoming light waves. If theq phonon

of the complex ones used in this paper. Notice that, in

modes are initially in a vacuum state or in a coherent statg, ) i~ t0 the cw SORS. the phase of the squeezing fac-
the SORS will drive them into a wo-mode quadraturetor .’ for the impulsive case is fixed by the intensity of

squeezed state [7]. the li

; ; ght pulse.

'_I'he _tlmte ZVOI;Jt.'Ont operator %Jl‘:l the %honotr;] TOde Macroscopic implications—Now that we have
pairs (instead of just one pair atq modes) that are obtained the phonon states for both the cw and

involved in_this SORS process has the forif(r) = pulsed cases, let us consider the macroscopic impli-

.n‘l U‘l(lt.) :blTheTIeft(;]re, ?}S long as dthetﬁh;)ton O!‘:“plelt'ogcations of these states. An experimentally observable
IS neglgible, all the phonon modes thal aré INVOVeGy, antity 0 which is related to the atomic displace-

in a SORS process are driven into two-mode quadra: ents in the crystal can generally be expressed in

ture squeezed states. In other words, squeezing can Bms of 0 0 =0(0) + 3.0/ _
: . : N ¢ 0= a 0q)Qq + -+ =
achieved in a continuum of phonon modes by a cw stlmuo0 + 0y + 0y + ---, where the first tern®, = 0(0) is

lated SORS process. the operatotO when allQ,’s vanish. An example of an

. Sqlugezg%%r;)nons V|ar|]mpltJ)IS|ve SG(letBecently, ant I xperimentally observable quantity is the change in the
IMpulSive process has been used 1o experimentaiifyqia| gielectric constante due to the atomic displace-

generate phonon_ squeezing [9]. Here we treat the pmble.ment produced by the incident electric fields. To first
expressing the time evolution operator of the system in

. d(de

terms of a product of the two-mode quadrature squeezinarderIn Qq, 0€ = J¢ - 24,501 r‘i(Qq)l hi/204[(bg +
operator and the free rotation operators [15]. Since théf)e™s + (b—q + bl)e~"V4]. Here ¥, is the phase
incident photons are now in an ultrashort pulse, thedof 90/00Qq = 9(6€)/0Qq. Indeed, a widely used
complete Hamiltonian can be solved exactly in the limitmethod to track the phases of coherent phonons in
when the optical field can be represented hy fanction.  the time domain [16] is based on the observation of
Such an approximation is usually considered when théhe reflectivity (or transmission) modulatiofR (67)
optical pulse duration is much shorter than the opticabf the sample, which is linearly related tée—the
phonon period, which is experimentally feasible withchange in the dielectric constant due to lattice vibra-
femtosecond laser pulses. The Hamiltonian for the SOR8ons. The above equation fdre indicates that we can
can now be written agH’ = 2qtHq — Ay8(1)QqQ—4} define a generalized [7] lattice amplitude operator [5,8]:
where\/, carries the information on the amplitudes of theu,(=q) = (bq + bl )e™s + (b_q + bl)e ™. This
incoming optical fields and the electronic polarizability. generalized lattice amplituder,(=q) = 2 Re{Qqe' ¥4}
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is the underlying microscopic quantity related to anused here and in [9]. The interaction term in [9] is
observed reflectivity or transmission modulation when theproportional t0u§,(tq) with ¥, = 0 (notice that their
linear term inQq, de€i, exists. Qq is real and based on standing wave quantization
Since different pairs of-q phonon modes are un- [11]). Therefore, the interaction Hamiltonian in [9] is
correlated to one another, the fluctuation @f(= 8€;)  (in our notation)V o« uﬁ(iq) *20q0-q + Qé + Qiq.
can be expressed as((Ade))?) = >,>0(i/2wq)  However, the last two terms in this expression do not
Ia(ée)/aquz(Aué(iq». Here the state igy(r)) =  satisfy momentum conservation; we thus did not include
U(t) |¢(0)) = ]‘[q Uq(t) li(0)) in  either the cw them and kept onlyQ40—4 in our interaction term (this
or the impulsive case. We can again focus on a single paferm is also used by Ref. [11]).
of +q modes. In the cw case, using Eq. (2), the fluctua- If the linear perturbationde; due to phonons is

tion is negligible, such as in [9], then the second-order cor-
5 (o) o rection O,(= de,) must be considered. When the
(Auy ()™ = 2{e "1 cos[Qq (1) + $12/2] phonon states are modulated by a SORS, so that the

+ e¥usit[Qq(1) + ¢12/2]},  (B) +q modes gfaee)the only ones whlch are correlated, then
o€ = quQqQ_q. Let us first focus on one
where rq = [{gl = Aqt/l, Qq(0) = wql + 7/4, and  pair of +q modes in the cw case. In a vacuum state,
hereafter(.- -) denotes an expectation value on squeezedy|p, 0_,[0) = 1; while in a squeezed vacuum state

states, unless stated otherwise. Therefore, at certa|@>sq’ (01040410} = <Au§(iq)>(cw)/2, with the

times, the ﬂ“Ctuat'OmA”?(iq»(CW_) can be smaller than yignht hand side given in Eq. (5). Therefore, the expec-
2, which is the vacuum fluctuation level. Furthermore,iation value 0f Qa0 4 in a squeezed vacuum state is
all the pairs of phonon modes that are driven by theyeriodically smaller than its vacuum state value. Let us
stimulated SORS process share the same frequencyqy include all the phonon modes that contributeSto.
wq = (w1 — w3)/2. Therefore, all the fluctuations |, 3 vacuum state{0]8 e,]0) = Zq 028€/(00q 00 ).
(Aug(+q))") evolve with the samewq. Notice that  On the other hand, in a squeezed vacuum state,
there is no dependence oby in the final expression of )
(AuZ(=q))¥), and the squeezing factor phase/2 has (Sey) = 1 D _9°(de) AR (EQ)Y.  (7)
no q dependence; all the pairs of modes involved through 24 00¢00-q ¢
the SORS share the same phase in their fluctuation
Therefore there can be squeezing in the overall fluctuatio
((A6€)® . Furthermore, the phase of this overall
quctuatlon_can b_e ad_Justed by tuning the phase d|fferenc8a”y smaller than its vacuum state value. Similarly, in the
of the two incoming light beams. . . P oAl 92(5e) 2 (a

In the impulsive case [9,16], if the-q-mode phonons MPUlsive case, (er) =2 24 30,00, Aug(£Q));
are driven into a squeezed vacuum state, the fluctuation jowever, the phase factor i e,)" has aq dependence

Bince the phasé,/2 has noq dependence, contributions
ftom the phonon modes sharing the same frequency add
up constructively. Itis thus possible th@ke,) is periodi-

U (£q) is throughrg, so that all the phonon modes with the same
§ , / w4 do not contribute to{d€,)’ synchronously. In the cw
(Aid(xq)) = 2{e ¥ cos Q1) + e¥usim QL(1)}, SORS and in the very-smaf; limit impulsive SORS the

(6) phase of the expectation val(@,0Q-4) does not depend
on q; this is crucial to the experimental observation of

where ry = [{gl = Aq/h, and Q1) = Qq(1) = rq.  modulations in the dielectric constant, because tis
Again, the squeezing will reveal itself through os-insensitivity leads to constructive summations of all the
cillations in ([A(8€)F(q)) which is proportional to ¢ pairs involved. Also, at a Van Hove singularity a
(Aug(*q))’. Note that these oscillations are essentiallyjarge number of modes contribute &, with the same
the same as the ones obtained in the cw case. HoWrequency and phase; thus their effect is larger and easier
ever, now the squeezing factor is time independentq ghserve [9].
Also, thet = 0 phasen /4 — rq in Eq. (6) isq depen- Squeezed phonons via a finite-width SORSf
dent. Equation (6) can be rewritten &8u;(+q)) =  course, real light pulses are nétfunctions. Therefore,
2{cosh2ry + sinh2rg sinQwqt — rg)}. For small we have also considered a SORS pumped by a light
rq, this becomes(Auf,(tq))’ =2{1 + 2r(’12 + 2rq X pulse with a finite width (smaller than the phonon period
sin2wqt — rg)}.  This expression has essentially theT) instead of as function. For a fixed peak height
same form as the one obtained in [9§Q(21(t)> = I, we find [17] that the optimal pulse widt,"" that
<Q(21(0)>{1 + 255 + 2&4SiN2wqt + @q)}. The small maximizes the squeezing effect satisﬂBféPt ~ T/4.4.
phase termp, is neglected in [9] when computing trans- This calculation indicates that the experiments [9]
mission changes. The difference in phasgs/ersuse,,  used a pulse width which is nearby the optimal value
is negligible in the limit of very small squeezing factor, (T /4.4 = 300/4.4 fs = 68 fs = T,). The calculation
and originates from the different interaction Hamiltonians[17] can be summarized as follows. First, in the impulsive
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Hamiltonian we replace thé& function by a Gaussian with tor is determined by the amplitude of the incoming light
its width T;, as a variational parameter. Since now thepulse. For both cases we calculated the quantum fluctua-
Hamiltonian is time dependent in the interaction picturetions of a generalized lattice amplitude operator and the
we cannot directly integrate the Schrodinger equationsecond-order contribution to the change in dielectric con-
Instead, we use the Magnus method to obtain the timestant, which is measurable. For the finite-width impulsive
evolution operator and keep only the dominant first termcase, we computed the optimal pulse width, in terms of
This approximation is valid when the pulse duration isthe phonon period, that maximizes the squeezing effect.
shorter than the phonon period. We then calculate the We acknowledge useful conversations with S. Hebboul,
width 75" of the Gaussian that maximizes the squeezingR. Merlin, S. Tamura, and H. Wang. One of us (X.H.)
factor. For a constant peak intensity, a pulse that is to@cknowledges support from the U.S. Army Research
narrow does not contain enough photons, while it can b&ffice.
proven that a pulse which is too long (i.e., with a width
comparable td@") attenuates the squeezing effect.

Phonon squeezing mechanismWhat is the mecha-
nism of phonon squeezing in the SORS processes? For
the cw case, the Hamiltonian is the same as an optical1] see, e.g., the special issue on squeezed states [Appl. Phys.
two-mode parametric process [12], with the low frequency B 55, No. 3 (1992)].
interference of the combined photon modes as the pump|[2] J. Sidles and D. Rugar, Phys. Rev. Létf, 3506 (1993);
the two phonon modes as the signal and idler. The fre- V. Natarajanet al., 74, 2855 (1995); J.I. Ciraet al., 70,
quencies of these modes satisfy + w_q = @ — ws. 556 (1993).
The impulsive case is slightly different. Although the [3] J. Janszky and P. Adam, Phys. Rev.48, 6091 (1992);
Hamiltonian is similar to a parametric process, the energy ~ 9 Janszkyet al., Spectrochim. Acta A48, 31 (1992);
transfer from the photons to the two phonon modes is in- - Janszky and An.V. Vinogradov, Phys. Rev. L&,

. \ 2771 (1990).
stantaneous. The resulting phonon state is a two-mod 4] M. Artoni and J.L. Birman, Opt. Commung9, 324

quadrature squeezed vacuum state. Indeed, a regular para- (1992):104, 319 (1994); Phys. Rev. B4, 3736 (1991).
metric process pumps energy into the signal and idlers) x and F. Nori Phyé. Rev. B3, 2419 (1996).

modes gradually, while the impulsive SORS does it sud-[g] X. Hu and F. Nori, Bull. Am. Phys. So@&9, 466 (1994);
denly. The correlation between the two phonon modes, 41, 657 (1996).

and thus the squeezing effect, is also introduced instan{7] X. Hu and F. Nori, University of Michigan Report No. 8-
taneously. Notice that this mechanism is reminiscent of ~ 15-95, 1995; X. Hu, Ph.D. thesis, University of Michigan,
the frequency-jump mechanism proposed in [3]. In the  1996.

impulsive SORS, the frequency of the phonon modes had8] X. Hu and F. Nori, Phys. Rev. Leti6, 2294 (1996).

an “infinite” 8-peak change at= 0, while the frequency- [9] G.A. Garrett,_A. G. Rojo, A.K. Sood, J.F. Whitaker, and
jump mechanism has finite frequency changes, and squeez. g.cl\;/lel_rlln_, ?;;:encgzjﬁ 133,\? (169912' 1097): P E. Sch

ing there can be intensified by repeated frequency jump I B.G. Levi, Phys. Todag0, No. 6, 19 ( ); P.F. Schewe

. . . . and B. Stein, AIP Physics News 1996, p. 261; 1997,
at appropriate times. However, as has been pointed out in 0. 316. ¥ P

[3], a finite frequency jump up immediately followed by [11] M. Born and K. Huang,Dynamical Theory of Crystal
an equal jump down results in no squeezing at all. Lattices(Oxford, Oxford, 1954).

In conclusion, we have studied theoretically the generafi2] M. Schubert and B. Wilhelmi,Nonlinear Optics and
tion of phonon squeezing [18] using a stimulated SORS  Quantum ElectronicéWiley, New York, 1986).
process. In particular, we calculated the time-evolutior{13] G.P. Srivastava, The Physics of PhonongHilger,
operators of the phonons in two different cases: when the  Philadelphia, 1990).
incident photons are in monochromatic continuous waved14] R. Loudon and P. L. Knight, J. Mod. Or#4, 709 (1987).
and when they are in an ultrashort pulse. The amplitudél®] B-L. Schumaker, Phys. Ref35, 317 (1986).
of the squeezing factor initially increases with time and/18] For reviews, see, e.g. S. Ruhman, A.G. Joly, and

. g . K. Nelson, IEEE J. Quantum Electro@4, 460 (1988);
then saturates in the cw SORS case, while it remains con- W.A. Kitt, W. Albrecht, and H. Kurz,ibid. 28, 2434

stant in the pulsed SORS case. In addition, the 0 (1992); R. Merlin, Solid State Commu02, 207 (1997).
phase of the squeezing factor in the cw SOR$,, can %17] X. Hu and F. Nori (unpublished).

be conti_nuousfly adjusted by tu.ning the relative phr?lse Of18] Additional information on squeezed phonons is avail-
the two incoming monochromatic photon beams, while for able at http//www-personal.engin.umich.egmori/

the pulsed SORS the phaée A,) of the squeezing fac- squeezed.html
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