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Strongly Localized Electrons in a Magnetic Field: Exact Results on Quantum Interference
and Magnetoconductance
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We study quantum interference effects on the transition strength for strongly localized electrons
hopping on 2D square and 3D cubic lattices in a magnetic fieldB. In 2D, we obtainclosed-
form expressions for the tunneling probability between twoarbitrary sites by exactly summing the
corresponding phase factors ofall directed paths connecting them. Ananalytic expression for the
magnetoconductance, as anexplicit function of the magnetic flux, is derived. In the experimentally
important 3D case, we show how the interference patterns and the small-B behavior of the
magnetoconductance vary according to the orientation ofB. [S0031-9007(96)00395-X]
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Quantum interference (QI) effects between differe
electron paths in disordered electron systems have b
a subject of intense study [1–8] because they play
important role in quantum transport; for instance, t
QI of closed paths is central toweak-localizationphe-
nomena [1]. Recently, a growing interest exists on
effects of a magnetic field onstrongly localizedelec-
trons with variable-range hopping (VRH) where stri
ing QI phenomena have been observed in mesosc
and macroscopic insulating materials. This strongly
calized regime [2–8] is less well understood than
weak-localization case. Deep in the insulating regim
the major mechanism for transport is thermally activa
hopping between the localized sites. In the VRH regim
localized electrons hop a long distance (the lower
temperature is, the farther away the electron tunn
in order to find a localized site of close energy. T
conductance of the sample is governed by one crit
phonon-assisted hopping event [2]. During this critic
tunneling process, the electron traverses many other
purities since the hopping length is typically many tim
larger than the localization length. It is important
emphasize that the electron preserves its phase mem
while encountering these intermediate scatterers. T
elastic multiple scattering is the origin of the QI effec
associated with a single hopping event between the in
and final sites. The tunneling probability of one dista
hop is therefore determined by the interference of ma
electron paths between the initial and final sites [2–7

In this paper we investigate the QI of strongly loca
ized electrons by doingexact summations overall di-
rected paths between twoarbitrary sites. For electrons
propagating on a square lattice under a uniform pot
tial, we derive an exactclosed-formexpression for the
sum over paths. We also obtain an explicit formula
an experimentally important case, much less studied
oretically so far: the interference between paths on a
cubic lattice. In the presence of impurities, by computi
80 0031-9007y96y76(24)y4580(4)$10.00
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the moments of the tunneling probability and employi
the replica method, we derive a compactanalytic result
for the magnetoconductance (MC), which is applicab
in any dimension. Our explicit field-dependent expre
sion for the MC provides a precise description of t
MC, including the low and high field limits. The perio
of oscillation of the MC is found to be equal tohcy2e.
Also, a positiveMC is clearly observed when turning o
the field B. When the strength ofB reaches a certain
value, Bsa, which is inversely proportional to twice th
hopping length, the value of the MC becomes saturat
At very small fields, for two sites diagonally separat
a distancer, the MC behaves asrB for quasi-1D sys-
tems,r3y2B in 2D with B ­ s0, 0, Bd, andrB (r3y2B) in
3D with B parallel (perpendicular) to thes1, 1, 1d direc-
tion. The general expressions presented here (i)contain,
as particular cases, several QI results [2–8] derived dur
ing the past decade (often by using either numerical
approximate methods), (ii) include QI to arbitrary poin
sm, nd, instead of only diagonal sitessm, md, (iii) focus
on 2D and 3D lattices, and (iv) can be extended to al
include backwardexcursions (e.g., side windings) in th
directed paths.

Exact results in this class of directed-path problems
valuable, and, for instance, can be useful to study ot
systems: (1) directed polymers in a disordered substr
(2) interfaces in 2D, (3) light propagation in rando
media, and (4) charged bosons in 1D.

To study the magnetic-field effects on the tunne
ing probability of strongly localized electrons, we sta
from the tight-binding HamiltonianH ­ W

P
i c

y
i ci 1

V
P

kijl c
y
i cjeiAij , whereVyW ø 1 and Aij ­ 2p

Rj
i A ?

dl is 2p times the line integral of the vector potentia
along the bond fromi to j in units of F0 ­ hcye. Con-
sider two states, localized at sitesi and f which are
r bonds apart, and the shortest-length paths (with
backward excursions) connecting them, i.e., thedirected-
path model. By using a locator expansion, the Green
© 1996 The American Physical Society
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function (transition amplitude) between these two sta
can be expressed asTif ­ WsVyWdrSsrd, with Ssrd ­P

G expsiFGd, whereG runs over all directed paths ofr
steps andFG is the sum over phases of the bonds
the path. This directed-path model provides an excell
approximation toTif in the extremely localized regime
[2–8] since higher-order contributions involve terms pr
portional to W sVyWdr12l (l $ 1), which are negligible
becausesVyWd2 is very small. Quantum interference
contained inSsrd, arises because the phase factors of d
ferent paths connecting the initial and final sites interfe
with each other. In this work, we focus on (i) the com
putation of the essential QI quantitySsrd, (ii) the deriva-
tion of the MC in the disordered case, and (iii) the stu
of the full behavior of the MC—including the scaling i
the low-field limit and the occurrence of saturation. It
important to keep in mind that the effect of a magne
field on the MC follows the behavior ofSsrd.

Quantum interference on a 2D square lattice.—Let us
choose s0, 0d to be the initial site and focus on site
sm, nd with m, n $ 0. For forward-scattering paths ofr
steps, which exclude backward excursions, ending s
sm, nd satisfy m 1 n ­ r. Let Sm,n (­ Ssrd) be the
sum over all directed paths ofr steps on which an
electron can hop from the origin tosm, nd, each one
weighted by its corresponding phase factor. Emplo
ing the symmetric gaugeA ­ s2y, xdBy2, and denoting
the flux through an elementary plaquette (with an a
equal to the square of the average distance, which is t
cally equal to or larger than the localization length, b
tween two impurities) byfy2p, it is straightforward to
construct the recursion relationSm,n ­ e2infy2Sm21,n 1

eimfy2Sm,n21. The factors in front of theS’s account
for the presence of the magnetic field. Enumerat
the recursion relations forSkn ,n (kn ­ m 2 1, . . . , 0) suc-
cessively and usingS0,n ­ 1, we obtain the relation
Sm,n ­

Pm
kn­0 eiknfy2e2ism2kndnfy2Skn ,n21. This equation

states that the sitesm, nd can be reached by mov
ing one step upward from sitesskn, n 2 1d with 0 #

kn # m, acquiring the phaseiknfy2, then traversing
m 2 kn steps fromskn, nd to sm, nd, each step with a
phase2infy2. By applying the above relation recur
sively and utilizingSm,0 ­ 1, Sm,n for m, n $ 1 can be
written asSm,nsfd ­ exps2imnfy2dLm,nsfd, and

Lm,nsfd ­
mX

kn­0

knX
kn21­0

· · ·
k2X

k1­0

eisk11···1kn211kndf. (1)

Notice that each term in the summand corresponds
the overall phase factor associated with a directed p
When f ­ 0, Sm,ns0d ­ Cr

m ; N is just the total num-
ber of r-step paths betweens0, 0d and sm, nd.

After some calculations we obtain one of our main r
sults, a very compact and elegant closed-form expres
for Sm,nsfd,

Sm,nsfd ­
Fm1nsfd

FmsfdFnsfd
, Fmsfd ­

mY
k­1

sin
k
2

f . (2)
s

t

-

s

-

a
i-

o
h.

n

Notice that the symmetrySm,n ­ Sn,m [apparent in
Eq. (2)] is due to the square lattice geometry. In t
very-low-flux limit f ø 1, the logarithm ofSm,n, calcu-
latedexactlyto orderf2 (and omitting lnN), is

lnSm,nsfd ­ 2
1
24 mnsm 1 n 1 1df2, (3)

and thus we obtain the familiar [2] harmonic shrinkage
the wave function.

Sm,m has the richest interference effects because
number of paths ending atsm, md and the areas they
enclose are both the largest. We therefore exam
more closely the behavior of the quantitiesI2msfd ;
Sm,msfd ­

Qm
k­1fsinsm 1 ky2dfgyfsinsky2dfg. I2msfd

obeys the following properties: (i)2p (4p) periodicity in
f for even (odd)m, (ii) I2ms2p 2 fd ­ I2msfd for 0 #

f # p with m even, and (iii)I2ms2p 6 fd ­ 2I2msfd
for 0 # f # 2p with m odd. Furthermore, the zeros o
I2msfd are given byf ­ 2psyt, for sm 1 1yn 1 1d #

t # s2my2n 1 1d, with 0 # n # sm 2 1y2d, and thes’s
are prime to each allowedt. From the physical viewpoint,
these flux values produce the complete cancellation of
phase factors (i.e.,fully destructive interference). Indeed,
as the magnetic field is turned on,I2msfd rapidly drops
to its first zero atfy2p ­ 1y2m and then shows many
small-magnitude fluctuations around zero.

Effects of disorder.—To incorporate the effects of ran
dom impurities, we now replace the on-site energy p
(first term in H) by

P
i eic

y
i ci . Now the ei are inde-

pendent random variables which can take two valu
1W with probability m and 2W with probability n,
where m 1 n ­ 1. Because of disorder, the transitio
amplitude becomesTif ­ W sVyW drJm,n, with Jm,n ­P

Gf
Q

j[Gs2WyejdgeiFG . For all directed paths end
ing at sm, nd, electrons traverser sites (the initial site
is excluded). Each site visited now contributes an a
ditional multiplicative factor of either11 or 21 to the
phase factor. Therefore, for a given pathG, the proba-
bility for obtaining 6eiFG is fsm 1 ndr 6 sm 2 ndr gy2.
By exploiting Eq. (1), we derive a general expressi
for the disorder average of the tunneling probabil
(i.e., the transmission rate) askjJm,nsfdj2l ­ N 1 sm 2

nd2r fS2
m,nsfd 2 Ng, where k· · ·l denotes averaging ove

all possible configurations of impurities. It is importa
to stress that theconductivitybetweeni andf is propor-
tional to kjJm,nsfdj2l [2–5].

For the most studied case so far,m ­ n ­ 1y2,
we can obtain analytical expressions for the mome
kjJm,nsfdj2pl for any value ofp. In general,kjJm,nsfdj2pl
consist of terms involvingNk with k ­ 1, . . . , p. Here-
after, we omit the subscripts inJ and S, and focus on
the leading terms (~ Np), since they provide the mos
significant contribution to the moments, and hence
MC, when N is large. Recall thatSs0d ­ N , therefore
we need to consider all terms involvingS2ks2fdNp22k in
kjJsfdj2pl. We derivekjJs0dj2pl ­ s2p 2 1d!! Np, and
4581
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kjJsfdj2pl ­ p! Np

(X̀
k­0

s2kd! C
p
2k

s2kk!d2

"
Ss2fd

N

#2k)
. (4)

Using these equations and employing the rep
method, we obtain the log-averaged MCLMC ;
kln jJsfdj2l 2 kln jJs0dj2l. The typical MC of a sample
Gsfd ­ expskln jJsfdj2ld, is then given by

Gsfd
Gs0d

­ expsLMCd ­ 1 1

vuut1 2

"
Ss2fd

N

#2

. (5)

Equation (5) is one of our main results. It provides
compact closed-form expression for the MC, as anexplicit
function of the magnetic flux. From Eq. (5) it becom
evident that a magnetic field leads to an increase in
positiveMC: GsfdyGs0d increases from1 to a saturated
value2 [sinceSs2fd decreases fromN to 0] when the flux
is turned on and increased.Gsfd ­ 2Gs0d at the fieldf

that satisfiesSs2fd ­ 0. Furthermore, it is clear that th
MC varies periodically with the magnetic field and th
periodicity in the flux is equal tohcy2e.

It is illuminating to draw attention to the close relatio
ship between the behaviors ofI2ms2fd ­ Sm,ms2fd and
the correspondingGsfd. When f ­ 0, fI2ms0dyNg2 ­
1, which is thelargestvalue of fI2ms2fdyNg2 as a func-
tion of f, and the MC is equal to thesmallestvalue
Gs0d. When the magnetic field is increased from ze
fI2ms2fdyNg2 quickly approaches (more rapidly asm
becomes larger) itssmallest value, which is zero, a
fy2p ­ 1y4m. At the same time, the MC rapidly in
creases to thelargest value 2Gs0d. The physical im-
plication of this is clear: fully constructive (destructiv
interference in the case without disorder leads to
smallest (largest) hopping conduction in the presenc
disorder. Moreover, whenm (the system size ism 3 m)
is large, GsfdyGs0d remains in the close vicinity of2
for fy2p . 1y4m in spite of the strong very-smal
magnitude fluctuations ofI2ms2fdyN around zero.

The saturated value of the magnetic fieldBsa [i.e.,
the first field that makesGsfd ­ 2Gs0d] is inversely
proportional to twice the hopping length: the larger t
system is, the smallerBsa will be. In other words, as
soon as the system, with hopping distancer ­ 2m, is
penetrated by a total flux ofs1y2rd sry2d2 ­ ry8 (in units
of F0), the MC reaches the saturation value2Gs0d.

To examine the behavior of the MC in the low
flux limit, we first define the relative MC,DGsfd ;
fGsfd 2 Gs0dgyGs0d. Since lnIr ­ 2r2sr 1 1df2y96
and lnSr21,1 ­ 2sr2 2 1df2y24 from Eq. (3), it fol-
lows then that, for very small fields, in 2DDGsfd .p

3 r3y2fy6 and in ladder-type quasi-1D structur
DGsfd .

p
3 rfy3.

Our results for the MC are in good agreement w
experimental measurements. For instance, a positive
is observed in the VRH regime of both macrosco
In2O32x samples and compensatedn-type CdSe [9].
Moreover, saturation in the MC as the field is increas
is also reported in Ref. [9].
4582
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The result forGsfd presented in this work is consiste
with theoretical studies based on an independent-direc
path formalism and a random matrix theory of the tra
sition strengths [8]. The advantages of our results lie
that they (i) provide an explicit expression for the MC
a function of the magnetic field, and thus a straightforw
determination of the period of oscillation, (ii) provide e
plicit scaling behaviors (i.e., the dependence on the h
ping length as well as the orientation and strength of
field) of the low-flux MC in quasi-1D, 2D, and 3D sys
tems, and (iii) allow a quantitative comparison with expe
mental data. It is important to emphasize that our anal
result for the MC is equally applicable toany dimension,
since the essential ingredient in our expressions is the
quantitySsrd, which takes into account the dimensionalit

Quantum interference and the small-field magnetoc
ductance on a 3D cubic lattice.—Let Sm,n,l (­ Ssrd in
3D) be the sum over all phase factors associated with
rected paths ofm 1 n 1 ls­ rd steps along which an
electron may hop from (0,0,0) to the sitesm, n, ld with
m, n, and l $ 0. The vector potential ofsBx , By, Bzd
can be written asA ­ szBy 2 yBz , xBz 2 zBx , yBx 2

xBydy2. Also, ay2p , by2p , and cy2p represent the
three fluxes through the respective elementary plaque
on they-z, z-x, andx-y planes. To computeSm,n,l, we
start from the recursion relationSm,n,l ­

Pm
p­0

Pn
q­0 3

Ap,q,l!m,n,leisqa2pbdy2Sp,q,l21, where Ap,q,l!m,n,l is the
sum over all directed paths starting fromsp, q, ld and
ending atsm, n, ld. The physical meaning of this rela
tion is clear: the sitesm, n, ld is reached by taking one ste
from sp, q, l 2 1d to sp, q, ld, acquiring the phaseisqa 2

pbdy2, then traversing fromsp, q, ld to sm, n, ld on the
z ­ l plane. We find thatAp,q,l!m,n,l ­ exphifsm 2

pd slb 2 qcd 1 sn 2 qd spc 2 ladgy2jSm2p,n2qscd. By
applying the above equationl times, we obtain a genera
formula of Sm,n,l for m, n, l $ 1 in terms of the fluxesa,
b, andc as

Sm,n,lsa, b, cd ­ e2isnla1lmb1mncdy2Lm,n,lsa, b, cd, (6)

Lm,n,l ­

(
lY

j­1

" pj11X
pj­0

qj11X
qj­0

eifqja1sm2pjdb1pjsqj112qjdcg

3 Lpj112pj ,qj112qj
scd

#)
Lp1,q1 scd, (7)

with pl11 ; m, ql11 ; n, and theLp,qscd’s are defined
as in Eq. (1). In the absence of the flux,Sm,n,l ­
sm 1 n 1 ld!ym! n! l! ; N gives the total number o
r-step paths connectings0, 0, 0d andsm, n, ld. In the very-
low-flux limit, exactly calculated to second order in th
flux and omitting the term lnN , the 3D analog of the
harmonic shrinkage of the wave function becomes

lnSm,n,l ­ 2
1

24 fnla2 1 lmb2 1 mnc2

1 mslb 2 ncd2 1 nsmc 2 lad2

1 lsna 2 mbd2g. (8)
In order to see how the interference patterns and the
vary according to the orientation of the applied field, w
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now examine two special cases:Bk ­ s1, 1, 1d sfy2pd
andB' ­ s1y2, 1y2, 21d sfy2pd, namely, fields paralle
and perpendicular to thes1, 1, 1d direction. We find
that their Sm,m,m, designated, respectively, byI k

r and
I '

r (where r ­ 3m), exhibit quite different behaviors
Furthermore, they are insensitive to the commensurab
of f, unlike the case on a square lattice. Physically,
can be understood because paths have a higher proba
of crossing (and thus interfering) in 2D than in 3
thus making QI effects less pronounced in 3D than
2D. A similar situation occurs classically (e.g., multip
scattered light in a random medium). For very sm
f, lnI k

r ­ 2r2f2y72 and lnI '
r ­ 2r2sr 1 1df2y144.

The 3D behavior ofDGsfd thus becomes clear:.rfy3
for Bk and .

p
2 r3y2fy6 for B'. These results ca

be interpreted as follows: the effective area expo
to Bk is smaller (,r), similar to our quasi-1D cas
with DGsfd ~ rf, while the effective area expose
to B' is larger (,r3y2), thus closer to the 2D cas
with DGsfd ~ r3y2f.

Average of the magnetoconductance over angles.—In a
macroscopic sample, the conductance may be determ
by a few(i.e., more than one) critical hopping events.
a result of this, the observed MC of the whole sam
should then be the average of the MC associated
these critical hops [10]. Thus, in 3D systems, it is a
important to take into account the randomness of
angles between the hopping direction and the orienta
of the applied magnetic field. We therefore consider
following picture: the ending site of all hopping even
(with the same hopping lengthr) is located at the body
diagonal sry3, ry3, ry3d, and the magnetic field can b
adjusted between the parallel and perpendicular direct
with respect to the vectord ­ s1, 1, 1d. Our interest here
is in the MC averaged over angles, denoted byDG, in
the low-field limit. From Eq. (8), we obtainDGsBd ­
s2py3

p
3 drBs1 1 r sin2vd1y2, whereB is the magnitude

of the field andv is the angle betweenB and d. By
averaging over the anglev, we obtain

DGsBd ­
4

3
p

3
r
p

r 1 1 BE

µ
p

2
,

p
r

p
r 1 1

∂
, (9)

where Espy2,
p

ry
p

r 1 1 d is the complete elliptic in-
tegral of the second kind. Whenr is large,E . 1 and
we therefore haveDGsBd . s4y3

p
3 dr3y2B. This means

that the dominant contribution to the MC stems from
critical hop which is perpendicular to the field. This
understandable through our earlier observation that the
fective area enclosed by the electron is largest whenB is
perpendicular tod. From the above analysis, we conclu
that in 3D macroscopic samples the low-field MC sho
in principle behave asr3y2B.

Finally, we briefly address five issues. First, in additi
to the dominant terms, we have also obtained the sec
ity
is
ility
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ed
s
le
ith
o
e
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e
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e
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order contribution to the moments (~Np21) and the MC
(~1yN). The principal features in the behavior of th
MC are not significantly modified: only the magnitud
of the positive MC, including the saturation value,
slightly increased (though negligibly small). Second,
have also studied another model of disorder,ei uniformly
distributed between2Wy2 and Wy2. The result for
the MC remains the same. Third, returns to the ori
become important for less strongly localized electro
and their QI effects [11] can be incorporated in o
approach. Fourth, the main limitations of our study a
the following: no inclusion of spin-orbit scattering effec
(for this see, e.g., Refs. [7,8] and references there
and no explicit inclusion of the correlations betwe
crossing paths, as discussed in Refs. [4,7]. Howe
these correlations are negligible when spin-orbit scatte
is present [7]. Fifth, our result forDGsBd in 3D can
be tested experimentally by measuring the MC of b
samples for varying orientations of the field.

In summary, we present an investigation of QI pheno
ena and the magnetic-field effects on the MC for 2D a
3D systems in the VRH regime. We provide exact and
plicit closed-form results for the forward-scattering pat
which, in the strongly localized regime, give the domina
contribution to the hopping conduction.
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