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Strongly Localized Electrons in a Magnetic Field: Exact Results on Quantum Interference
and Magnetoconductance
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We study quantum interference effects on the transition strength for strongly localized electrons
hopping on 2D square and 3D cubic lattices in a magnetic figld In 2D, we obtainclosed-
form expressions for the tunneling probability between tarbitrary sites by exactly summing the
corresponding phase factors afl directed paths connecting them. Asmalytic expression for the
magnetoconductance, as arplicit function of the magnetic flux, is derived. In the experimentally
important 3D case, we show how the interference patterns and the Bmiadlhavior of the
magnetoconductance vary according to the orientatioR.of[S0031-9007(96)00395-X]

PACS numbers: 72.20.Dp, 72.10.Bg

Quantum interference (Ql) effects between differenthe moments of the tunneling probability and employing
electron paths in disordered electron systems have bee¢he replica method, we derive a compactalytic result
a subject of intense study [1-8] because they play afor the magnetoconductance (MC), which is applicable
important role in quantum transport; for instance, thein any dimension. Our explicit field-dependent expres-
QI of closed paths is central taweak-localizationphe-  sion for the MC provides a precise description of the
nomena [1]. Recently, a growing interest exists on theMC, including the low and high field limits. The period
effects of a magnetic field ostrongly localizedelec- of oscillation of the MC is found to be equal far/2e.
trons with variable-range hopping (VRH) where strik- Also, apositiveMC is clearly observed when turning on
ing QI phenomena have been observed in mesoscoptbe field B. When the strength oB reaches a certain
and macroscopic insulating materials. This strongly lo-value, Bs,, which is inversely proportional to twice the
calized regime [2-8] is less well understood than thehopping length, the value of the MC becomes saturated.
weak-localization case. Deep in the insulating regimeAt very small fields, for two sites diagonally separated
the major mechanism for transport is thermally activatech distancer, the MC behaves asB for quasi-1D sys-
hopping between the localized sites. In the VRH regimetems,*2B in 2D with B = (0,0, B), and rB (r*/?B) in
localized electrons hop a long distance (the lower the8D with B parallel (perpendicular) to thél, 1, 1) direc-
temperature is, the farther away the electron tunnelsfion. The general expressions presented hereofi}ain,
in order to find a localized site of close energy. Theas particular casesseveral QI results [2—8] derived dur-
conductance of the sample is governed by one criticalhg the past decade (often by using either numerical or
phonon-assisted hopping event [2]. During this criticalapproximate methods), (ii) include QI to arbitrary points
tunneling process, the electron traverses many other intm, n), instead of only diagonal siten, m), (iii) focus
purities since the hopping length is typically many timeson 2D and 3D lattices, and (iv) can be extended to also
larger than the localization length. It is important to include backwardexcursions (e.g., side windings) in the
emphasize that the electron preserves its phase mematyrected paths.
while encountering these intermediate scatterers. This Exact results in this class of directed-path problems are
elastic multiple scattering is the origin of the QI effectsvaluable, and, for instance, can be useful to study other
associated with a single hopping event between the initiadystems: (1) directed polymers in a disordered substrate,
and final sites. The tunneling probability of one distant(2) interfaces in 2D, (3) light propagation in random
hop is therefore determined by the interference of manynedia, and (4) charged bosons in 1D.
electron paths between the initial and final sites [2—7]. To study the magnetic-field effects on the tunnel-

In this paper we investigate the QI of strongly local-ing probability of strongly localized electrons, we start
ized electrons by doingexact summations oveall di- from the tight-binding Hamiltoniand = W Y, cifci +
rected paths between twarbitrary sites. For electrons V3 c;rcjeiAff, whereV/W <« 1 andA;; = 27 [1 A -
propagating on a square lattice under a uniform potendl is 27 times the line integral of the vector potential
tial, we derive an exactlosed-formexpression for the along the bond froni to j in units of &, = hc/e. Con-
sum over paths. We also obtain an explicit formula forsider two states, localized at sitésand f which are
an experimentally important case, much less studied the- bonds apart, and the shortest-length paths (with no
oretically so far: the interference between paths on a 3ackward excursions) connecting them, i.e., divected-
cubic lattice. In the presence of impurities, by computingpath model By using a locator expansion, the Green's
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function (transition amplitude) between these two state®otice that the symmetrys,,, =

can be expressed a&; = W(V/W)"S"), with §¢) =
> rexpi®r), whereT runs over all directed paths of

S..m [apparent in
Eqg. (2)] is due to the square lattice geometry. In the
very-low-flux limit ¢ <« 1, the logarithm ofS,, ,, calcu-

steps anddr is the sum over phases of the bonds onlatedexactlyto order¢? (and omitting InW), is
the path. This directed-path model provides an excellent

approximation to7;, in the extremely localized regime

[2—8] since higher-order contributions involve terms pro-

portional to W(V /W) *2! (I = 1), which are negligible
because(V/W)? is very small. Quantum interference,

InSm,n((,b) = - (3)

ﬁmn(m +n+ 1)¢2,

and thus we obtain the familiar [2] harmonic shrinkage of

contained inS""), arises because the phase factors of difthe wave function. _
ferent paths connecting the initial and final sites interfere S..» has the richest interference effects because the

with each other. In this work, we focus on (i) the com-

putation of the essential QI quanti§f”, (ii) the deriva-

number of paths ending dtn,m) and the areas they
enclose are both the largest. We therefore examine

tion of the MC in the disordered case, and (iii) the studymore closely the behavior of the quantitiés,(¢) =

of the full behavior of the MC—including the scaling in Sm.m(¢) =
It is obeys the following properties: (D7 (47) periodicity in

the low-field limit and the occurrence of saturation.

[1i=i[sinim + k/2)p]1/[sin(k/2)¢]. Tm(p)

important to keep in mind that the effect of a magnetic¢ for even (oddyn, (i) 1,27 — ¢) = Lu(¢) for 0 =

field on the MC follows the behavior o).
Quantum interference on a 2D square lattice_et us

¢ = 7 with m even, and (iii),,,27 = ¢) = —Ip,,(P)
for 0 = ¢ = 27 with m odd. Furthermore, the zeros of

choose (0,0) to be the initial site and focus on sites lon(¢) are given byg = 2zs/t, for (m + 1/n + 1) =

(m,n) with m,n = 0. For forward-scattering paths of

t = @2m/2n + 1), with0 = n = (m — 1/2), and thes’s

steps, which exclude backward excursions, ending sited'e prime to each allowed From the physical viewpoint,

(m,n) satisfy m + n=r. Let S,, (=S") be the
sum over all directed paths of steps on which an
electron can hop from the origin tén,n), each one
weighted by its corresponding phase factor.
ing the symmetric gaugd = (—y, x)B/2, and denoting

these flux values produce the complete cancellation of all
phase factors (i.efully destructive interferenge Indeed,
as the magnetic field is turned oh,,(¢) rapidly drops

EmployAo its first zero at$ /27 = 1/2m and then shows many

small-magnitude fluctuations around zero.

the flux through an elementary plaquette (with an area Effects of disorder.—Fo incorporate the effects of ran-
equal to the square of the average distance, which is typFom impurities, we now feI0|<5\Ce the on-site energy part

cally equal to or larger than the localization length, be-(first term in H) by > ; €; c, i

tween two impurities) byp /27, it is straightforward to
construct the recursion relatioy, , = e inel2g, i+
eimd/2g The factors in front of theS’s account

mmn—1-

for the presence of the magnetic field. Enumeratingamplitude becomed;,

the recursion relations fafy , (k, = m — 1,...,0) suc-
cessively and usingSy, = 1, we obtain the relation

=5 _gend/2emilm= k>”¢/25k This equation
states that the sitdm, n) can be reached by mov-
ing one step upward from site&,,n — 1) with 0 <
k, = m, acquiring the phasek,¢/2, then traversing
m — k, steps from(k,,n) to (m,n), each step with a
phase—in¢ /2. By applying the above relation recur-
sively and utilizingS,,o = 1, Sy, for m,n =1 can be
written asSm’,,(¢>) = exp(—imn¢/2) man (), and

Lm,n((ﬁ) Z Z Z e’ iyt - 1+k,,)¢

kn=0ky_1=0  ki—

(1)

Now the ¢; are inde-
pendent random variables which can take two values:
+W with probability x and —W with probability v,
where w + v = 1. Because of disorder, the transition
=WV /W) Jyn, With Jp, =
Yrlllier(=W/eple’®. For all directed paths end-
ing at (m,n), electrons traverse sites (the initial site

is excluded). Each site visited now contributes an ad-
ditional multiplicative factor of either+1 or —1 to the
phase factor. Therefore, for a given pdth the proba-
bility for obtaining =e!®r is [(u + »)" * (u — v)"]/2.

By exploiting Eq. (1), we derive a general expression
for the disorder average of the tunneling probability
(i.e., the transmission rate) &9,,,(¢)*>) = N + (u —
v)¥[S2 () — N], where(---) denotes averaging over
all possible configurations of impurities. It is important
to stress that theonductivitybetweeni and f is propor-
tional to{|J,,..(¢)|?) [2-5].

Notice that each term in the summand corresponds to For the most studied case so fag, = v = 1/2,
the overall phase factor associated with a directed pathwe can obtain analytical expressions for the moments

When¢ =0, S,,,(0) = C], = N is just the total num-
ber of r-step paths betweecm), 0) and (m, n).

(IJmn(¢)I?) for any value ofp. In general{|J,,.(¢)I*)
consist of terms involvingv¥ with k = 1,..., p. Here-

After some calculations we obtain one of our main re-after, we omit the subscripts it and S, and focus on
sults, a very compact and elegant closed-form expressidhe leading termse( N”), since they provide the most

for S (),

Sma(p) = —Lmonl®)

Fn(d)Fn()” TP =

ﬁ sin% 10
k=1

significant contribution to the moments, and hence the
MC, when N is large. Recall thas(0) = N, therefore
we need to consider all terms involvisg* (2¢)N? =2 in
(J()I??). We derive(|J(0)|>?) = 2p — I)!' NP, and
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> ot soe) T The result forG(¢) presented in this work is consistent
(I(p)I*y = p! NP[Z ((Zk)kgik [ S(Nd))} ] (4)  with theoretical studies based on an independent-directed-
, k=0 ) ) . path formalism and a random matrix theory of the tran-
Using these equations and employing the replicgiton strengths [8]. The advantages of our results lie in
method, e obtain ) the log-averaged MCuc = that they (i) provide an explicit expression for the MC as
(nlJ($)I") = (In |J(0)|2 ). The typical MC of a sample, 5 fnction of the magnetic field, and thus a straightforward
G(¢) = expl(Inl/(¢)I*), is then given by determination of the period of oscillation, (i) provide ex-

G(d) SQ2) 2 plicit scaling behaviors (i.e., the dependence on the hop-

Glé) = exXp(L =14+4|1— 524) . 5 ping length as well as the orientation and strength of the
ALmc) 5)

G(0) N field) of the low-flux MC in quasi-1D, 2D, and 3D sys-

Equation (5) is one of our main results. It provides atems, and (iii) allow a quantitative comparison with experi-
compact closed-form expression for the MC, agaplicit  mental data. It is important to emphasize that our analytic
function of the magnetic flux. From Eq. (5) it becomesresult for the MC is equally applicable tmy dimension,
evident that a magnetic field leads to an increase in theince the essential ingredient in our expressions is the QI
positiveMC: G(¢)/G(0) increases from to a saturated quantityS"”), which takes into account the dimensionality.
value2 [sinceS(2¢) decreases fron¥ to 0] when the flux Quantum interference and the small-field magnetocon-
is turned on and increaseds(¢) = 2G(0) at the fieldp ~ ductance on a 3D cubic lattice.ket S,,,.; (= S in
that satisfiess(2¢) = 0. Furthermore, it is clear that the 3D) be the sum over all phase factors associated with di-
MC varies periodically with the magnetic field and the rected paths ofn + n + I(= r) steps along which an
periodicity in the flux is equal téc/2e. electron may hop from (0,0,0) to the site:, n, ) with

It is illuminating to draw attention to the close relation- m, n, and! = 0. The vector potential ofB,, By, B;)
ship between the behaviors 6f,(2¢) = S,,.(2¢) and  can be written asA = (zBy, — yB.,xB; — zBy,yB, —
the correspondingi(¢). When¢ = 0, [1,,(0)/N]* =  xB,)/2. Also, a/2w, b/2m, and c¢/27 represent the
1, which is thelargestvalue of[l,,,(2¢)/NJ> as a func- three fluxes through the respective elementary plaquettes
tion of ¢, and the MC is equal to themallestvalue on they-z, z-x, andx-y planes. To comput&,, ,;, we
G(0). When the magnetic field is increased from zerostart from the recursion relatiofi,, ., = >, 2. —o ¥
[12n(2¢)/NT quickly approaches (more rapidly a8 A, ,.,;e"® PP/2S, | | Where Ay, ma; iS the
becomes larger) itsmallestvalue, which is zero, at sum over all directed paths starting frofw,¢,!) and
¢/2m = 1/4m. At the same time, the MC rapidly in- ending at(m,n,I). The physical meaning of this rela-
creases to thdargest value 2G(0). The physical im- tion is clear: the sitém, n, I) is reached by taking one step
plication of this is clear: fully constructive (destructive) from (p,q,! — 1) to (p, g, 1), acquiring the phaséqa —
interference in the case without disorder leads to thep)/2, then traversing from(p, ¢,1) to (m,n,l) on the
smallest (largest) hopping conduction in the presence of = | plane. We find thatA , , 1—mns = explil(m —
disorder. Moreover, whem (the system size is1 X m) p) (b — gc) + (n — q) (pc — 1a)]/2}Sm—pa—g(c). By
is large, G(¢)/G(0) remains in the close vicinity o2 applying the above equatidntimes, we obtain a general

for ¢/2m > 1/4m in spite of the strong very-small- formula of S,,,; for m,n,l = 1 in terms of the fluxes,
magnitude fluctuations a%,,(2¢)/N around zero. b, andc as

The saturated value of the magnetic field, [i.e., _ _—i(nla+Imb+mnc)/2
the first field that makesG(¢) = 2G(0)] is inversely Snnilasb,e) = e R Lunilasbye),—(6)
proportional to twice the hopping length: the larger the L, = [l—[[ /ZH /ZH pilajat+(m=ppb+p(a;i1—a;)c]
system is, the smalleBs, will be. In other words, as i
soon as the system, with hopping distance= 2m, is
penetrated by a total flux @1 /2r) (r/2)> = r/8 (in units X Lp/.ﬂpl,q/.ﬂql(c‘)“Lp,,ql(c‘), (7)
of @), the MC reaches the saturation val@(0).

To examine the behavior of the MC in the low- With p;+1 = m, ¢;+1 = n, and theL, ,(c)'s are defined
flux limit, we first define the relative MCAG(¢) =  as in Eq. (1). In the absence of the flus,,,; =
[G(¢) — G(0)]/G(0). Since I0, = —r?(r + 1)¢2/96 (m + n + 1)!/m!n!l! = N gives the total number of
and InS,_;; = —(r> — 1)¢?/24 from Eq. (3), it fol-  r-step paths connectir(g, 0,0) and(m, n,1). Inthe very-
lows then that, for very small fields, in 2DG(¢) = low-flux limit, exactly calculated to second order in the
V3r32¢/6 and in ladder-type quasi-1D structures flux and omitting the term I\, the 3D analog of the
AG(¢) = /3r¢p/3. harmonic shrinkage of the wave function becomes

Our results for the MC are in good agreement with NS00 = —%[nlaz + Imb® + mnc?
experimental measurements. For instance, a positive MC + m(b — neY + n(me — la)?
is observed in the VRH regime of both macroscopic

j=1Lp;=04;=0

In,O;_, samples and compensatadtype CdSe [9]. + I(na — mb)?]. (8)
Moreover, saturation in the MC as the field is increasedn order to see how the interference patterns and the MC
is also reported in Ref. [9]. vary according to the orientation of the applied field, we

4582



VOLUME 76, NUMBER 24 PHYSICAL REVIEW LETTERS 10uNE 1996

now examine two special caseBy = (1,1,1)(¢/27)  order contribution to the moments:”~!) and the MC
andB, = (1/2,1/2,—1)(¢/27), namely, fields parallel («<1/N). The principal features in the behavior of the
and perpendicular to thél,1,1) direction. We find MC are not significantly modified: only the magnitude
that their S,,,,.., designated, respectively, byl and of the positive MC, including the saturation value, is
It (where r = 3m), exhibit quite different behaviors. slightly increased (though negligibly small). Second, we
Furthermore, they are insensitive to the commensurabilithave also studied another model of disordgminiformly
of ¢, unlike the case on a square lattice. Physically, thiglistributed between—W /2 and W/2. The result for
can be understood because paths have a higher probabilitye MC remains the same. Third, returns to the origin
of crossing (and thus interfering) in 2D than in 3D, become important for less strongly localized electrons,
thus making QI effects less pronounced in 3D than inand their QI effects [11] can be incorporated in our
2D. A similar situation occurs classically (e.g., multiply approach. Fourth, the main limitations of our study are
scattered light in a random medium). For very smallthe following: no inclusion of spin-orbit scattering effects
¢, InIl = —r2¢2/72 and INI* = —r2(r + 1)¢p2/144.  (for this see, e.g., Refs. [7,8] and references therein),
The 3D behavior ofAG(¢) thus becomes clearsr¢p/3  and no explicit inclusion of the correlations between
for By and =+/2r%2¢ /6 for B,. These results can crossing paths, as discussed in Refs. [4,7]. However,
be interpreted as follows: the effective area exposedhese correlations are negligible when spin-orbit scattering
to Bj is smaller ¢r), similar to our quasi-1D case is present [7]. Fifth, our result foAG(B) in 3D can
with AG(¢) « r¢, while the effective area exposed be tested experimentally by measuring the MC of bulk
to B, is larger ¢r3/?), thus closer to the 2D case samples for varying orientations of the field.
with AG(¢) = r3/2¢. In summary, we present an investigation of QI phenom-
Average of the magnetoconductance over anglés.a— ena and the magnetic-field effects on the MC for 2D and
macroscopic sample, the conductance may be determin@D systems in the VRH regime. We provide exact and ex-
by a few(i.e., more than one) critical hopping events. Asplicit closed-form results for the forward-scattering paths
a result of this, the observed MC of the whole samplewhich, in the strongly localized regime, give the dominant
should then be the average of the MC associated witkontribution to the hopping conduction.
these critical hops [10]. Thus, in 3D systems, it is also We are very grateful to B.L. Altshuler, M. Kardar,
important to take into account the randomness of thé. Medina, Y. Meir, Y. Shapir, and J. Stembridge for
angles between the hopping direction and the orientatiotheir useful suggestions.
of the applied magnetic field. We therefore consider the
fol!owing picture: the_ ending sitg of all hopping events .5 ccent address.
(with the same hopping length) is located at the body 1] For a review and further references, see, e.g., P.A. Lee
diagonal(r/3,r/3,r/3), and the magnetic field can be and B. L. Altshuler, Phys. Todag1, No. 12, 36 (1988).
adjusted between the parallel and perpendicular directiong2] For reviews and further references, $¢é@pping Transport

with respect to the vectat = (1,1,1). Our interest here in Solids, edited by M. Pollak and B.l. Shklovskii

is in the MC averaged over angles, denoted A, in (Elsevier Science, New York, 1991); Y. Shapir and X.R.
the low-field limit. From Eg. (8), we obtaiAG(B) = Wang, Mod. Phys. Lett. B, 1301 (1990).

(27 /3+/3)rB(1 + rsinffw)"/2, whereB is the magnitude [3] V.L. Nguyen, B.Z. Spivak, and B.l. Shklovskii, Pis’ma
of the field andw is the angle betweeB andd. By Zh. Eksp. Teor. FizAl 35 (1985) [JETP Lett4l, 42

(1985)]; Zh. Eksp. Teor. Fiz89, 11 (1985) [Sov. Phys.

JETP62, 1021 (1985)].
4 Jr [4] E. Medina, M. Kardar, Y. Shapir, and X.R. Wang, Phys.

6B - i E BE(Z, r > ) Rev. Lett.62, 941 (1989)64, 1816 (1990).
33 2 Jr+1 [5] U. Sivan, O. Entin-Wohlman, and Y. Imry, Phys. Rev.
Lett. 60, 1566 (1988); Phys. Rev. BO, 8342 (1989).

where E(7/2,/r/~/r + 1) is the complete elliptic in-  [6] S. Fishman, Y. Shapir, and X.-R. Wang, Phys. Rev®
tegral of the second kind. Whenis large,E = 1 and 12154 (1992).
we therefore hava—G(B) ~ (4/3\/§)}”3/23 This means [7] E. Medina and M. Kardar, Phys. Rev. Le®6, 3187
that the dominant contribution to the MC stems from the _ (1991); Phys. Rev. Bi6, 9984 (1992).
critical hop which is perpendicular to the field. This is [8] Y. Meirand O. Entin-Wohiman, Phys. Rev. Lef0, 1988
understandable through our earlier observation that the ef—[g] l(:1?393|\)/ii|\|i(|.<el\:l1e;larne(§ ;I”Cl)?/lgdsghfgh)%g%le)\./ L. 911
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that in 3D macroscopic samples the low-field MC should[; o} we acknowledge B.L. Altshuler for bringing this point to
in principle behave as*2B. our attention and E. Medina for clarifying it to us.

Finally, we briefly address five issues. First, in addition[11] Y.-L. Lin and F. Nori, Phys. Rev. B0, 15953 (1994);
to the dominant terms, we have also obtained the second- F. Nori and Y.-L. Lin,ibid. 49, 4131 (1994).

averaging over the angle, we obtain
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