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Superconducting oscillators have been successfully used for quantum control and readout devices in

conjunction with superconducting qubits. Also, squeezed states can improve the accuracy of measure-

ments to subquantum, or at least subthermal, levels. Here, we show theoretically how to produce squeezed

states of microwave radiation in a superconducting oscillator with tunable parameters. Its resonance

frequency can be changed by controlling an rf SQUID inductively coupled to the oscillator. By repeatedly

shifting the resonance frequency between any two values, it is possible to produce squeezed and

subthermal states of the electromagnetic field in the (0.1–10) GHz range, even when the relative frequency

change is small. We propose experimental protocols for the verification of squeezed state generation, and

for their use to improve the readout fidelity when such oscillators serve as quantum transducers.

DOI: 10.1103/PhysRevLett.101.253602 PACS numbers: 42.50.Dv, 42.50.Pq, 85.25.�j

The problem of quantum measurements has recently
attracted renewed attention. In quantum mechanics, the
extraction of information from a quantum system produces
an unavoidable disturbance on it. If the object is initially in
an eigenstate of the measured observable, a quantum non-
demolition (QND) measurement can be realized, where
this disturbance is minimal [1]. A well-established type
of detector for QND measurements is the parametric trans-
ducer (PT) [1] (essentially, an optical or radio-frequency
auto-oscillator). A quantum system coupled to a PT
changes the phase and/or amplitude of the transducer’s
oscillations, thereby providing information about the quan-
tum system’s dynamics. Since the recent development of
superconducting qubits (Refs. [2], for recent reviews see
[3]), this approach has been successfully applied to their
study. In particular, superconducting resonant tank circuits
(high-quality LC oscillators made usually of aluminum or
niobium) were employed as PTs to measure the quantum
state of superconducting flux qubits [4].

The noise of detectors can be decreased below the
standard quantum limit (SQL) by employing squeezed
states [5]. In this Letter, we show that a superconducting
PT can naturally implement this approach since it can be
used both to produce squeezed states and to use them in
order to minimize quantum fluctuations. An immediate
application of this method would be to suppress the effec-
tive noise temperature of the next-stage amplifier, at least
to the nominal temperature of the cooling chamber. We
emphasize that existing experimental techniques are suffi-
cient for the realization of our proposal.

A system described by a pair of dimensionless conjugate
variables,Q and P, is in a squeezed state if, for some times,
h�Q2i� hQ2i�hQi2<1=2 (i.e., the dispersion of this vari-
able is below the SQL). The uncertainty principle requires
that h�P2ih�Q2i � 1=4, so when one variable is squeezed,
the dispersion of the conjugate variable increases.
Squeezed states are of great interest due to their usefulness
in obtaining SQL resolution in imaging and measurement
[5,6]. Their classical analog can be used to obtain sub-
thermal resolution in mechanical measurements [7].
Squeezed states were first introduced in quantum optics,

but have since been investigated in other systems, includ-
ing phonons [8], trapped atoms [9], optical lattices occu-
pied by cold atoms [10], and molecular oscillations [11].
Josephson devices combine tunable nonlinearity and low
losses in the microwave range, which makes them a logical
choice for various theoretical schemes of producing
squeezed states [12–14]; e.g., they have been successfully
generated in a Josephson parametric amplifier [15].
If a harmonic oscillator is in a state with equal and

minimal uncertainties, h�P2i ¼ h�Q2i ¼ 1=2, a sudden
change of the oscillator frequency would create a squeezed
state [16]. The degree of squeezing is given by the ratio
� ¼ !=!0 of the oscillator frequencies before and after
the shift, or its inverse, whichever is less than one. This
topic was further investigated in Refs. [17–21]. It was
shown [18,21] that by repeated and properly timed oscil-
lator frequency shifts, one could reach an arbitrary degree
of squeezing, even for � close to unity (neglecting damping
and assuming instantaneous frequency shifts).
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In this Letter, we show analytically that applying re-
peated frequency shifts to a superconducting resonant tank
circuit can produce GHz squeezed states, which can be
then used to improve the sensitivity of such a circuit
employed as a PT. The parameters of the circuit can be
tuned by controlling the state of an rf SQUID inductively
coupled to the superconducting resonant tank circuit [4].
This distinguishes our proposal from Ref. [12], which
proposed the generation of squeezed states in an rf
SQUID with a tunable junction through a single-step
change of the parameters of the junction. The advantage
of our method of squeezing state generation compared to
the use of a parametric amplifier [15] is that the degree of
squeezing and the time of generation are directly con-
trolled through the number of frequency shifts applied.

The assumptions of an instantaneous frequency shift and
no damping are convenient for a proof-of-principle analy-
sis, but are not sufficient for the discussion of an experi-
mental realization of the effect. Therefore, we start from
the density matrix � of the tank circuit coupled to the
superconducting oscillator, which satisfies the Liouville
equation i@t� ¼ ½HðtÞ; ��, where HðtÞ is the Hamil-
tonian. Additional Lindblad terms in the r.h.s. can be added
to account for dephasing and relaxation [5]. Initially,

Hð0Þ ¼ ð!0=2Þðay0a0 þ a0a
y
0 Þ. A change of the oscillator

frequency, !0 ! !, transforms [16] the creation operator

to a ¼ ½ð!þ!0Þa0 þ ð!�!0Þay0 �ð2 ffiffiffiffiffiffiffiffiffiffi

!!0
p Þ�1. This

Bogoliubov transformation can be rewritten [16] as a0 !
a ¼ Ua0U

y, where U ¼ exp½ð1=4Þ lnð!=!0Þðay20 � a20Þ�.
The transformation of the Hamiltonian under the unitary

transformation U is given by H ¼ UH0U
y � iU@tU

y;
here, H0 � Hð0Þ is the initial Hamiltonian. The resulting
Hamiltonian, expressed in terms of the original operators

a0, a
y
0 , is

HðtÞ ¼ H0 þ!ðtÞ2 �!2
0

4!ðtÞ ðay0a0 þ a0a
y
0 þ ay20 þ a20Þ

� i
_!ðtÞ
!ðtÞ ða

y2
0 � a20Þ: (1)

Now we can move to the interaction representation with
respect to H0 by applying to HðtÞ another unitary trans-
formation, ~U ¼ exp½iH0t�. Then, the H0-induced evolu-
tion of the density matrix � is canceled, at the price of the

operators acquiring an explicit time dependence: a0 !
a0 exp½�i!0t�; ay0 ! ay0 exp½i!0t�. Denoting the resulting

Hamiltonian also by HðtÞ, we find

HðtÞ¼!ðtÞ2�!2
0

4!ðtÞ ðay0a0þa0a
y
0 Þþ

!ðtÞ2�!2
0

4!ðtÞ ðay20 e2i!0t

þa20e
�2i!0tÞ� i

_!ðtÞ
!ðtÞða

y2
0 e2i!0t�a20e

�2i!0tÞ: (2)

In the following, it will be convenient to use, instead of the
density matrix �, the Wigner function W. The latter is

related to � [5] by a Fourier transform, Wð�;��Þ ¼ 1
2�2 �

R

d�d��e����þ���Tr½�e�ay0���a0�, and in the classical

limit yields the classical distribution function. The
Wigner function, as well as �, can be expressed both in
terms of photon numbers, n, n0, and in terms of complex
variables�,��, which label coherent states [5]. A coherent
state j�i is the eigenvector of the annihilation operator with
the eigenvalue �: a0j�i ¼ �j�i, while h�jay0 ¼ h�j��.
Each coherent state is a superposition of an infinite number
of Fock states (states with a definite number of photons,
jni) and in the classical limit becomes a classical state
characterized by a pair of appropriate canonically conju-
gate classical variables. The complex variables � and ��
can be expressed through their real quadrature compo-
nents, x, y: � ¼ xþ iy, �� ¼ x� iy, which can be related
to directly observable properties of an oscillator (e.g.,
current and voltage).
The Liouville equation for the density matrix now yields

the equation for W [22]

i@tWð�;��Þ ¼ 2�ðtÞ½��@�� � �@��Wð�;��Þ
þ 2½�ðtÞ��@�� � �ðtÞ��@��Wð�;��Þ:

(3)

Here, we have introduced �ðtÞ ¼ !0

4 ½ð!ðtÞ
!0

Þ2 � 1� � !0

4 �
½�ðtÞ2 � 1�; �ðtÞ¼ ½�ðtÞþ i _!ðtÞ

!ðtÞ�e2i!0t�½�ðtÞþ i
_�ðtÞ
�ðtÞ�e2i!0t.

In the presence of dissipation, Eq. (3) will also contain
second-order terms, and would only be tractable numeri-
cally; fortunately, in the experimentally relevant (for super-
conducting PTs) situation, dissipation can be neglected.
Then Eq. (3), which is a differential equation of first order,
can be solved by the method of characteristics. The char-
acteristics xðtÞ, yðtÞ satisfy the equations

1

2
_x ¼ ½Im�ðtÞ�xðtÞ þ f�ðtÞ � ½Re�ðtÞ�gyðtÞ;

1

2
_y ¼ �f�ðtÞ þ ½Re�ðtÞ�gxðtÞ � ½Im�ðtÞ�yðtÞ:

(4)

After finding xðx0; y0; tÞ; yðx0; y0; tÞ (where x0, y0 are the
initial conditions) and inverting them to obtain
x0ðx; y; tÞ; y0ðx; y; tÞ, we express the Wigner function at
an arbitrary time through its value at t ¼ 0 via

Wðxþ iy; x� iy; tÞ ¼Wðx0ðx; y; tÞ þ iy0ðx; y; tÞ;
x0ðx; y; tÞ � iy0ðx; y; tÞ; 0Þ: (5)

Equation (5) describes the intuitively clear picture of how
the initial value at a given point Wðx0; y0; 0Þ is dragged
along the characteristic starting in this point. Equation (5)
provides the complete solution for the quantummechanical
problem of a harmonic oscillator with variable frequency,
as should be expected [6,23].
Equations (4) can only be solved, in general, numeri-

cally, but a good analytical approximation can be found
under two reasonable assumptions. First, the relative
change of the oscillator frequency must be small (j1�
�j � 1). Second, the frequency must change either very
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fast ( _� � !0), or very slowly ( _� � !0), compared to the
oscillator period.

Let us first treat the fast limit. In this case, �ðtÞ can be
neglected compared to �ðtÞ, and Eqs. (4) are reduced to
_� ¼ �2i�ðtÞ��ðtÞ; _�� ¼ 2i�ðtÞ��ðtÞ. We must keep all
terms in �ðtÞ until we transform this system into a
second-order equation for �ðtÞ. Now, dropping the small
terms (assuming €� � _� � v), we obtain €�þ v _��
4v2� ¼ 0. In the case of a linear frequency change (v ¼
const), this equation is easily solved with the initial con-
ditions �ð0Þ ¼ �, _�ð0Þ ¼ 2v��, yielding (see Fig. 1)

x0ðt; x; yÞ ¼ x0ðt; xÞ ¼ x
ffiffiffiffiffiffi

17
p

ð2� s�=vÞesþt þ ðsþ=v� 2Þes�t ;
(6)

y0ðt; x; yÞ ¼ y0ðt; yÞ ¼ y
ffiffiffiffiffiffi

17
p

ðsþ=v� 1Þesþt þ ð1� s�=vÞes�t :
(7)

Here, sþ ¼ vð ffiffiffiffiffiffi

17
p � 1Þ=2; s� ¼ �vð ffiffiffiffiffiffi

17
p þ 1Þ=2.

In the slow regime, the terms with _� can be neglected.
The remaining terms are of the same order, but �-terms
oscillate with 2!0 and average to zero over the period of
the oscillator. Therefore, we are left with

1

2
_x ¼ �ðtÞyðtÞ; 1

2
_y ¼ ��ðtÞxðtÞ; (8)

or _� ¼ �2i�ðtÞ�ðtÞ; that is, �ðtÞ ¼ �ð0Þ expf�i !0

2 �
R

t
0½�2ðsÞ � 1�dsg. Even before solving these equations, it

was clear that the slow regime cannot affect squeezing in
any way: Eq. (8) describes circles in phase plane; the
evolution of the Wigner function given by (5) therefore
reduces to its slow rotation as a whole, without changing
shape. This conclusion is consistent with [16,21].

The experimental realization of this proposal is non-
trivial. There have been several reports of an ultrafast
perturbation of optical microcavity modes using the dis-
persion of injected free carriers [24–26]. However, the
small frequency shifts (of the order j�� 1j 	 5� 10�4)
were on a picosecond time scale, which is slow with
respect to the period of one optical cycle of the cavity
modes. These processes are therefore in the adiabatic limit,
rather than in the sudden-frequency-shift regime [16].
Thus, while applicable to on-chip frequency conversion
[27,28], they are not useful for generating nonclassical
optical states. Moreover, a repeated application of the
perturbation within the subnanosecond lifetime of a micro-
cavity mode is doubtful.

The situation is more promising in the (0.1–10) GHz
range, where one can use Josephson junctions as nondissi-
pative nonlinear elements, allowing control of the circuit
parameters. If the frequency is low, so that @! ’ kBT,
where T is 10–50 mK (dilution refrigerator temperatures),
the so-called rf SQUID [29] configuration can be used. The
system consists of a superconducting resonant tank circuit,
inductively coupled to an rf SQUID (a loop containing the

Josephson contact). In the dispersive mode of an rf SQUID,
the effective inductance of the system becomes [29]

Leff ¼ LT � M2

LþLð’Þ ; (9)

where LT , L are, respectively, the self-inductance of the
tank circuit and of the rf SQUID loop, M is their mutual
inductance, and Lð’Þ ¼ L=ð� cos’Þ is the Josephson in-
ductance of the SQUID junction, which depends on the
phase bias ’ across it. Here, � � 2�LIC=�0 and IC is the
critical current of the SQUID Josephson junction.
Therefore, by varying ’, one can control the effective
inductance and eigenfrequency of the tank:

!2
eff

!2
0

¼ L

Leff


 1þ k2

ð1þ � cos’Þ : (10)

FIG. 1. Squeezing of a thermal state, with kBT ¼ 4!0, by
repeated frequency shifts, with �max � 1 ¼ 0:05. (a) Contour
plots of the approximate expression of the Wigner function in the
interaction representation [see Eqs. (5)–(7)] are shown as a
function of the quadrature variables, x and y. Clockwise starting
from the upper left: initial thermal state, the state after one, two,
and ten cycles. The dark background corresponds to W ¼ 0, and
white to W ¼ 0:08. (b) A schematic frequency-versus-time
dependence necessary to produce the results of Fig. 1(a). The
idle periods �t are chosen to ensure that every fast shift occurs in
the same phase with respect to the quadrature coordinates. Here,
one must account for the fact that in the Schröedinger repre-
sentation, the whole phase plane rotates around the origin with
the base oscillator frequency !0. An additional rotation of the
Wigner function as a whole during the slow shift can be
neglected in comparison, since the additional phase j��j �
0:5!0tj�2

max � 1j � !0t.
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Here, k2 � M2=LLT � 1 (in practice k 
 0:3 can be eas-
ily realized) is the coupling coefficient between the tank
and the SQUID loop. For a SQUID dispersive mode, the
parameter �< 1, and so the variations �!0 of the eigen-
frequency of the tank satisfy �!0 ’ ð0:1� 0:01Þ!0, which
should be enough for our purposes. For higher frequencies
@! � kBT, a tunable superconducting cavity could be
used. In such a device, a dc SQUID is incorporated in the
strip resonator [30] and �!0 ’ ð0:1� 0:01Þ!0 as well.

For both low and high frequency cases, the phase-
changing pulse must be sharp on the scale of !0, and this
is within the current experimental capabilities. The coher-
ence time of the system is in the range of 1–10 	s. This
justifies our neglect of the dissipative terms in Eq. (3) and
allows us at least several cycles of frequency change, with
the corresponding increase in the squeezing of the final
state.

A squeezed state can be measured using the standard
homodyne detection, whereby the signal is mixed with the
reference signal at the same frequency and with variable
phase (local oscillator). The resulting signal is proportional
to ½Ax cosð!tÞ þ Ay sinð!tÞ� cosð!tþ �Þ / ðAx cos�þ
Ay sin�þ fast oscillating termsÞ, which allows a direct

determination of either quadrature [31].
In conclusion, we have shown that repeated fast-slow

frequency shifts can produce squeezed states in a nonlinear
superconducting oscillator, thereby suppressing the fluctu-
ations of the amplitude (phase) of the oscillator along
certain directions in phase space, which rotate with the
base oscillator frequency !0. By making use of this noise
suppression, the measurements of the amplitude (phase) of
these oscillators can reach a sensitivity below the standard
quantum limit, or at least below the thermal level.
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