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Here we consider micron-sized samples with any axisymmetric body shape and made with a canted anti-
ferromagnet, like hematite or iron borate. We find that its ground state can be a magnetic vortex with a
topologically nontrivial distribution of the sublattice magnetization l� and planar coreless vortexlike structure
for the net magnetization M� . For antiferromagnetic samples in the vortex state, in addition to low-frequency
modes, we find high-frequency modes with frequencies over the range of hundreds of gigahertz, including a
mode localized in a region of radius �30–40 nm near the vortex core.
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I. INTRODUCTION

The magnetic properties of submicron ferromagnetic
samples shaped as circular cylinders �magnetic dots� are at-
tracting considerable attention mainly due to their potential
applications �see, e.g., Ref. 1�. Circular dots possess an equi-
librium magnetic configuration which corresponds to a vor-
tex structure just above the single-domain length scale with
radius R�Rcrit�100–200 nm. The ferromagnetic vortex
state consists of an in-plane flux-closure magnetization dis-
tribution and a central core with radius �20–30 nm, mag-
netized perpendicular to the dot plane. Reducing the magne-
tostatic energy comes at the cost of a large exchange energy
near the vortex core, as well as the magnetostatic energy
caused by the core magnetization. Due to spatial quantiza-
tion, the magnon modes for dots have a discrete spectrum.
The possibility to control the localization and interference of
magnons spawned magnonics, trying to use these modes for
developing a new generation of microwave devices with sub-
micron active elements �see, e.g., Ref. 2�.

These samples also provide an ideal experimental system
for studying static and especially dynamic properties of rela-
tively simple topologically nontrivial magnetic structures
which are fundamentally interesting objects in different re-
search areas of physics. The investigation of the nonuniform
states of ordered media with nontrivial topology of the order
parameter can be considered as one of the most impressive
achievements of modern condensed-matter physics �see, e.g.,
Ref. 3�, and field theory �see, e.g., Ref. 4�. For example,
vortices �topological solitons� appear in many systems with
continuously degenerate ground states, whose properties are
determined by some phaselike variable �, including super-
conductors �see, e.g., Ref. 5�, quantum liquids �helium-II,
and different phases of superfluid 3He, see, e.g., Ref. 3�,
dilute Bose-Einstein condensates,6 and also different models
of magnets: ferromagnets and antiferromagnets,7–9 and spin
nematics.10,11 The contribution of topological excitations
�vortices and vortex pairs� to the thermodynamics and re-
sponse functions of a two-dimensional �2D� ordered media
are well known. At low temperatures, vortices are bound into

pairs, forming a Berezinskii phase with absence of long-
range order, but with quasi-long-range order. The unbinding
of the vortex pairs at high-enough temperatures, T�TBKT,
leads to the Berezinskii-Kosterlitz-Thouless phase transition.
In particular, the translational motion of vortices leads to a
central peak in the dynamic correlation functions, which has
been observed experimentally; see Refs. 9, 12, and 13 and
references therein.

Physical systems with a topological defect as a ground
state are of special interest. The role of vortices in rotating
superfluid systems is known.3 Additional examples include
single-connected samples of the A-phase of superfluid 3He,
where the true energy minimum is a nontrivial state �bu-
joom� with a surface vortexlike singularity.3 Moreover, non-
uniform states can also appear in small magnetic samples
having high-enough surface anisotropy.14,15 Among these ex-
amples, magnets are interesting because samples bearing
vortices can be prepared of micrometer and submicrometer
size, and vortices can be present at high-enough tempera-
tures, including room temperature. Furthermore, their static
and dynamic properties can be observed using different tech-
niques �e.g., Refs. 1, 16, and 17�.

Summary of results

All previous studies of magnetic vortices caused by mag-
netic dipole interactions were carried out on magnetic
samples made with soft ferromagnets with large magnetiza-
tion Ms, like permalloy, with 4�Ms�1 T. In this work, we
show that vortices can be a ground state for micron-scale
samples with axial symmetry, but now made with another
important class of magnetic materials: antiferromagnets with
easy-plane anisotropy and Dzyaloshinskii-Moriya interaction
�DMI�. Some antiferromagnets possess a small, but nonzero,
net magnetization caused by a weak noncollinearity of the
sublattices �sublattice canting� originated from the DMI. As
we show here, the formation of a vortex in an antiferromag-
netic �AFM� sample leads to a more effective minimization
of the nonlocal magnetic dipole interaction, compared to the
case with ferromagnetic dots. Typical antiferromagnets in-
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clude hematite �-Fe2O3, iron borate FeBO3, and
orthoferrites.7 These materials exhibit magnetic ordering at
high temperatures. Moreover, they have unique physical
properties: orthoferrites and iron borate are transparent in the
optical range and have a strong Faraday effect, and the mag-
netoelastic coupling is quite high in hematite and iron
borate.7 For antiferromagnets, typical frequencies of spin os-
cillations have values in a wide region, from gigahertz to
terahertz, which can be excited by different techniques �not
only the standard one using of ac-magnetic fields but also
with optical or acoustic methods as well�. Spin oscillations
can also be triggered by ultrashort laser pulses.18–21 For AFM
samples in the vortex state, here we derive a rich spectrum of
discrete magnon modes with frequencies from subgigahertz
to hundreds of gigahertz, including a mode localized near the
vortex core. These results should help to extend the fre-
quency range of magnonic microwave devices till subtera-
hertz region.

II. MODEL

For antiferromagnets, the exchange interaction between
neighboring spins facilitates an antiparallel spin orientation,
which leads to a structure with two antiparallel magnetic
sublattices, M� 1 and M� 2, �M� 1�= �M� 2�=M0. To describe the
structure of this antiferromagnet, it is convenient to introduce
irreducible combinations of the vectors M� 1 and M� 2, the net
magnetization M� =M� 1+M� 2=2M0m� , and the sublattice mag-
netization vector l�= �M� 1−M� 2� /2M0. The vectors m� and l� are
subject to the constraints: �m� · l��=0 and m� 2+ l�2=1. As �m� �
�1, the vector l� could be considered as a unit vector. The
mutual orientation of the sublattices is determined by the
sum of the energy of uniform exchange Wex and the DMI
energy, WDM,

Wex = HexM0m� 2, WDM = 2M0HD�d� · �m� � l��� ,

where the unit vector d� is directed along the symmetry axis
of the magnet. Here we will not discuss the role of external
magnetic fields. The parameters Hex�3�102–103 T and
HD�10 T are the exchange field and DMI field, respec-
tively. Using the energy �Wex+WDM� and the dynamical
equations for M� 1 and M� 2, one can find,7

M� = MDM�d� � l�� +
2M0

	Hex
�l� �

�l�

�t
�, MDM =

2HDM0

Hex
,

�1�

where 	 is the gyromagnetic ratio. The first term gives the
static value of the antiferromagnet net magnetization MDM,
comprising a small parameter, HD /Hex�10−2, and the sec-
ond term describes the dynamic canting of sublattices; see
Ref. 7 for details. Note that MDM is much smaller than either
M0 or the value of Ms for typical ferromagnets. However, the
role of the magnetostatic energy caused by MDM could be
essential and could lead to the appearance of a domain struc-
ture for antiferromagnets,7,22 and the magnetic dipolar stabi-
lization of the long-range magnetic order for the 2D case.23

We will show that for the formation of equilibrium vortices,
antiferromagnets have some advantages compared with soft
ferromagnets.

The static and especially dynamic properties of antiferro-
magnets are essentially different from the ones of ferromag-
nets. The spin dynamics of an antiferromagnet can be de-
scribed using the so-called sigma-model �
-model�, a
dynamical equation only for the vector l� �see, e.g., Ref. 7�. In
this approach, the magnetization M� =M� 1+M� 2=2M0m� is a
slave variable and can be written in terms of the vector l� and
its time derivative, see Eq. �1�. Within the 
 model, the equa-
tion for the normalized �unit� antiferromagnetic vector l�

=L� / �L� � can be written through the variation of the Lagrang-
ian L�l��

L =
A

2c2	 � �l�

�t
�2

d3x − W�l�� , �2�

where A is the nonuniform exchange constant, c
=	
AHex /M0 is the characteristic speed describing the AFM
spin dynamics, W�l�� is the functional describing the static
energy of the AFM. It is convenient to present the energy
functional in the form W�l��=W0�l��+Wm,

W0�l�� =
1

2
	 �A��l��2 + K · lz

2�d3x ,

Wm = −
1

2
	 M� H� md3x , �3�

where the first term W0�l�� determines the local model of an
AFM, including the energy of nonuniform exchange and the
easy-plane anisotropy energy through only the vector l�, K
�0 is the anisotropy constant, and the xy plane is the easy
plane for spins. The second �nonlocal� term Wm is the mag-
netic dipole energy, H� m is the demagnetization field caused
by the AFM magnetization Eq. �1�, the field H� m is deter-
mined by the magnetostatic equation,

div�H� m + 4�M� � = 0, curl H� m = 0,

M� =2M0m� , with the standard boundary conditions: the con-
tinuity of the normal component of �H� m+4�M� � and the tan-
gential component of H� m, on the border of the sample. Thus,
sources of H� m can be considered as formal “magnetic
charges,” where volume charges equal to div M� and surface
charges equal −M� ·n� , where n� is the unit vector normal to the
border �see the monographs �Refs. 22 and 24� for general
considerations and Refs. 25 and 26 for application to vorti-
ces�. As mentioned above, the presence of surface anisotropy
with the constant Ksurf can contribute to the energy of a
micron-scale sample leading to nonuniform states.14,15 But
this contribution is essential for a high-enough anisotropy
Ksurf�K and quite small samples, and we will neglect this
contribution and concentrate on an alternative source of non-
uniform states, namely, the magnetic dipole interaction.
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Dynamic sigma model

The variation of the total Lagrangian �2� gives a dynamic

-model equation, where the static spin distribution for an
uniaxial antiferromagnet is determined by the minimization
of an energy functional of the form of Eq. �3�. It is useful to
start with a variation in the local energy W0�l�� only, that
gives a general 2D vortex solution for the vectors l�, M� of the
form

l� = e�z cos � + sin ��e�x cos�
 + �0� + e�y sin�
 + �0�� ,

M� = MDM sin ��e�y cos�
 + �0� − e�x sin�
 + �0�� , �4�

where �=��r�, r and 
 are polar coordinates in an easy plane
of the magnet, the vector e�z is the hard axis, and the value of
�0 is arbitrary. The function ��r� is determined by the ordi-
nary differential equation

d2�

dx2 +
1

x

d�

dx
= sin � cos �� 1

x2 − 1�, x =
r

l0
, �5�

and exponentially tends to � /2 for r� l0 with characteristic
size l0=
A /K. Also, in the center of the vortex �at r=0�, the
value of sin ��r=0�=0, see Fig. 1.

In the region of the vortex core, l� deviates from the easy
plane, and the anisotropy energy increases. The state Eq. �4�
is nonuniform, increasing the exchange energy. Therefore,
for the local easy-plane model, the appearance of a vortex
costs some energy, i.e., the vortex corresponds to excited
states of antiferromagnets. Also, vortex excitations are im-
portant for describing of thermodynamics of 2D
antiferromagnets.27 As we will show in the next section, con-
sidering the dipolar energy Wm�l��, a vortex can be the ground
state of a circular magnetic sample made with canted antifer-
romagnets.

III. ENERGY OF THE VORTEX AND UNIFORM STATES

For small samples made with canted antiferromagnets, the
energy loss caused by a vortex within the local model W
=W0�l�� can be compensated by the energy of the magnetic

dipole interaction. To explain this, note that for a uniform
distribution state, the contribution Wm unavoidably results in
a loss of the system energy, which is proportional to the
volume V of the sample.22,24 The energy of the uniform state
could be estimated as

E�homog� = 2�NMDM
2 V = 2�NM0

2�2HD/He�2V , �6�

where N is the effective demagnetizing factor in the direction
perpendicular to the sample axis.22,24

For magnetic samples other than an ellipsoid �for ex-
ample, for a cylinder with a finite aspect ratio R /L�, the
distribution of the field H� m is nonuniform, leading to a non-
topological quasiuniform state known as a flower state.28 But
a detailed numerical analysis shows,29–32 in all the stability
region of the quasiuniform state where Eq. �6� is valid, the
corresponding value of N is practically the same as for the
uniform magnetization, and the numerical results29–32 ob-
tained within this approximation are in good agreement with
experiments.28

For the static vortex state Eq. �4� with a chosen value of
sin �0=0, with M� � �d� � l��, one can find

M� = 
MDM sin ��− e�x sin 
 + e�y cos 
� , �7�

where 
=cos �0= �1. A unique property of the state Eq. �7�
is that it can also exactly minimize the energy of the mag-
netic dipole interaction Wm, giving H� m=0 in the overall
space. Indeed, the projection of M� on the lateral surface of
any axisymmetric body with its symmetry axis parallel to the
z axis equals to zero. Also div M� =0 for the distribution
given by Eq. �7�. Moreover, due to the symmetry of the DMI,
�M� ·d��=0, the distribution of the magnetization M� Eq. �7� is
purely planar �in contrast to l�� and the out-of-plane compo-
nent of M� is absent. In the vicinity of the vortex core, the
length of the vector M� decreases, turning to zero in the vor-
tex center, see Fig. 1. Such feature is well known for domain
walls in some orthoferrites.7 Thus, the AFM vortex is the
unique spin configuration which does not create a demagne-
tization field in a singly-connected body �for ferromagnet
with �M� �=const, a configuration with H� m�0 can be possible
only for magnetic rings having the topology of a torus�.

Comparing the energies of the vortex and uniform states for
antiferromagnets

Let us now compare the energies of the vortex state and
the uniform state for AFM samples shaped as a cylinder with
height L and radius R. For the vortex state, H� m=0 over the
sample volume, and the vortex energy is determined by the
simple formula,7

Ev = �AL ln��
R

l0
� , �8�

where ��4.1 is a numerical factor. For long cylinders with
L�R, the value of N
1 /2 and the vortex state become
favorable if the radius R exceeds some critical value Rcrit,

R � Rcrit = 2ldip
ln� ldip

l0
� ,

FIG. 1. �Color online� Schematic structure of the AFM vortex
for cos ��r=0�=1 and the special value of the arbitrary parameter
�0=0. The vectors l� �thin blue arrows in the radial direction� and M�

�thick tangential red arrows; shown not in scale� are depicted for the
area of the core �dashed circle� and far from it �larger dotted circle�.
The red dot at the origin indicates the value M� =0 for the state with
l�=e�z perpendicular to the plane.
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ldip =
 A

4�MDM
2 , �9�

where ldip determines the spatial scale corresponding to the
magnetic dipole interaction. Note that ldip comprises a large
parameter He /HD�30–100, and ldip� l0. In the case of a
thin disk, L�R and the demagnetization field energy
becomes25,26

E�homog� = 2�RL2MDM
2 ln�4R/L� ,

and the vortex state is energetically favorable for RL
� �RL�crit=2ldip

2 .
For concrete estimates we take the parameters of iron bo-

rate, A=0.7�10−6 erg /cm, K=4.9�106 erg /cm3, and
4�MDM=120 Oe. Then we obtain that l0=3.8 nm, i.e., the
core size is of the same order of magnitude as for a typical
ferromagnet �for permalloy l0=4.8 nm�. The value ldip is es-
sentially higher, e.g., for iron borate ldip=220 nm. Combin-
ing these data one finds for the long cylinder Rcrit=0.9 �m.
For a thin-disk sample the characteristic scale has submicron
value: 
�RL�crit=0.4 �m. Similar estimates are obtained for
orthoferrites, and somewhat higher values for hematite.
Thus, despite the fact that the characteristic values for the
dipole length ldip for a ferromagnet and antiferromagnet dif-
fer 100-fold, the characteristic critical sizes differ not so
drastically �for permalloy Rcrit�100–200 nm�. This is
caused by the aforementioned fact that the magnetic field
created by the vortex core is completely absent for the AFM
vortex. The situation here is common to that for ferromag-
netic nanorings, where the vortex core is absent. Despite the
fact that the vortex core size in ferromagnetic dots is rather
small, the core contribution to Wm for ferromagnetic dots of
rather big radius R�0.5 �m is negligible, but it becomes
essential for small samples with R close to the critical size.
Note as well that the vortex core magnetic field in the ferro-
magnet destroys the purely 2D character of the distribution
of M� in Eq. �4�, and the core size changes over the thickness
of the sample. For an AFM vortex, the value of H� m equals
exactly zero, and a truly 2D distribution of l� and M� , inde-
pendent of the coordinate z along the body axis, is possible.

IV. MAGNON MODES FOR VORTEX STATE
ANTIFERROMAGNETIC SAMPLES

The dynamics of l� considered within the 
-model ap-
proach differs from the dynamics of a ferromagnetic magne-
tization described by the Landau-Lifshitz equation. The main
difference is that the 
-model equation contains a dynamical
term with a second-order time derivative of l�, whereas the
Landau-Lifshitz equation is first order in time. For this rea-
son, for antiferromagnets, two magnon branches exist, in-
stead of one for ferromagnets.7 For both AFM modes, the
elliptic polarization of the oscillations of M� 1 and M� 2 is such
that the oscillations of the vector l� have a linear
polarization.7 For an easy-plane antiferromagnet, these two
branches are a low-frequency quasiferromagnetic �QFM�
branch and a high-frequency quasiantiferromagnetic �QAF�
branch, respectively. QFM magnons involve oscillations of

the vectors l� and M� in the easy plane with a weak deviation
of M� from the easy plane caused by the last term in Eq. �1�.
The second QAF branch corresponds to the out-of-plane os-
cillations of l� with the dispersion law

�QAF�k�� = 
�g
2 + c2k�2, �g = 	
2HexHa,

where k� is the magnon wave vector. The gap of the QAF
branch, �g, contains a large value Hex and attains hundreds
of gigahertz. Thus compared to ferromagnets, both the mag-
non frequency and speed for AFM dynamics contain a large
parameter


Hex/Ha � 30 – 100,

�Hex and Ha are the exchange field and the anisotropy field,
respectively� which can be referred as the exchange amplifi-
cation of the dynamical parameters of AFM. The frequency
�g of AFM magnon modes reaches hundreds of gigahertz,
with values �170 GHz for hematite, 100–500 GHz for dif-
ferent orthoferrites, and 310 GHz for iron borate.33 Recent
studies using ultrashort laser pulses showed the possibility to
excite spin oscillations of nonsmall amplitude for
orthoferrites18,19 and iron borate.20 This technique can be
also extended to other antiferromagnets, including those
without Dzyaloshinskii-Moriya interaction.21

Since the magnon spectra of bulk ferromagnets and anti-
ferromagnets differ significantly, one can expect an essential
difference for the magnon modes of the vortex state for both
AFM and ferromagnetic samples. Let us briefly recall the
properties of normal modes for disk-shaped vortex state fer-
romagnetic samples �ferromagnetic dots�. For such dots, the
presence of a discrete spectrum of magnon modes, character-
ized by the principal number �the number of nodes� n and the
azimuthal number m, is well established.34–37 This spectrum
includes a single low-frequency mode of precessional motion
of a vortex core �n=0, m=1� with a resonant frequency in
the subgigahertz region,38 a set of radially symmetrical
modes with m=0,39 and also a system of slightly splinted
doublets with azimuthal numbers m= � �m�, with frequencies
��m�,n��−�m�,n, and ��m�,n−�−�m�,n���m�,n; see Refs. 25, 26,
and 40. The same classification is valid for vortices for local
easy-plane ferromagnets.41 Wysin42 demonstrated the direct
correspondence of the gyroscopic character of vortex dynam-
ics and doublet splinting.

For an AFM in the vortex state, small sample each of two
magnon branches, QFM and QAF, produce a set of discrete
modes with given n and m, however, their properties are
different compared to that of a ferromagnetic dot. Below we
present a general analysis of small oscillations above the
vortex ground state.

A. General equations and mode symmetry

The dynamics of small deviations from the AFM static
vortex solution will be considered here for a thin circular
sample �AFM dot� only, where the z-dependence of the vec-
tors l� and m� can be neglected. It is convenient to introduce a
local set of orthogonal unit vectors e�1, e�2, and e�3, where e�3

coincides with the local direction of the unit vector l� in the
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vortex, e�3= l��x ,y�=cos �0e�z+sin �0r�̂, see Fig. 1, e�2=
−e�x sin 
+e�y cos 
=
�̂ , and e�1= �e�2�e�3�. It is easy to see that
the projection �l�·e�1�=� describes small deviations of � from
the vortex ground state, �=�0�r�+�, where �0 is the solution
of Eq. �5�, describing a static vortex structure, and �

= �l�·e�2� is the azimuthal component of l�. In linear approxi-
mation, the equations for � and � become a set of coupled
partial differential equations,

��x
2 − V1�x� − Ĥ1�� +

2 cos �0

x2

��

�

=

l0
2

c2

�2�

�t2 ,

��x
2 − V2�x� − Ĥ2�� −

2 cos �0

x2

��

�

=

l0
2

c2

�2�

�t2 , �10�

where x=r / l0, �0=�0�x� is the solution of Eq. �5�, and �x
= l0�. The equations are symmetric in � and � with local
Schrödinger-type differential operators in front, as well as

with nonlocal parts Ĥ1 and Ĥ2. The “potentials” V1 and V2 in
local Schrödinger-type operators are determined by W0�l��,
see Eq. �3�; they have the same form as for easy-plane
magnets,41,43

V1 = � 1

x2 − 1�cos 2�0, V2 = � 1

x2 − 1�cos2 �0 − �d�0

dx
�2

.

�11�

Note that the potentials in this Schrödinger-type operators
are not small, but localized near the vortex core. Nonlocal
magnetostatic effects, defined by magnetic dipole interac-

tions, are included in the integral operators, Ĥ1 and Ĥ2. For a
ferromagnetic vortex, their form was determined and their
role was discussed in Refs. 26 and 36. Generally, for antifer-
romagnets the magnetization includes not only terms propor-
tional to the in-plane components of l� but also time deriva-
tives of the vector l�. For this reason, the structure of these
operators presented though the vector l� is much more com-
plicated than the corresponding structure for ferromagnets.
But the nonlocal contributions to Eq. �10� are essential only
for in-plane modes with low frequencies ��	HDM and for
this case the dynamical part of the magnetization is negli-
gible, as shown below. By means of this approximation, one

can demonstrate that the operators Ĥ1,2, corresponding to
volume and to edge magnetic charges, take the same form as
for a ferromagnetic vortex, after replacing Ms→MDM and
Mz→0. In particular, the angular dependence of the eigen-
functions for these operators is the same as for ferromagnetic

vortices, namely, Ĥ1,2 exp�im
�=��m� exp�im
�, where the
integer m �m=0, �1, �2, . . .� is the azimuthal number. Thus
for AFM vortices, even considering the nonlocal magnetic
dipole interaction with M� � �l��d��, the separation of the ra-
dial and azimuthal parts of the deviations is possible, and the
magnon modes are of the form exp�im
�fm�r�. This property
is of importance for the problem of magnon modes above the
AFM vortex ground state.

Thus, the static parts of the Eq. �10�, both local and non-
local terms, have the same form as for the well-studied case
of the ferromagnetic vortex, but the dynamical parts differ
strongly. This produces a crucial difference in the magnon
modes of these magnets. For ferromagnetic vortices, the
magnon eigenstates ��m ,�m� depend on 
 and t in combina-
tions as sin�m
+�t� or cos�m
+�t�, whereas for a AFM
vortex, a more general ansatz of the form

�� = f��r��Aeim
 + Be−im
�exp�i��t� + c.c.,

�� = ig��r��Aeim
 − Be−im
�exp�i��t� + c.c. �12�

is appropriate.43 Here �= �n ,m� is a full set of discrete num-
bers labeling the magnon eigenstates and n is the nodal num-
ber. Substitution of this ansatz demonstrates, in contrast to
the case of a ferromagnetic vortex, the full degeneracy of the
frequency over the sign of m.43 As a change in sign in the
number m can also be interpreted as a change in the sense of
rotation of the eigenmode �change in sign in the eigenfre-
quency ��, physically we have the situation of two indepen-
dent oscillators rotating clockwise and counter clockwise
with the same frequency �which can also be combined to
give two linear oscillators in independent directions�. This
degeneracy was clearly demonstrated by solving the ordinary
differential equations for f� and g� �Eq. �10��, as well as due
to direct numerical simulations of the magnon modes above
an AFM vortex.43 Thus, the absence of gyroscopical proper-
ties for the 
-model equation is manifested in the fact that
for a AFM vortex the modes with azimuthal numbers m
= �m� m=−�m� are degenerate, i.e., the splitting of doublets
with m= � �m�, typical for the ferromagnetic vortex, is com-
pletely absent.43,44

Note one more important difference from the ferromag-
netic case: for the AFM vortex the coupling of in-plane and
out-of-plane oscillations comes only from the term with
�cos �0��� /�
�. This means, that �i� for any mode the cou-
pling vanishes exponentially at x→�; �ii� the modes of ra-
dially symmetric �m=0� in-plane and out-of-plane oscilla-
tions are completely uncoupled. Both properties will be
employed below for calculation of the magnon frequencies.

B. Collective variables for vortex core oscillations

First note that the Eq. �10� for an infinite magnet has a
simple zero-frequency solution with m=1

� = �a� · ��0�, � = sin �0�a� · ��0� ,

where a� is an arbitrary vector, and �0, �0 describe the static
vortex solution. Indeed, this perturbation describes a dis-
placement of the vortex for a �small� vector a� . Such “zero
mode” appears for any soliton problem, reflecting an arbi-
trary choice of the soliton �vortex� position.4 For finite-size
magnets, such modes beget low-frequency modes corre-
sponding to the motion of a vortex core. Their analysis with
the Eq. �10� is quite complicated, but it can be done within
the approach based on the scattering-amplitude formalism,
which is developed for the Gross-Pitaevski equation6 and
local models for easy-plane magnets.41 But there is an easier
and more convenient way to calculate the frequency of this
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mode based on a collective variable approach. Here the col-
lective variable is the vortex coordinate X� , which motion is
described by a characteristic dynamic equation.38,41

Thus, for an AFM vortex, as well as for ferromagnets, one
can expect the appearance of a special mode of vortex core
oscillations. But the dynamical equations for the AFM vortex
core coordinate differ significantly from that for ferromag-
nets. The 
-model equation contains a dynamical term with a
second time derivative of l�, combined with gradients of l� in
the Lorentz-invariant form d2l�/dt2−c2�2l�, whereas the
Landau-Lifshitz equation is first -order in time. The chosen
speed c=	
AHex /M0 plays roles of both the magnon speed
and the speed limit of solitons, it is only determined by the
exchange interaction and attains tens of kilometer per sec-
ond, e.g., c
1.4�104 m /s for iron borate and c
2
�104 m /s for orthoferrites.7

The formal Lorentz invariance of spin dynamics of anti-
ferromagnets manifests itself in the motion of any AFM
solitons,45 in particular, the motion of the AFM vortex
core:42,46 the dynamical equation for the core coordinate at
small vortex speed X� , when at �dX� /dt��c, possess an inertial
term,

Mv
d2X�

dt2 = F� ,

where the effective vortex mass Mv=Ev /c2 and F� is an ex-
ternal force acting on vortex. For the case of interest here,
the free dynamics of the vortex in a circular sample, F� is the
restoring force: in linear approximation F� =−�X� , where � is
the stiffness coefficient. With this force, the vortex core dy-
namics is not a precession, as for the gyroscopic Thiele equa-
tion for ferromagnetic vortices,47–49 but rectilinear oscilla-
tions, X� �t�=a� cos��vt+�0�, degenerate with respect to the
direction a� and �0 with frequency �v=
� /Mv. For the easy-
plane AFM model with Wm=0, such dynamics has been ob-
served by direct numerical simulations.27,44 For a vortex state
dot with R�Rcrit, the value of � is determined by the demag-
netizing field, its value can be obtained from the known
value for a ferromagnet by replacing Ms→MDM,38 which
gives �=10�4�MDM

2 L2 /9R, and

�v =
2cMDM


10L

3
AR ln��R/l0�
. �13�

A simple estimate gives that �v, as for a ferromagnetic
vortex, is in the subgigahertz region, but with different �ap-
proximately square root, instead of linear for ferromagnetic
vortex� dependence on the aspect ratio L /R.

C. Other low-frequency modes

Far from the vortex core, the other modes from this set are
approximately characterized by in-plane oscillations of l� and
M� . As their frequencies are small, ��	HDM, for these
modes the magnetization M� is determined mainly by the in-
plane static contribution �Eq. �1��, and the formulae for the
demagnetization field energy for ferromagnetic vortices can

be used. Moreover, the data known for the ferromagnetic
magnon frequencies �m

FM �in first approximation over the
small parameter L /R, i.e., in the magnetostatic approxima-
tion� can be directly used for the calculation of the corre-
sponding frequencies for magnon modes above the AFM
vortex ground state. Note that, in this approximation, �+m

FM

=�−m
FM=�m

FM, because the doublet splitting for a ferromag-
netic vortex is proportional to �L /R�2; see Refs. 26 and 40.

To make this essential simplification, note that for the
ferromagnetic case the Landau-Lifshitz equation, linearized
over the vortex ground state, can be written as �mr /�t

=4�	Msmz, �mz /�t= ĥ2Msmr, as was shown in Appendix B

of Ref. 36. Here the dimensionless operator ĥ2 determines
the nonlocal magnetostatic part of the magnetic dipole inter-
action. Then the equations can be easily rewritten as

�2mr /�t2+ ��m
FM�2mr=0, where �m

FM=4�	Ms

�ĥ2�, where

�ĥ2� is the eigenvalue of the operator ĥ2. These values for
modes with different angular dependence can be either esti-
mated theoretically or taken from experiments.36

Now we will return to the case of AFM vortices. Neglect-
ing the vortex core contribution, the second equation of the
system in Eq. �10� reduces to the form

�2�/�t2 = �c/l0�2Ĥ2� ,

having exactly the same structure as the equation for mr for a
ferromagnetic vortex. For the simplified form of the magne-
tization, M� =MDM�l��e�z� the same “magnetic charges,” both
volume charges, div M� , and surface charges, �e�r ·M� �, as for a

ferromagnetic vortex, are produced. Thus the operator ĥ2 dif-

fers from Ĥ2 by a simple scaling relation, Ms→MDM and

A /4�Ms
2→ l0

2, which gives Ĥ2= �4�MDM
2 /K�ĥ2. Then, it is

easy to obtain the frequency of the AFM mode �m in terms
of the frequency of the ferromagnetic mode �m

FM �if it is
known� as follows:

�m =
cMDM

	Ms

4�A

�m
FM. �14�

In particular, the frequency of radially symmetric oscilla-
tions, having the highest frequency36 for modes with mini-
mal nodal number n, can be presented through the known
value for �0

FM as50

�0 =
2cMDM


L

AR


ln�6R

L
� . �15�

For these modes, the frequencies are of the order of a few
gigahertz with an approximately square-root dependence on
the aspect ratio L /R.

Note the absence of gyroscopic properties for the 
-model
equation. This is manifested both in the absence of a gyro-
force for an AFM vortex as well as in the fact that for an
AFM vortex the modes with the azimuthal numbers m= �m�
and m=−�m� are degenerate. The splitting of doublets with
m= � �m�, typical for ferromagnetic vortices, is absent for
AFM vortices.43,44
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D. Out-of-plane high-frequency modes

For an AFM sample in the vortex state, the high-
frequency QAF branch of magnons begets a set of discrete
modes with frequencies of the order of �g, i.e., hundreds of
gigahertz. For all these modes far from the vortex core, os-
cillations of the vector l� are out of plane, and the static con-
tribution to the weak magnetization, m� static� �e�z� l�� is absent,
see Eq. �1�. Moreover, it is easy to show that the dynamical
part of m� , m� dyn� �l���l�/�t� has a vortexlike structure and
does not lead to magnetic poles neither on the up and down
surfaces nor at the edge. Hence, the dipole interaction is not
essential for the description of high-frequency magnons, and
the results obtained earlier for the vortex in easy-plane anti-
ferromagnets without the magnetic dipole interaction43,44 can
be used as a good approximation. In particular, the frequen-
cies �n,m are close to �g, and the difference ��n,m−�g� de-
creases as the dot radius increases.

For an AFM vortex within the local easy-plane model, the
set of high-frequency radially symmetric modes with m=0
includes a truly local mode with an amplitude exponentially
localized within an area of the order of 5l0 and with a fre-
quency �l�0.95�g independent of R. Note that the fre-
quency of this mode is inside the range of low-frequency
in-plane modes, and hence, we have an example of a truly
local mode inside a continuum spectrum.

The presence of a local mode inside the frequency region
of low-frequency modes is quite a delicate feature, and it is
interesting to discuss whether or not such mode survives for
the vortex state AFM dots when accounting for dipole inter-
actions. It is easy to show that for these modes the oscilla-
tions of l� have no in-plane component, only the ��0, even
inside the core region. Thus, for this mode the oscillations of
m� are such that they do not disturb the vortexlike closed-flux
structure

�m� � e�
����/�t� + 	HD� cos �0� ,

and all the magnetic poles vanish exactly. Hence, for cylin-
drical dots made with canted antiferromagnets in the vortex
state, a radially symmetric mode with exponential localiza-
tion inside an area of radius 30–40 nm near the vortex core
appears. The frequency of this mode is approximately 5%
below the energy gap of out-of-plane modes �g, which gives
�9 GHz for hematite and �15 GHz for iron borate. We
now stress that such modes are absent for ferromagnetic vor-
tices. This mode can be imaged as an oscillation of the vor-
tex core size with keeping the in-plane vortexlike structure

for m� . The total magnetic moment connected to this oscilla-
tions is zero, and the excitation of these oscillations by a
uniform magnetic field, either pulsed or periodic, is impos-
sible. However, such oscillations can be excited by an instant
change in the uniaxial anisotropy, which determines the vor-
tex core size. The novel technique18–21 of spin excitations by
ultrashort laser pulses can be applied here, because the lin-
early polarized light at inclined incidence, due to an ultrafast
inverse Cotton-Mouton or inverse Voigt effect, is equivalent
to the necessary change in uniaxial anisotropy.

V. CONCLUSION

To conclude, for micron-sized samples of typical canted
antiferromagnets, their ground state exhibits a topologically
nontrivial spin distribution. The magnetizations of each sub-
lattice M� 1 and M� 2 are characterized by a vortex state with a
standard out-of-plane structure, but the net magnetization
M� =M� 1+M� 2 forms a planar vortex, where the projection of
the magnetization normal to the vortex plane everywhere in
the sample is zero; in particular, M� =0 in the vortex center.
The vortex state AFM dots possess a rich variety of normal
magnon modes, from rectilinear oscillations of the vortex
core position with subgigahertz frequency to out-of-plane
modes with frequencies of the order of hundreds of giga-
hertz, including a truly local mode. The use of QAF modes
for vortex state AFM dots, particularly the truly local mode,
would allow the application of magnonics for higher fre-
quencies until �0.3 THz. This mode can be excited by ul-
trashort laser pulses with linearly polarized light.

Our theory would be applicable to other systems with an
AFM spin structure, like a ferromagnetic bilayer dot contain-
ing two thin ferromagnetic films with an AFM interaction
between them, described by the field Hex. If Hex is large
enough, Hex�4�Ms, the antiphase oscillations of the mag-
netic moments of the layers produce high-frequency modes
with frequencies of the order of 
	Hex�m,n

FM, where �m,n
FM are

the frequencies of the modes for a single-layer dot.
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