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We study the effect of an applied magnetic field on the resonant radiation from stacks of intrinsic Josephson
junctions. We show that, when applying a moderate dc magnetic field in the plane of the junctions, a huge
amplification of terahertz radiation can be obtained. This radiation enhancement occurs due to a modulation of
the critical current. Furthermore, a dc magnetic field reducing the “radiation coupling” between junctions,
produces a peculiar frequency-driven transition from stable to unstable terahertz radiation resonance.
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I. INTRODUCTION

Devices that could use the terahertz waveband would be
important for potential applications.1 However, the “terahertz
gap” �from 0.5 to 10 THz� is hard to use because no practical
sources of terahertz radiation exist.2 Stacks of intrinsic Jo-
sephson junctions �SJJs�, made of Bi2Sr2CaCu2O8 �BSCCO�
or other layered high-Tc superconductors, are a candidate
material that could fill the frequency gap from several tenths
to �2 THz.3 A requirement for producing terahertz radiation
from a SJJ is a synchronization of the high-frequency oscil-
lations in all Josephson junctions �see, e.g., Ref. 4 and refer-
ences therein�. One approach to achieve such a synchroniza-
tion is the application of a magnetic field to induce a
coherent vortex flow.3,5 However, the usual triangular vortex
lattice produces a weak noncoherent radiation, while a rect-
angular lattice, which could in principle generate more tera-
hertz power, is almost always unstable.6,7

An advance toward realizing superconducting terahertz
emitters was recently made, when radiation power �up to
0.5 �W at frequencies f =� /2� up to 0.85 THz� was mea-
sured coming out from BSCCO mesas.8 In this experiment, a
bias current I, with a density J higher than the critical value
Jc, was initially applied to mesas along the c axis. Afterward,
the current was decreased. When decreasing J below Jc, but
still in the resistive state due to hysteresis, sharp peaks of
terahertz emission were observed in the descending resistive
branch of the current-voltage �IV� characteristic. The authors
of Ref. 8 argued that the peaks in the irradiation power were
observed under conditions of a cavity resonance.9,10 That
experiment8 was performed in zero magnetic field and oscil-
lations, with frequency �J=2e�V /�, of the electromagnetic
field in the sample appeared due to the standard ac Josephson
effect; here �V is the voltage per single junction. Possibly,
the synchronization of the field oscillations in different junc-
tions might have been achieved due to “radiation coupling”
�i.e., the radiation itself would induce the junctions to oscil-
late in phase� and would not require any external
stabilization.11,12 Note that a different way to produce radia-
tion, using an artificial modulation of Jc, was proposed ear-
lier in Refs. 13–16.

The idea to use cavity resonances in SJJs to attain a large
output of the terahertz emission was intensively studied in

many articles �see., e.g., Refs. 8, 12, and 17–19�. In very
earlier theoretical papers by Kulik,20 it was shown that the
application of a dc magnetic field in the plane of the contact
produces to a drastic increase in the cavity resonance wave
amplitude in the case of a single Josephson junction. This
amplification, and the possible synchronized flux line mo-
tion, was studied by Kleiner et al.21 in the case of SJJ. How-
ever, in Ref. 21, the analysis was done only numerically and
the problem of the terahertz emission was not considered.
The terahertz irradiation from a SJJ in a strong dc applied
magnetic field, when cavity resonances occur, was also stud-
ied numerically in Ref. 19. The numerical analysis in Refs.
19 and 21 did not study the stability domain of the synchro-
nized oscillations. Thus, the crucial problems of �i� the influ-
ence of weak magnetic fields on terahertz radiation and �ii�
the stability of synchronized oscillations in SJJs has not been
properly addressed so far. Both of these subjects are the fo-
cus of this paper.

Here we study analytically the effect of a weak in-plane
dc magnetic field Hdc, on the radiation power output from
BSCCO SJJ carrying an external bias current I along the c
axis. The size of the SJJ is smaller than the c-axis London
penetration depth �c and the triangular flux line lattice settles
in the sample �suppressing the radiation� when Hdc�Hc1. In
contrast, the application of a weak magnetic field Hdc gives
rise to a modulation of the critical current density Jc in the
SJJ and, similar to the predictions of Ref. 12, to a significant
increase in the radiation power. A significant advantage of
the approach to the problem using a dc magnetic field is that
the Jc modulations are identical in all junctions �which is a
major technical difficulty for producing SJJ with artificial
modulations�. In addition, the Josephson dynamics of SJJ in
an external magnetic field provides interesting and rich pos-
sibilities to manage the radiation parameters by small
changes in the magnetic field or bias current.19 In particular,
the coherent mode can be destroyed and restored by small
variations in either the applied magnetic field or the bias
current. An important part of the present study is the inves-
tigation of the domain of stability of the synchronized tera-
hertz irradiation. We derive analytical conditions that allow
us to obtain the limitations on the number N of contacts in
the SJJ and on the value of the applied magnetic field Hdc. If
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either N or Hdc exceed these limits, the synchronized oscil-
lations would disappear.

II. RADIATION EMISSION

We consider a SJJ located between large superconducting
leads with the same lateral dimensions as the stack, as in Fig.
1. We assume that the sizes of the sample in the x and z
directions �L and Lz� are much smaller than along the y axis
�L ,Lz	Ly�; also L , Lz
�c, and the number of junctions
N=Lz /s is large, N�1; here s��1.5 nm� is the interlayer
distance. We also assume that L , Lz
c /�J=1 /k�
Ly,
which allows us to disregard the y- and z-coordinate depen-
dence of the fields and only consider the radiation in the x
direction. In the descending resistive branch of the IV curve
�see left inset in Fig. 1� the current density J
Jc
=c�0 /8�2s�c

2, and we neglect the current dependence of the
Josephson plasma frequency �p=c /�c

��, where � is the di-
electric constant. In this geometry, the electromagnetic field
in the vacuum has the form H= �0,Hy ,0�, E= �Ex ,0 ,Ez�, and
only outgoing waves propagate; that is

H,Ex,Ez 
 exp�ikx�x� + ikzz − i�Jt� .

Here kx=�k�
2 −kz

2 for k�
2 �kz

2, and kx= i�kz
2−k�

2 for k�
2 
kz

2.
This problem is somewhat similar to the one analyzed in
Refs. 11 and 12, but we now consider here how the dc mag-
netic field affects the radiation. Remarkably, and in contrast
to common beliefs, a weak magnetic field can enhance the
radiation and only a relatively high Hdc would suppress it.

The Josephson dynamics in layered superconductors can
be described by a set of coupled sine-Gordon equations re-
lating the gauge-invariant phase difference �n between the
nth and �n+1�th layers and electromagnetic fields.22 These
equations can be derived from Maxwell’s equations express-

ing fields and currents in terms of �n. The gauge-invariant
phase difference is defined as �see, e.g., Ref. 23�

�n = �n+1 − �n + 2�sAnz/�0, �1�

where �n is the phase of the superconducting order parameter
in the nth layer and Az is the z component of the vector-
potential of the electromagnetic field between the nth and
�n+1�th layers. The components of the current Jz and Jx
flowing in the SJJ have both superconducting and quasipar-
ticle contributions and can be expressed as6

Jz = Jc sin �n +
�c�0

2�cs

��n

�t
,

Jx =
c�0

8�2�ab
2 pn +

�ab�0

2�c

�pn

�t
, �2�

where �c and �ab are quasiparticle conductivities across and
along the superconducting planes, �ab is the in-plane London
penetration depth,

pn = ��n/�x − 2�Ax/�0,

and Ax is the x component of the vector-potential. Substitut-
ing these formulas in Maxwell’s equations and using the re-
lation between �n and the y component Hny of the magnetic
field between the nth and �n+1�th layers,9,23

Hny =
�0

2�s
� ��n

�x
+ pn − pn+1� , �3�

we can derive the set of coupled sine-Gordon equations in
the form6,11

1

c2

�2�n

�t2 = ���n
2 − 1��4��c

�c2

��n

�t
+

�p
2

c2 sin �n −
2�s

�0�

�Hny

�x
� ,

�1 − � �c

�s
�2

�n
2	Hny = �1 +

4��ab

��2�p
2

�

�t
�� �0

2�s

��n

�x
− Hny� ,

�4�

where �n
2fn= fn+1+ fn−1−2fn, and we introduce the capacitive

coupling parameter between adjacent superconducting layers
�, which in the case of BSCCO can be estimated as �
�0.1 �see Ref. 11�.

We calculate the terahertz radiation produced by uniform
Josephson oscillations in a stack of identical junctions. In
this case, the gauge-invariant phase difference and magnetic
field are the same for any n, �n=� and Hny =Hy. In this case,
the second of Eq. �4� reduces to

Hy =
�0

2�s

��

�x
. �5�

We substitute this relation to the first of Eq. �4� and obtain a
single sine-Gordon equation for the phase difference in the
form,

�̈ + �c�̇ + sin � = ��, �6�

where we introduce dimensionless time �= t�p and coordi-
nate �=x /�c, �c=4��c /��p, �̇=�� /��, and ��=�� /��. The

FIG. 1. �Color online� Sample geometry. The upper left curve
schematically shows the current-voltage, IV, characteristics of the
sample.
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frequency is normalized as �=�J /�p and l=L /�c
1. Here
we are interested in the frequency range near a cavity reso-
nance when �J=��p�c /L. In dimensionless units it reads
�l=�, thus, ��� / l�1. We seek a solution of Eq. �6� in the
form,

� = �0 + � , �7�

where �0 and � describe the Josephson oscillations and ra-
diation, respectively, and ���	1. Using the relation Eq. �5�
between the y component of the magnetic field and the phase
difference, we derive boundary conditions for �0 in the form
�0�=h�hI, at �= � l /2, where

H0 =
�0

2�s�c
, h 


Hdc

H0
, and hI =

l

2
� J

Jc
� 	 1. �8�

So, the part of the phase difference, which relates to the
Josephson oscillations and satisfies the formulated above
boundary conditions can be written as

�0 = �� + h� + hI�
2l−1, �9�

where the last term in the right-hand side is small. Substitut-
ing now the sum �=�0+� in Eq. �6�, we obtain the equation
for � in the limits ���	1 and ��1,

�� − �̈ − �c�̇ = sin��� + h�� + �c� − 2hIl
−1, �10�

where we neglect the small terms �hI�
2l−1+�� in the argu-

ment of the sine. In the resistive state �V=Js /�c and we can
verify that the last two terms cancel in the right-hand side of
Eq. �10�. We substitute the solution � in the form

���,�� = Re������exp�− i���� �11�

in Eq. �10� and obtain for the amplitude �� the equation11

��� + �2�� = ie−ih�, �12�

where

� = ��2 + i�c� . �13�

According to Ref. 12, the boundary conditions for � have the
form

��� = � i���, x = � l/2, �14�

where

� =
Lz�

2

2��c
�1 −

2i

�
ln�5.03���c

�Lz
�	 . �15�

In the case of BSCCO, �c�100 �m, ��10–20, and ���
�10−3�2 if N�103.

A solution of Eq. �12� with its boundary conditions is

�� = ��
rad +

i exp�− ih��
�2 − h2 . �16�

where

��
rad = C1ei�� + C2e−i��, �17�

C1,2 =

��h� � �2�sin
�� � h�l

2
+ i��� � h�cos

�� � h�l
2

2��2 − h2��� cos
�l

2
− i� sin

�l

2
	�i� sin

�l

2
− � cos

�l

2
	 ,

�18�

The first term, ��
rad, in Eq. �16� describes the radiation, while

the second term is a correction to the Josephson oscillations
accounting for Hdc.

The radiation power P from SJJ is a sum of the powers
from the left P− and the right P+ sides of the sample, which
can be expressed in terms of the Pointing vector �c /4��E
�H as

P� =
cLysN

4�
Ez

rad��l/2�Hy
rad��l/2� , �19�

where Ez is the electric field across the SJJ, LysN is half of
the SJJ side surface, and the superscript “rad” means that we
take into account only oscillating parts of the electromag-
netic fields. In dimensionless notation, Eq. �5� reads Hy
=H0��. Using this formula and Maxwell’s equation c�
�E=−�H /�t, we find the relation between the z component
of the electric field and the phase difference in the form9

Ez=�c�pH0�̇ /c. Substituting these relations in Eq. �19� and
using the boundary conditions Eq. �14�, we derive an ap-
proximate formula for the radiation power,12

P� 

Ly�0

2N2�J
3

64�3c2 ���
rad��

l

2
��2

, �20�

where the N2-dependence indicates a super-radiance regime.
The radiation powers to the right and to the left of the

sample are equal. The dependence of the dimensionless ra-
diation power ����l /2��2 on � is shown in Fig. 2 for different
values of Hdc. The power P���� has a set of resonance peaks

FIG. 2. �Color online� Dimensionless radiation power
���

rad�l /2��2 versus � for different values of the dc magnetic field:
Hdc=0 �black dashed line with down triangles�, 0.1H0 �dotted line
with green circles�, 0.4H0 �blue solid line�, 0.9H0 �red line with up
triangles�. The sample parameters used here are: L=0.25�c, �c

=100 �m, D=1.56 nm, N=3�103, �=12, and �c=0.002.
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at �l /2
�n, with an intensity rapidly decreasing with n.
Applying a dc field results in the growth of peaks with odd n,
which are absent when h=0, and does not affect the peaks
with even n.

At the first resonance

�res 

�

l
−

2

�
Im��� ,

we derive, using Eq. �16� and the expressions for C1,2,

��
rad��l

2
� =

− 4ihl2 cos
hl

2

��2 − h2l2����c + 4 Re����
. �21�

Note that the peak height increases linearly with the mag-
netic field if �hl /��2	1. It grows sharply when hl is close to
�. However, the results obtained here are valid only if ���
	1 and we restrict our consideration to the limit h2	�2 / l2.
The peak width is determined by the dissipation �c and ra-
diation losses Re���
N. If the radiation losses become much
larger than �c �here N�Nc=�c�L2 / �2�s�c��, the radiation
power becomes independent of N, similar to the case of uni-
form or artificially modulated SJJ �Refs. 11 and 12�; we es-
timate Nc
100 for the values used to calculate the curves
shown in Fig. 2. Comparing Eqs. �20� and �21� with the
maximum radiation power for uniform and artificially modu-
lated SJJ,11,12 we conclude that the application of Hdc: �i�
enhances the radiation power if

Hdc � He =
3�2LzH0

8�L
, �22�

and �ii� is more effective than the linear modulation of Jc by
a factor of g �the ratio of Jc on the left and the right edges of
the SJJ� if

Hdc � Hg =
2�cH0�g − 1�

L�g + 1�
. �23�

We estimate H0
20 Oe, He
1.2 Oe, and Hg
H0, when
g=1.3, for the same parameter values as in Fig. 2.

According to our calculations, the application of the dc
magnetic field increases the terahertz radiation from the SJJ
by orders of magnitude as compared to the uniform sample
in zero applied field. Note, however, that experimentally, ad-
ditional contributions to the bias current may exist, causing a
spatial variation in the bias current density along the y direc-
tion. Also, incidental inhomogeneities may also exist in real
SJJs. These effects may increase the radiation at H=0 and
mask the effect of the magnetic field.

III. STABILITY OF THE SYNCHRONIZED OSCILLATIONS

We analyze the stability of the synchronized regime with
respect to z-dependent perturbations, which could destroy the
synchronization in different junctions. First, we rewrite Eq.
�4� in dimensionless units,11

�̈n = ���n
2 − 1���c�̇n + sin �n − hny� � ,

��n
2 − T̂ab�hny + T̂ab�n� = 0, �24�

where �ab=4��ab / ��2��p�, �=�c /�ab is the anisotropy ra-
tio, and

T̂ab = ��s

�c
�2�1 + �ab

�

�t
� . �25�

In the case of BSCCO, �ab�0.1.
We write �n as

�n = �� + h� + � + �n, �26�

where �n is an infinitesimally small perturbation depending
on the position of the junction zn. In the limit ��1, we
neglect higher �m� with m�1� harmonics and present �n in
the form11

�n = �
q

��q + �q
+ei�� + �q

−e−i���sin�qn�e−i��, �27�

where q=�k / �N+1�, k=1,2 , . . . ,N; ���q��	1; and the uni-
form �along the z axis� oscillations are stable if Im���q��

0 for all q. We analyze the case q�� /N, since the inverse
limit corresponds to a uniform solution. The perturbation of
the magnetic field has a similar form as in Eq. �27�. Substi-
tuting Eqs. �26� and �27� in Eq. �24�, excluding the pertur-
bation of the field, separating the terms with the same fre-
quencies, and taking into account that ��� , ��n�	1, we
derive

G2����q� + ��a
2��� + �̃���q =

�q
+e−ih� + �q

−eih�

2
, �28�

G2�� � ����q
��� + �a

2�� � ���q
� =

�qe�ih�

2
, �29�

where

G2��� =
1 − i�ab�

1 − i�ab� + �2q̃2 , �a
2��� =

�2

1 + �q̃2 + i�c� ,

�30�

�̃� =
Re����

2
sin�h�� +

Im����
2

cos�h��, � =
�c

�s
, �31�

where q̃2=2�1−cos q�. In Eq. �29�, we neglect terms of the
order of ���� compared to ��1. Under these assumptions,
the boundary conditions to these equations are the same as in
Ref. 11,

�q�

�q
= �

����
G2���

,
��q

 ��
�q

 = �
��� −  ��

G2�� −  ��
, �32�

���� =
�2

1 + �q̃2

s

�q�c
, � = �

l

2
, �33�

where the index  is either + or −.
Now we analyze Eqs. �28� and �29�. First, notice that the

characteristic spatial scale of variation of �q is
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1

��G����



�1 + �2q̃2

���
� l ,

as it follows from Eq. �28�. Thus, this scale is much larger
than the sample size. Thus, �q��� is almost constant and we
can find solutions of Eq. �29� explicitly. For simplicity, we
neglect �	1 compared to ��1 in Eqs. �29� and �32�. We
rewrite Eq. �29� in the form

��q
−�� + k2����q

− =
�qe−ih�

2G2���
, �34�

where

k��� = �����/G��� .

We can estimate �k�
�1+�2q̃2��1. We consider here the
field range of the order of hl�� /2�1. Then, in the limit
k�h, we derive from the last equation �q

− exp�ih��

�qV���, where

V =
1

2��
2����1 −

����cos k�

G2����G��������sin
kl

2
+ ����cos

kl

2
	� .

We derive a similar expression for �q
+. Substituting these re-

sults in Eq. �28�, we have

�q� +
�a

2��� + �̃���� − Re�V����
G2���

�q = 0. �35�

This equation can be solved considering the coordinate de-
pendence of �q as a small perturbation. Thus, integrating Eq.
�35� with the boundary conditions �Eq. �32��, we derive a
dispersion relation for ��q� in the form

�2

1 + �q̃2 + i�c� + W1��� + W2��� 

�q̃2�2 − ah2

2�4 , �36�

where a�1,

W1 =
1

l
Im�C1

sin
�� + h�l

2

� + h
+ C2

sin
�� − h�l

2

� − h
� , �37�

W2 = Re� ����

l��
3���G���������G��� + ����cot� kl

2
�	� ,

�38�

and we assume that N	��c /s
5�105. The obtained Eq.
�36� for � allows us to write down the stability criterion for
the synchronized Josephson oscillations explicitly. The con-
dition Im���q��
0 is true if the free term of the quadratic
equation Eq. �36� is negative. Thus, the oscillations in differ-
ent junctions are synchronized if

W1��,h� + W2��, q̃� 

�q̃2�2 − ah2

2�4 �39�

at any value of q̃.

If the term W1
0, it stabilizes the uniform oscillations
due to radiation coupling. The term W2 leads to instability
due to the excitation of the Fiske resonance.11 As in the case
of zero magnetic field, we find that both dissipation and
charge-neutrality-breaking stabilize the super-radiance re-
gime. The magnetic field reduces slightly the effect of the
charge-neutrality-breaking. However, according to our nu-
merical estimates, the coefficient a, in Eq. �36�, is small.

The magnetic field does not practically affect W2, but it
significantly reduces the radiation coupling between junc-
tions. Indeed, the value W1 changes its sign, becomes zero in
the main approximation at the resonance point �see Fig.
3�a��, and stabilization due to radiation coupling can only
occur due to the next-order terms with respect to �. Thus, at
sufficiently high magnetic fields and low number of junc-
tions, the resonance radiation is stable at frequencies lower
than the resonance frequency and it becomes unstable if �
��res; see inset in Fig. 3�b�. For lower fields and for a SJJ
with a large number of junctions, the resonance peak is
stable for both higher and lower frequencies.

FIG. 3. �Color online� �a� Function W1��� near the resonance:
Hdc=0 , N=103 �black dashed line�, Hdc=0.2H0 , N=103 �blue
solid line�, Hdc=0.5H0 , N=103 �red line with circles�, Hdc

=H0 , N=4.5�103 �green line with triangles�. Other parameters
are the same as in Fig. 2. �b� Stability margins in the �N ,h�-plane
for l=0.25 �blue line with circles� and l=0.4 �red line with tri-
angles�. In the inset: schematics of the stable and unstable regions
of the resonance peak.
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The margins and regions of stability are shown in Fig.
3�b� in the plane �h ,N� for two different values of l. The
radiation is stable for all frequencies above the lines N�h�
and only for �
�res below these curves. The results pre-
sented here show that, for a given sample, the in-phase os-
cillations are stable only at low magnetic fields. With in-
creasing h, the stability of the synchronized regime decreases
and the stable regimes occur only for the low frequency
modes, �
�res.

As it follows from these results, we can switch off and on
radiation by varying either the magnetic field or the bias
current �i.e., �J�. The region of full stability decreases when
increasing the ratio L /Lz. We can assume that the instability
when ���res arises due to the negative differential resistiv-
ity �NDR� of the IV curve near the peak of the radiation
power. Indeed, parts of the IV curve with the NDR were
observed near radiation peaks in BSCCO mesas.8 The
IV-curve calculation in Ref. 11 also predicts such IV-curve
singularities. Our considerations are invalid if hl!�. Per-
haps the synchronization of the oscillations in different
BSCCO junctions will be destroyed at higher Hdc since a
vortex lattice enters the sample. However, this occurs at a
field Hdc�Hc1 due to the small thickness �L	�c� of the SJJ

and the current flowing in the sample along the c direction.

IV. CONCLUSION

The application of a moderate dc magnetic field can sig-
nificantly increase synchronized terahertz emission from SJJ.
The magnetic field affects identically all the junctions in the
SJJ, which is a considerable advantage of our proposal as
opposed to the use of SJJ with artificially modulated proper-
ties. However, the dc magnetic field reduces the stability of
the uniform Josephson oscillations.
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