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This is a theoretical study of the resonant suppression of the specular reflection of terahertz waves in layered
superconductors due to the excitation of surface Josephson plasma waves �SJPWs�. Here, we consider in detail
the specific case of SJPW excitations by evanescent electromagnetic waves via the attenuated total reflection of
incident waves in a dielectric prism. We also derive the dispersion relation for surface waves propagating along
the vacuum-superconductor interface parallel to the ab plane. We show that, due to the SJPW excitation, the
reflectivity of the incident wave depends resonantly on both its frequency and incident angle. We find the
optimal conditions for the best matching of the incident wave and SJPWs, as well as for the total suppression
of the specular reflection.

DOI: 10.1103/PhysRevB.76.224504 PACS number�s�: 74.72.Hs, 74.78.Fk, 74.50.�r

I. INTRODUCTION

The unusual optical properties of layered superconduct-
ors, including reflectivity and transmissivity, caused by the
excitation of Josephson plasma waves �JPWs�, were studied
in, e.g., Refs. 1–5. Most of the previous work on this prob-
lem has focused on propagating waves in the frequency
range above the gap of the JPW spectrum, i.e., above the
Josephson plasma frequency: ���J. A similar gapped spec-
trum also appears in solid state plasmas.6 In such situations,
the surface electromagnetic waves6–10 with frequencies be-
low the gap can propagate along the sample boundary.

In layered superconductors, there has been a recent
prediction11 of the existence of surface Josephson plasma
waves �SJPWs� in the terahertz and subterahertz frequency
range, below the Josephson plasma frequency. In general,
surface waves play a very important role in many fundamen-
tal resonance phenomena, such as the Wood anomalies in the
reflectivity7–9,12 and transmissivity10,13–19 of periodically cor-
rugated metal and semiconductor samples. Therefore, it is
important to describe how to excite surface waves in layered
superconductors and to study the resonances associated with
these surface waves.

In this paper, we show that the surface Josephson plasma
waves at the boundary between the vacuum and a layered
superconductor can be excited via the so-called “attenuated-
total-reflection method” �Otto configuration7–9,20,21� in a fre-
quency range below �J, i.e., by an evanescent wave in the
vacuum gap between the superconductor and a dielectric
prism. The dispersion relation for surface waves propagating
along the vacuum-superconductor interface is derived for the
geometry when the sample surface coincides with the ab
plane, i.e., the SJPW propagates along the superconducting
layers �see Fig. 1�. Due to the resonant excitation of the
SJPW, the reflectivity of the incident wave depends sharply
on its frequency and incident angle. This resonance effect
can be useful for filtering and detecting terahertz and sub-

terahertz radiation using layered superconductors. We find
the optimal conditions for the best matching of the incident
wave and the SJPWs, as well as for the total suppression of
the specular reflection.

II. DISPERSION RELATION FOR SURFACE JOSEPHSON
PLASMA WAVES

Consider a plane-shaped interface �the xy plane� separat-
ing the vacuum �z�0 in Fig. 1� and a layered supercon-
ductor �z�0�. We study a linear surface transverse-magnetic
monochromatic electromagnetic wave propagating along the
x axis with the electric, E= �Ex ,0 ,Ez�, and magnetic, H
= �0,H ,0�, fields proportional to exp�i�qx−�t�� and decay-
ing into both the vacuum and layered superconductor away
from the interface z=0. When q�� /c, the Maxwell equa-
tions yield an exponential decay of the wave amplitude into
the vacuum,

Hvac,Ex
vac,Ez

vac � exp�iqx − i�t − kvz�, z � 0, �1�

with the decay constant
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FIG. 1. �Color online� Geometry for studying surface waves.
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kv =�q2 −
�2

c2 � 0.

Moreover, the Maxwell equations provide the ratio of ampli-
tudes for the tangential electric and magnetic fields at the
interface z= +0 �i.e., right above the sample surface�:

Ex
vac

Hvac =
ic

�
kv =

ic

�
�q2 −

�2

c2 . �2�

The spectrum of the SJPWs depends on the relative orienta-
tion of the crystallographic axes and the sample surface. Be-
low, we consider the case when the crystallographic ab plane
coincides with the xy plane and the c axis is along the z axis.
Superconducting layers are numbered by the integer l
=1,2 ,3 , . . ., as shown in Fig. 1. The thickness s of the su-
perconducting layers is small compared with the spatial pe-
riod D.

The electromagnetic field inside the layered supercon-
ductor, z�0, is defined by the distribution of the gauge-
invariant phase difference �l�x , t� of the order parameter be-
tween the lth and �l+1�th layers. As is known,4,22–28 the
phase difference �l�x , t� is described by a set of coupled
sine-Gordon equations,

�1 −
�ab

2

D2 �l
2	� �2�l

�t2 + �r
��l

�t
+ �J

2 sin �l	 − �c
2�J

2�2�l

�x2 = 0.

�3�

Here, �ab and �c=c /�J
�	s are the London penetration depths

across and along the layers, respectively, the operator �l
2 is

defined by �l
2f l= f l+1+ f l−1−2f l,

�r =
4
�c

	s

is the relaxation frequency, �c is the quasiparticle conductiv-
ity across the layers, and

�J =�8
eDJc

�	s

is the Josephson plasma frequency. The latter is determined
by the maximal Josephson current Jc, the interlayer dielectric
constant 	s, and the interlayer spacing D. The spatial varia-
tions in the z direction of fields inside the very thin super-
conducting layers are neglected.

After linearization �sin �l→�l�, the electric and magnetic
field components of the wave within the superconductor can
be expressed via �l as

Hl
s = iH0

1 − 
2 − ir


q�c
�l, 
 =

�

�J
, r =

�r

�J
, �4�

Ex,l
s = H0


�ab
2

�c
�	s

�1 − 
2 − ir


q�c
	��l − �l−1

D
	 , �5�

Ez,l
s = iH0




�	s

�l, H0 =
�0

2
D�c
, �6�

where �0=
c� /e is the magnetic flux quantum.

The dimensionless damping r=4
�c�c /c is controlled by
the sample temperature T, r
exp�−� /T� �� is the modulus
of the order parameter�, and can be reduced to negligibly
small values, r�1. As was shown in Refs. 29 and 30, the
intralayer quasiparticle conductivity, �ab, should also be in-
cluded when � is far enough from the Josephson plasma
frequency. The contribution of the in-plane conductivity to
the dissipation can be easily incorporated in our analysis.
However, for the frequency range considered here �close to
�J, �1−
��1�, this contribution is strongly suppressed and
can be safely omitted because the relative value of the term
with �ab is

�1 − 
�
�ab

�c
��ab

�c
	2


 �1 − 
� � 1.

Here, we use the standard values �ab /�c=105, �c /�ab=200,
for Bi-2212 compounds.

The linearized version of the coupled sine-Gordon equa-
tions �3�, together with Eqs. �4�–�6�, has a solution of the
form

�l, Hl
s, Ex,l

s , Ez,l
s � exp�iqx − i�t − kslD� �7�

inside a layered superconductor and give the relation be-
tween the decay constant ks �Re�ks��0�, wave number q,
and dimensionless frequency 
,

sinh2� ksD

2
	 =

D2

4�ab
2 �1 +

q2�c
2

1 − 
2 − ir

	 . �8�

The dispersion relation, q���, for the surface Josephson
plasma wave can be obtained by matching the in-plane fields
H and Ex at the vacuum-superconductor interface. Thus, in
order to find the spectrum of the surface JPW, we should
derive the ratio Ex

s /Hs at z=0 and use the impedance match-
ing, Ex

vac /Hvac=Ex
s /Hs.

The difference between the magnetic field Hs�z=0� at the
sample surface and its value H1

s between the first and second
superconducting layers is defined by the x component of the
supercurrent density Jx�l=1�. In the London approximation,
the value of Jx is proportional to the x component of the
vector potential, Ax�l=1�, and, therefore, to the electric field
Ex,1

s . As a result, we obtain the relation

Hs�z = 0� − H1
s

D
�

Ax�l = 1�
�ab

2 �
− ic

�ab
2 �

Ex,1
s . �9�

Moreover, for l=1, Eq. �7� implies that

Hs�z = 0� − H1
s = Hs�z = 0��1 − exp�− ksD�� . �10�

Using Eqs. �9� and �10�, we obtain the ratio between the
electric and magnetic fields at z=−0 �i.e., right below the
sample surface�,

Ex
s�z = 0�

Hs�z = 0�
= i


�ab
2 �J

cD
�1 − exp�− ksD��

= 2ib
Z��1 +
1

Z
− 1	 , �11�

with
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b =
�ab

2 �J

cD
, Z = �2
1 +

�2

	s�1 − 
2 − ir
�� ,

� =
D

2�ab
, � =

cq

�J
. �12�

Matching the impedances in Eqs. �11� and �2�, we obtain
the dispersion relation for the surface Josephson plasma
waves,

��2 − 
2 = 2b
2Z��1 +
1

Z
− 1	 . �13�

For Bi2Sr2CaCu2O8+� superconductors, one can use the fol-
lowing values of the parameters: b�0.7, �J /2
=1 THz, D
=20 Å, and �ab=2000 Å.

For simplicity, below we consider surface waves in the
continuum limit �lD→−z�, when the damping length ks

−1 in
the superconductor is large compared with the interlayer
spacing D:

ksD � 1. �14�

Under such a condition, the value of Z in Eq. �13� is small.
So, in the continuum limit, the dispersion relation takes the
form

�2 = 
2 + 4b2
4�2�1 +
�2

	s�1 − 
2 − ir
�	 . �15�

III. EXCITATION OF SURFACE JOSEPHSON PLASMA
WAVES: RESONANT ELECTROMAGNETIC

ABSORPTION

Here, we describe how to excite a surface Josephson
plasma wave by a wave incident from a dielectric prism onto
a superconductor separated from the prism by a thin vacuum
gap �see Fig. 2�. In the absence of the superconductor, the
incident wave completely reflects from the bottom of the
prism, if the incident angle � exceeds the limit angle �t for
total internal reflection. However, the evanescent wave pen-
etrates under the prism a distance about a wavelength. The
wave vector of the evanescent mode is along the bottom
surface of the prism and its value is higher than � /c. This
feature is the same as for surface waves. So, it is natural to
expect the spatial-temporal matching �coincidence of both
the frequencies and wave vectors� of the evanescent mode
and the surface Josephson plasma wave for a certain incident
angle. When the resonant excitation of SJPWs by the inci-
dent wave occurs, this results in a strong suppression of the
reflected wave. This is the well known attenuated-total-
reflection method for generating surface waves. Below, we
present a detailed description of this method for SJPWs
propagating along the superconducting layers. The geometry
is shown in Fig. 2.

We consider an electromagnetic wave with the electric,
Ed= �Ex

d ,0 ,Ez
d�, and magnetic, Hd= �0,Hd ,0�, fields incident

from the dielectric prism. The prism has permittivity 	 and is
separated from the layered superconductor by a vacuum in-

terlayer of thickness h. The wave frequency � is assumed to
be below the Josephson plasma frequency �J.

The magnetic field Hd in the dielectric prism can be rep-
resented as a sum of incident and reflected waves with am-
plitudes Hi and Hr, respectively,

Hd = Hi exp�iqx − ikd�z − h�� + Hr exp�iqx + ikd�z − h�� .

�16�

Here and below, we omit the time-dependent multiplier,
exp�−i�t�. The plane z=0 corresponds to the vacuum-
superconductor boundary. The tangential q and normal kd
components of the wave vector, for waves in the prism, are
defined by

q = k�	 sin �, kd = �k2	 − q2 = k�	 cos � , �17�

with k=� /c. The condition of total internal reflection of the
wave in the dielectric prism is supposed to be fulfilled, i.e.,

sin2 � �
1

	
. �18�

The magnetic field,

Hvac = Hi�h+ exp�iqx + kvz� + h− exp�iqx − kvz�� , �19�

of the evanescent mode in the vacuum gap is generated by
the wave from the dielectric. Here, h+ �h−� are the dimen-
sionless amplitudes of the evanescent waves that exponen-
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FIG. 2. �Color online� Geometry considered here �Otto configu-
ration�: a dielectric prism is separated from a layered supercon-
ductor by a vacuum gap of thickness h. An electromagnetic wave
with incident angle ���t can excite SJPWs that satisfy the follow-
ing resonant condition: � sin � /c=q. Here ki and kr are the wave
vectors of the incident and reflected waves associated with the mag-
netic field amplitudes Hi and Hr. The resonant excitation of SJPWs
by the incident wave produces a strong suppression of the reflected
wave. This method for producing surface waves is known as the
“attenuated-total-reflection” method.
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tially increase �decrease� with the spatial increment rate,

kv = �q2 − k2 = k�	 sin2 � − 1. �20�

Using Maxwell’s equations, one can express the x compo-
nents, Ex

d and Ex
vac, of the electric field in the dielectric prism

and in the vacuum gap via the magnetic field amplitudes,

Ex
d =

kd

k	
Hi�hr exp�iqx + ikd�z − h��

− exp�iqx − ikd�z − h���, hr = Hr/Hi,

Ex
vac = − i

kv

k
Hi�h+ exp�iqx + kvz� − h− exp�iqx − kvz�� .

�21�

In the layered superconductor, the electromagnetic field is
described by Eqs. �7�–�11�.

Using the conditions of continuity of the tangential com-
ponents of the electric and magnetic fields at the dielectric-
vacuum and vacuum-layered superconductor interfaces, one
obtains a set of four linear algebraic equations for four un-
known wave amplitudes, hr, h+, h−, and Hs. Solving this set
gives the reflection coefficient

R � hr =
RF�kv/k − a� + �kv/k + a�C�h,��
�kv/k − a� + �kv/k + a�RFC�h,��

, �22�

of the wave from the bottom of the prism. Here,

RF =
kd − ikv	

kd + ikv	
� exp�− i�� �23�

is the Fresnel reflection coefficient and

C�h,�� = exp�− 2kvh� �24�

is the parameter that provides the coupling between waves in
the dielectric prism and the layered superconductor. Also,

a � a�
,�� = 2b
Z��1 +
1

Z
− 1	 �25�

is the effective surface impedance of the superconductor �see
Eq. �11��. Below, we assume the coupling parameter C to be
small. However, even when C�1, the coupling of the waves
in the dielectric prism and superconductor plays a very im-
portant role in the excitation of SJPWs and anomalies in the
reflection properties �Wood’s anomalies�. First, the disper-
sion relation of the surface Josephson plasma waves is modi-
fied, involving the radiation leakage through the dielectric
prism. The new spectrum of the SJPWs is defined by the
denominator in Eq. �22�. Actually, the region where the cou-
pling C�1 �when the radiation leakage of the excited SJPW
through the prism does not dominate� corresponds to the
strongest excitation of the surface waves by the incident
waves. Furthermore, the coupling results in breaking the to-
tal internal reflection of the electromagnetic waves from the
dielectric-vacuum interface. Due to this coupling, the reflec-
tion coefficient R in Eq. �22� differs from the Fresnel one RF,
its modulus becoming less than unity. Moreover, as we show
below, the reflection of waves with any frequency ���J can

be completely suppressed, for the specific incident angle �
and depth h of the vacuum gap. This provides a way to
control and filter the terahertz radiation.

To study the phenomenon of attenuated total reflection,
we consider the case which is most suitable for observations,
when the following inequalities are satisfied:

b2�2	 sin2 �

	s
� 1 − 
2 �

	 sin2 �

	s
. �26�

Here, the left inequality corresponds to the continuum limit
for the field distribution in the z direction, whereas the right
one allows neglecting unity in the square brackets in Eq.
�12�. Also, we assume the dissipation parameter r in Eq. �12�
to be small compared with 1−
2,

r � 1 − 
2. �27�

For this frequency region, the complex parameter a�
 ,��,
Eq. �25�, can be presented as

a�
,�� � a� + ia� = 2b�� 	 sin �

	s�1 − 
2��1 +
ir

2�1 − 
2�	 .

�28�

When the inequalities in Eqs. �26� and �27� are satisfied,
the expression for the reflectivity coefficient R can be signifi-
cantly simplified. First, the phase � of the Fresnel reflectivity
coefficient RF, Eq. �23�, is small. In the vicinity of the SJPW
spectrum, at kv /k�a�,

� �
4b�	

�	s�	 − 1��1 − 
2�
� 1. �29�

Second, the main changes of the reflectivity coefficient R in
Eq. �22� occur in the region of the incident angles � close to
the limit angle �t for total internal reflection,

� � � − �t � 1, sin2 �t =
1

	
. �30�

Third, the parameter a� in Eq. �28� is almost independent of
the angle � in the essential region where � changes, whereas
it depends very strongly on the frequency detuning �1−
�.
Using the properties mentioned above, the reflection coeffi-
cient R can be rewritten in the form

R =
X�
,�� − iB�
��Copt�
� − C�h,���
X�
,�� − iB�
��Copt�
� + C�h,���

, �31�

with

X�
,�� � �2�	 − 1�1/4�� −
2b�

�	s�1 − 
2�
, �32�

B�
� �
16b2�2	

	s
�	 − 1�1 − 
2�

, �33�

Copt�
� �
r�	 − 1�	s

16b�	�1 − 
2
. �34�

Equations �31� and �32� show that the modulus of the
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reflectivity R��� has a sharp resonance minimum at

� = �res �
2b2�2

	s
�	 − 1�1 − 
2�

. �35�

The minimum value of R is

�R�min �
�Copt�
� − C�h,�res��
Copt�
� + C�h,�res�

. �36�

It is clearly seen that this value depends strongly on the
frequency detuning �1−
�, dissipation parameter r, and the
coupling between the waves in the dielectric prism and the
layered superconductor, i.e., on the thickness h of the
vacuum gap. This offers several important applications of the
predicted anomaly of the reflectivity in the terahertz range.
For instance, if the coupling parameter C�h ,�res� is equal to
the optimal value Copt, i.e., the thickness h takes on the op-
timal value,

hopt =
c

�

�	s�1 − 
2�
4b�

ln�16b�	�1 − 
2

r�	s�	 − 1�
	 , �37�

the reflection coefficient R at �=�res vanishes. This means
that a complete suppression of the reflectivity can be
achieved by an appropriate choice of the parameters, due to
the resonant excitation of the surface Josephson plasma
waves.

We emphasize that Eqs. �35� and �37� describe the condi-
tions for the best matching of the incident wave and SJPWs.
Under such conditions, the amplitude Hmax

s of the excited
surface wave is much higher than the amplitude Hi of the
incident wave:

�Hmax
s �
Hi 
 �1 − 
2

r
	1/2� �1 − 
2�	s

b2�2	
	1/4

� 1. �38�

Thus, we can achieve a high concentration of energy in the
terahertz SJPW. This proposed experimental setup could pro-
vide an unusual terahertz resonator or cavity.

For these optimal conditions, the total energy coming to
the layered superconductor from the dielectric prism is trans-
formed into Joule heat due to the quasiparticle resistance.
Thus, if the conditions for the total suppression of the reflec-
tivity are satisfied, the energy flux �i.e., the z component of
the Poynting vector of the incident wave� is completely ab-
sorbed. The dependence of the absorptivity coefficient A on
the wave frequency and the incident angle is described by a
resonance curve,

A�
,�� = 1 − �R�
,���2

�
4B2�
�C�h,��Copt�
�

X2�
,�� + B2�
��Copt�
� + C�h,���2 . �39�

The half-width �� of the resonance line is much less than
�res,

��

�res
�

16b�	�Copt�
� + C�h,�res��
�	s�	 − 1��1 − 
2�

� 1. �40�

If the total suppression of the reflectivity occurs, Eq. �40� can
be simplified,

��

�res
�

4b2�2r

	s
�	 − 1

� 1. �41�

IV. NUMERICAL CALCULATIONS

Inequalities �26� are not necessary for the observation of
the total suppression of the reflectivity and the resonant in-
crease of the electromagnetic absorption. Departing from the
strong inequalities �26�, toward the region of parameters
where B
1, we perform numerical calculations. Figure 3
demonstrates the resonant suppression of the reflectivity for
the parameter B�
��1.9. Nevertheless, the asymptotic for-
mulas in Eqs. �31� and �34� describe rather well the resonant
behavior of the reflectivity R.

Figure 4 shows the sharp decrease of the reflectivity in the
�� , �1−
�� plane, due to the resonant excitation of the sur-
face Josephson plasma waves. Obviously, the suppression of
the reflectivity can be observed by changing the frequency at
a given incident angle, as is demonstrated in Fig. 5.

We also numerically calculate the total magnetic field dis-
tribution �Fig. 6�. The interference pattern is seen in the non-
resonant case, when the amplitudes of the incident and
reflected waves practically coincide. For the resonant
conditions, the reflected wave is suppressed and there is no
interference of waves in the far-field zone �prism region�.
Otherwise, the near-field “torch” structure of the SJPW is
clearly seen in the vacuum gap.

V. CONCLUSION

In this paper, we have theoretically studied the excitation
of surface Josephson plasma waves in layered superconduct-

3028 32 34
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FIG. 3. �Color online� The dependence of the reflectivity coef-
ficient �R�2 on the incident angle �, calculated for the parameters
b=0.7, �=0.005, r=10−6, 1−
2=1.2�10−5, 	s=20, and 	=4. The
thickness of the vacuum gap is one wavelength, hk=2
. The solid
red curve presents the results of numerical calculations using Eqs.
�22�–�24�. The dashed black curve �that almost overlaps the red
curve� describes the analytically obtained asymptotic dependence
�Eqs. �31�–�34��. The vertical line at �=30° corresponds to the
limiting angle of the total internal reflection. The blue thin solid
curve presents the Fresnel reflectivity coefficient.
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ors in the attenuated-total-reflection geometry �Fig. 2�. It is
shown that the reflection coefficient of the superconductor
can be completely suppressed due to the resonant excitation
of SJPWs. The conditions for the resonance and the shape of
the resonant curve R�� ,
� are derived analytically and cal-
culated numerically. The suppression of the reflectivity �R�2
is accompanied by the resonant increase of the electromag-
netic absorption in the layered superconductor. It should be
noted that this process can result in a transition of the super-
conductor into the resistive or even into the normal state.
Thus, a novel kind of resonance phenomenon can be ob-
served due to the excitation of the SJPW. Moreover, this
strongly selective interaction of SJPWs, with the incident
wave having a certain frequency and direction of propaga-
tion, can be used for designing terahertz detectors and filters.

We would like to note that the nonlinear regime of the
electromagnetic wave propagation can be easily achieved
during the resonant excitation of SJPW. Indeed, under the
resonance conditions, the electromagnetic field in the super-
conductor is significantly increased with respect to the am-

plitude of the incident wave. Therefore, the value of the
gauge-invariant phase of the order parameter increases also.
A simple evaluation made by means of Eqs. �4� and �38�
gives, for � in the resonance region,

�max 

Hi

H0
��1 − 
2�	sr

2b2�2	�1/4 

Hi

H0
� 105, �42�

at b=0.7, �=0.005, r=10−6, 1−
2=1.2�10−5, 	s=20, and
	=4. Under such conditions, the nonlinear regime can be
observed when Hi
10−3 Oe.
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FIG. 4. The reflectivity coefficient in the plane �� , �1−
��
shown in gray levels for the same values of the parameters as in
Fig. 3. The dispersion relation of the dielectric-vacuum-layered su-
perconductor is presented by the solid curve.
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