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Two-mode squeezed states and entangled states of two mechanical resonators
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We study a device consisting of a dc superconducting quantum interference device (SQUID) with two
sections of its loop acting as two mechanical resonators. An analog of the parametric down-conversion process

in quantum optics can be realized with this device. We show that a two-mode squeezed state can be generated
for two overdamped mechanical resonators, where the damping constants of the two mechanical resonators are
larger than the coupling strengths between the dc-SQUID and the two mechanical resonators. Thus we show
that entangled states of these two mechanical resonators can be generated.
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I. INTRODUCTION

Motivated by their relevance to quantum information, co-
herent quantum behavior of macroscopic solid-state devices
are of great interest. Quantized energy levels, coherent time
evolution, superposition, and entangled states—have all been
observed in various solid-state devices, such as quantum dots
and superconducting quantum interference devices
(SQUIDs). Nanomechanical resonators (NAMRs)'™* with
frequencies as high as Giga-Hertzs can now be fabricated.>8
At milli-Kelvin temperatures, such mechanical resonators are
expected to exhibit coherent quantum behavior.

In order to detect and control mechanical resonators,
some transducer methods must be used. These include opti-
cal methods, magnetomotive techniques, and couplings to
single electron transistors.'™* A design of mechanical qubits
based on buckling nanobars was recently studied in Ref. 9.
Also, buckled modes analogous to buckled-bars have been
proposed for magnetic nanostructures,'® and mechanical bars
bent by electric fields have been considered, e.g., Ref. 11.
Moreover, these quantum mechanical nanobars can exhibit
behavior similar to superconducting quantum circuits.!?

The quantization of NAMRs has been studied by coupling
NAMRSs to a superconducting charge qubits.'*~!7 By control-
ling the charge qubit, a NAMR can be prepared into different
quantum states. Also, charge qubits can be used to measure
the quantum states of the NAMRs. Quantum nondemolition
measurements of a NAMR were studied with an rf-SQUID
acting as a transducer between the NAMR and an LC
resonator.'® It was shown that a strong coupling cavity QED
regime can be realized for a NAMR and a superconducting
flux qubit’ or a NAMR with a magnetic tip coupled to an
electron spin.?”

For their usages of sensitive displacement detection be-
yond the standard quantum limit, single-mode squeezed
states of a nanomechanical resonator were theoretically stud-
ied. It was shown that squeezed states of the nanomechanical
resonator can be generated by either periodically flipping a
superconducting charge qubit coupled to it>' or by measuring
the superconducting charge qubit coupled to it.”2 The squeez-
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ing of the nanoresonator state can also be produced by peri-
odically measuring its position by a single-electron
transistor.>?

Two-mode squeezed states, when these two modes are
from two spatially separated macroscopic objects, are mac-
roscopic entangled states. The generation of these entangled
states of macroscopic objects is of fundamental interest. Sev-
eral protocols have been proposed to entangle two tiny mir-
rors with the assistance of photons.?*?> Here we study a de-
vice consisting of a dc-SQUID with two opposite sections of
the SQUID loop suspended from the substrate. The sus-
pended parts, shaped as doubly-clamped beams, can be ap-
proximated as NAMRs. The magnetic flux threading the loop
of the dc-SQUID is modulated by the displacements of both
NAMRs. Then the dynamics of the de-SQUID is modified by
the NAMRs. We study how the potential energy of the dc-
SQUID is modified by the displacement of the NAMRs. We
show that the nonlinear coupling between a dc-SQUID and
the NAMRs, where the dc-SQUID is approximated as a
quantum harmonic oscillator, offers a flexible method for the
detection and control of NAMRs. Specifically, we discuss
two-mode squeezed states of these two NAMRSs through an
analog of the two-mode parametric down-conversion process
in quantum optics. We show here that two-mode squeezed
states of the two NAMRs can be obtained even when the
couplings between the dc-SQUID and the two NAMRs are
weaker than their damping rates. In contrast to this, for the
proposal studied in Ref. 26 the entanglement between the
NAMRs decreases rapidly with time. Other forms of squeez-
ing of mechanical oscillators (phonons) have been studied
about a decade ago in Refs. 27-30.

This paper is organized as follows. At the beginning of
Sec. II our device is described. Then, after we study the
potential energy of the dc-SQUID, the Hamiltonian of the
device is presented. The interaction Hamiltonian between a
dc-SQUID and two NAMRs is complicated and has many
terms. However, if the frequency of the dc-SQUID is prop-
erly chosen by the bias current of the dc-SQUID, then only a
few terms dominate the dynamics of the coupled system,
which is illustrated by writing the interaction Hamiltonian in
the interaction picture. Then, in Sec. III we study a special
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FIG. 1. (Color online) Schematic diagram of the top view of the
device considered here. It consists of a rectangular-shaped dc-
SQUID and two mechanical resonators shown in blue on the left
and right sides. These two opposite segments of the dc-SQUID are
freely suspended and are treated as two nanomechanical resonators
(NAMRs). The dotted lines indicate the equilibrium positions of the
left and right NAMRs. Each “X” in the top segment of the loop
represents a Josephson junction. X; (Xp) is the displacement of the
center of the left (right) resonator. The two NAMRs could be lo-
cated sufficiently “far apart” by using a SQUID with an appropriate
aspect ratio. This could provide EPR-type correlations on the two
NAMRs located sufficiently “far apart” for wide-enough SQUIDs.

case where, under an appropriate choice of the parameters,
the interaction Hamiltonian is simplified to study the two-
mode parametric down-conversion process in the device.
Squeezed states of the two NAMRs are studied by the
Heisenberg-Langevin method. Conclusions are given in Sec.
Iv.

II. COUPLING A dc SQUID WITH TWO
NANOMECHANICAL RESONATORS

The device we studied is schematically illustrated in Fig.
1. It consists of a dc-current-biased SQUID with rectangular
shape and with two mechanical resonators. The left and right
sides of the SQUID are suspended from the substrate and
form the two mechanical oscillators, our NAMRs. We as-
sume here that these two doubly-clamped beams vibrate in
their fundamental flexural modes and in the plane of the
SQUID loop. We use the following notations I; (Ig) for the
current in the left (right) Josephson junction, and ¢; (¢g) for
the phase drop across the left (right) Josephson junction. The
two Josephson junctions are assumed to be identical and
have the same critical current /.. Thus the bias current /, of
the dc-SQUID has the form

I, =1.(sin ¢ + sin @g). (1)

We assume that the inductance of the dc-SQUID loop is
negligibly small, and thus the magnetic energy of the circu-
lating current in the dc-SQUID loop is neglected. Thus the
voltage drop over the two junctions is zero. Therefore, ¢p
— ¢ =¢,, where ¢, is the phase related to total magnetic flux
@, threading the dc-SQUID loop
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Here ®y=h/2e¢ is flux quantum. Introducing two new vari-
ables

1
¢:E(¢R+(PL)’ (3a)

1
= 5((PR -, (3b)

and taking into account that ¢_=¢,/2, the bias current in Eq.
(1) can be written as

I,=2I, sin ¢ cos % 4)

It is here assumed that X; (Xp) is the amplitude for the fun-
damental flexural mode of the left (right) beam. Let B; (Bg)
be the magnetic field normal to the plane of the SQUID loop
near the left (right) mechanical beam and ®, the external
applied magnetic flux threading perpendicularly the dc-
SQUID loop when X; =X,=0. It is assumed that B; (By) is
constant in the oscillating region of the left (right) beam.
Then, the total magnetic flux threading the dc-SQUID loop is
given by

b, =D, + Dy, (5)

where @y is the additional magnetic flux when the two
NAMRs are displaced from their equilibrium positions

(I)X:BLXLI+BRXRZ' (6)

Here, [ is the effective length of the left and right beam. [ is
defined as [=S§,/X;, where S, is the area between the equi-
librium position of the NAMR and its bent configuration.
Namely, the area S; spans the region between the blue
dashed line and the blue bent line in Fig. 1. Equation (6)
indicates that the variables of the two NAMRSs enter in the
dynamics of the dc-SQUID by influencing the flux threading
the dc-SQUID. The influence of the two NAMRs on the
dynamics of the SQUID can also be revealed quantitatively
in the potential energy of the dc-SQUID, since this is also a
function of the displacements of the two NAMRSs. Thus, we
first study the potential energy of the SQUID and afterwards
the entire Hamiltonian of the coupled system.

A. Potential energy of the vibrating de-SQUID
The potential energy of the dc-SQUID is

) ) I
U(p,®y) =-2E, cos(waz + wﬁ)cos ©- I—iEJq;, (7)

where E;=#fil./(2¢) is the Josephson energy of the
junction.?'32 To have an idea of the situation under which the
dc-SQUID can be described by a quasiparticle in a quadratic
potential, in Figs. 2(a)-2(d) we plot this potential energy (7)
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FIG. 2. (Color online) The potential energy U(¢,®x) (scaled by
E;) of the dc-SQUID as a function of the phase variable ¢ and the
magnetic flux @y originating from the displacements of the two
NAMRs. The red color represents higher potential energy U, and
the blue color represents lower potential energy. Both ¢ and ®y are
shown in units of 7/®,. In (a)-(c), the bias magnetic flux @,
threading the loop of the dc-SQUID is set at 2n®, (2n+%)<1>0, and
(2n+%)<1>0, respectively; and the bias currents are all set at /,
=O.1IC. In (d), (I)b=2n¢’0 and Ib=0'510'

for various values of the bias magnetic flux @, and the bias
current /. Since ®y/®P(<<1 in the case of experiments using
a GHz NAMR, here we focus on the limit ®y/®P;<0.1 in
Fig. 2. A particle in a quadratic potential can be described by
a harmonic oscillator when its kinetic energy is much smaller
than the barrier of the potential. We notice that, for the bias
magnetic flux ®,=2nd, with n being an integer, the phase
variable ¢ falls in a potential well when the NAMRSs oscil-
late around their equilibrium points. It is possible to approxi-
mate the dynamics of ¢ as a harmonic oscillator. The charg-
ing energy of the dc-SQUID E,.=(2¢)?/(2C,) is assumed
here to be much smaller than the modified Josephson energy
(cos go)E; of the dc-SQUID. Here, gy=sin!(I,/2I.) is a
value of ¢ which corresponds to one of the minima of the
potential energy U(g,®Py), when the two NAMRs are at their
equilibrium positions. C; is the capacitance of the left and
right Josephson junctions.

We then expand the potential U(g,®Py) near one of its
minimum points (¢, ®Py)=(g,0). When ®y/Py<1 and ®,
=2nd,, the first cosine in Eq. (7) depends weakly on ®y. Up
to second order in ®y and ¢, and after shifting the origin of
¢ to gy, and omitting the constant terms, the potential energy
in Eq. (7) becomes
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U(e,Px) = E/(cos CIO)‘PZ — E;(1 -cos ‘]0)(775)()
0

— Ly (Slnl]0)€0+2(C05‘10)€9 W‘Do . (8)

Therefore, if the first term in the above potential is much
larger than the other two terms, the dynamics of ¢ will still
be well described by a harmonic oscillator.

The higher order terms, such as 7T4<I)§/(24<Dg), in the ex-
pansion of cos(m®y/®,) are negligibly small for the situa-
tion considered in our paper, when ®y/®,~ 107>. Theoreti-
cally, it is possible to increase the ratio m®y/®P, by using a
stronger magnetic field B; and By and/or using soft NAMRs
with greater zero-point fluctuations. However, in practice,
the magnetic field is limited to at most tens of Tesla and the
zero-point fluctuations of the NAMRs are less than 107> m
for the most of the experiments. Therefore, the periodic na-
ture of the Josephson Hamiltonian has no chance to play a
role here. Indeed the situation considered here is very similar
to the optical parametric-down-conversion system, except for
the coefficients of polynomial expansions of the interaction
Hamiltonian.

Now we consider how well a dc-SQUID is approximated
by a harmonic oscillator. Since the barrier of the potential
U(gp,Py) has a finite height, the dynamics of ¢ is not an
ideal harmonic oscillator. However, if the energy of the qua-
siparticle is small enough, the dynamics of ¢ can be approxi-
mately described by a harmonic oscillator. The maximum
number N, of energy levels that can be confined in the
potential U(¢,0) is Ny =AU/, where the height of the
potential is

AU=2E[2 cos g+ sin go(2g9 — )], 9)

and () is the frequency of the harmonic oscillator.

B. Hamiltonian of the coupled system

Near the minimum potential U(g,0), the free Hamil-
tonian of the dc-SQUID can be written as a harmonic oscil-
lator Hamiltonian

H
& ES+EQ (10)

with
E;=E;cos qq, (11)

where the constant term has been omitted when we derived
the Hamiltonian in Eq. (10). It is convenient to introduce the
annihilation and creation operators a and a':

a=\|— +i| = ,
e) *T\g) ¢
1\ 1/4 1/4
a*:(ﬁ) go—i(gf) ¢.
E, E,

Then the free Hamiltonian in Eq. (10) of the de-SQUID can
be rewritten in the form

(12a)

(12b)
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H,=hQd'a, (13)
with the angular frequency
QO =\E.E]. (14)

When the energy of the dc-SQUID is not very large ({a'a)
< Npax)» the dynamics of ¢ is well described by a harmonic
oscillator under a suitable bias magnetic flux threading the
loop of the dc-SQUID. It is convenient to also introduce
annihilation and creation operators for the fundamental flex-
ural modes of the two NAMRs (i=L,R)

\/ \/ (15a)
\/ Zﬁm (15b)

Here, X; and P; are the coordinate and momentum operators
of the ith NAMR and m; and w; are the effective mass and
angular frequency of the ith NAMR. The effective angular
frequency w; is not the one of the fundamental flexural mode,
which is modified by the second term in the potential (8).
Then the free Hamiltonian of the two NAMRSs can be written
in the form

HNAMR=ﬁwLbeL+ﬁwa;?bR’ (16)

where the constant terms have been omitted. Thus, in terms
of creation and annihilation operators, from Eq. (8), the in-
teraction Hamiltonian between these two NAMRs and the
dc-SQUID are given by

V=—[g.(b,+b})+grlbr+ by

X[ci(a+a") +cyla+a)?], (17)

WBLZ h
- A ——. 18
8L @, 2mywy (18a)
7TBRZ ﬁ
=—\/T—, 18b
8r @, 2mpog (18b)

E;cos q0>1/4
E,. ’

where

Q
Cl=5(tan 6]0)( (18¢)

o |©

Cy= (184)

The interaction Hamiltonian (17) is central to this work.
Notice that it contains both linear and nonlinear terms. Gen-
erally, it is very difficult to evaluate the behavior of this
coupled system. However, since the frequency () of the dc-
SQUID can be set by the bias current /;,, we can reduce the
interaction Hamiltonian V in Eq. (17) to a simplified form by
invoking the rotating wave approximation. We now rewrite
the interaction Hamiltonian V in Eq. (17) in the interaction
picture, with the free Hamiltonian

PHYSICAL REVIEW B 76, 064305 (2007)

TABLE I. Terms in the interaction Hamiltonian (17) and their
frequencies, in the interaction picture.

Frequencies Interaction terms
0 0 cz(ngTbL+gRb bpa’
1 2w, cszbLa a,
2 2wp czgRbRa a,
3 wr+ g c2818rbrbra’a,
4 wp— g cszgRb;bLaTa,
5 20 cx(g2bib, +gxbibg)a?,
6 Q ci(gbib,+gxbibra,
7 2w;+20 czgibia ,
8 2w;-20 cszb2 2,
9 2wp+20Q) czgRbRa
10 2wg-2Q crgrbrat?,
11 W+ wp+20) cszgRbLbRaz,
12 W+ wp—20 c2818rb1bra’?,
13 w;—wr+28) c2ngRbLbLa2,
14 w;—wp—20 cszgRbLbLa”,
15 20+ c1gbla,
16 20— clngLaI
17 2wp+) clgRbRa
18 2wr—) clgRb
19 wr+owp+Q) clngRbLbRa,
20 wp+op— c181.8rb1bra’,
21 w;—wp+) clngRbLb;a,
22 w;—wp— clngRbLb;f,
Hy=1Qa'a + fiw b} b; + hwgbibg. (19)

Then the terms of the interaction Hamiltonian V can be clas-
sified by the ways that the frequencies w;, wg, and ) can be
combined. In Table I, we list half of the coupling terms and
the combinations of their frequencies. The other half are their
corresponding Hermitian conjugate terms, which have the
same frequencies but with a negative sign.

In Table I, it can be seen that, for large detuning, one
needs to mainly consider the zero-frequency terms in the first
row of the table. Then this interaction Hamiltonian V enables
a quantum nondemolition measurement of discrete Fock
states of a NAMR, as discussed in Ref. 18. When the fre-
quency of the dc-SQUID is set at some special value, one
can mainly consider the resonant terms. For example, if the
frequency of the de-SQUID and those of the two NAMRSs are
properly set so that () # w; = wg and also () # 2w; =2 wy, then
only the zero-frequency terms and resonant terms in the in-
teraction Hamiltonian V are kept under the rotating wave
approximation. The reduced interaction Hamiltonian V, con-
sists of the terms

V,=cy818rbhbrata + He., (20)
which in fact offers us a mechanism for coupling two

NAMRs. Thus, our proposed device offers a flexible (liter-
ally) model for the control and measurement of NAMRs.
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III. TWO-MODE SQUEEZED STATES OF TWO
NANOMECHANICAL RESONATORS

In this section we focus on the two-mode squeezed states
of the two NAMRSs. It is possible to produce entangled states
of the two NAMRs by considering the analog of the para-
metric down-conversion in quantum optics. The zero-
frequency terms in Table I commute with the free Hamil-
tonian (13) of the dc-SQUID and the free Hamiltonian (16)
of the two NAMRs. Let us assume that the proposed circuit
works at low temperature. If the two NAMRs are initially in
the vacuum state or in very low-energy states, then we have
O p<<(), with

Or= c2(g,23<bLbR) + gi(b,ﬁbﬁ). (21)

Then we can rewrite the free Hamiltonians of the dc-SQUID
Eq. (13) and the two NAMRs Eq. (16) as

Hy=Q'a"a+ wLbeL + wkbzbk, (22)

where Q'=Q-5;;. By properly setting the bias current I,
one can let ()’ —w; —wr=0. Then, in the interaction picture,
after adopting the rotating wave approximation, we simplify
the interaction Hamiltonian between two NAMRs and dc-
SQUID as

V' = 9(a’bybg + ab}b}), (23)
where

7=-C18L8r- (24)

Driven by this interaction Hamiltonian V', two-mode
squeezed states of the two NAMRSs can be produced in the
device similarly to a light beam interacting inside a nonlinear
medium in quantum optics, because both of them follow the
same Hamiltonian (23).

We now consider that the mode of the dc-SQUID is in a
coherent state |a), where |a|> 1. Then we can treat the mode
of the dc-SQUID as a classical field and replace the operator
a in the Hamiltonian V' in Eq. (23) by a complex number
|alexp(=i). Then, in the interaction picture defined by the
Hamiltonians (22) and (23), the dynamics of the coupled
system is described by the following Hamiltonian:

V,= e a|nb by + e a| pb} b (25)
The motions of b; and by are

b, (1) = cosh(y)b; — ie”¢ sinh(y)b}, (26a)

bg(t) = cosh(y)bg — ie”' sinh(y)b; , (26b)

in the interaction picture of the Hamiltonians (22) and (25),
with
y=lalnt. (27)

The generation of two-mode squeezed states of these two
NAMRs can be shown by their collective coordinate and
momentum operators

Xo(r) = Xp.(1) + X(1), (28a)
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P(1) = P (1) + Pg(), (28b)

where X,(r) and P(t), i=L,R, are defined by Eq. (15) by
substituting b; and b; with b,(¢) and bj(t) in Eq. (26). The
uncertainty relation for the collective coordinate and momen-
tum operators X;(r) and Py(1) is

A[X(1)JA[P(1)] = Alcosh® y+ e*¢sinh® 9. (29)

In Eq. (29) we have assumed that the zero-point fluctuation
of positions of the left NAMR

o= \h/(2mywyp), (30)
and that of the right NAMR

g = 1l (2mgwy) (31)
are the same. Here
Sy=1258,=28 (32)

is defined as the zero-point fluctuation of the collective co-
ordinates X; of the two NAMRs.

If we choose ¢p=—m/2, then the variance of the collective
coordinates X(f) becomes

A[X7(1)] = oy exp(y). (33)

Notice that y<<0 because y=—c,g,gg|alt. Therefore, perfect
two-mode squeezed states, i.e., pure entangled states, of the
two NAMRs are generated.

The variance of X, (r) (the entanglement) was obtained
above by assuming that both the left and right NAMRSs be in
their ground states. It can be checked that if both the left and
right NAMRs are initially in coherent states or thermal
states, then the Hamiltonian (25) will not produce entangled
states of them. However, if only one of the NAMRs is ini-
tially prepared into a number state, then entangled states of
these two NAMRs can be generated by the Hamiltonian (25).
For example, when the left and the right NAMRSs are initially
prepared in the number states |0) and |1), respectively, then
the Bell-type entangled state a;|01)+a,|10) can be gener-
ated. Here, a; and a, are complex numbers. When one of the
two NAMRs is initially in a coherent state and the other one
is in the vacuum state, then the so-called ‘“‘single-photon-
added coherent states” can be generated by the Hamil-
tonian (25).

Let us now consider the more realistic case where both
the dc-SQUID and the two NAMRSs are coupled to their en-
vironments. The quality factors of the two NAMRs with
GHz frequency are smaller than that of the dc-SQUID.%
The quality factor of a GHz NAMR is of the order of 103,
while that of a superconducting circuit can be as large as 10°.
Therefore, below we consider the noise from the environ-
ment acting on the two NAMRs. To include damping effects,
due to the noise from the environments, on the dynamics of
the two NAMRs, we use the Heisenberg-Langevin equation
method.? Then, for the motions of the operators of the
NAMRs, we have the following set of equations:

d K
—b,=— &bl - ?LbL +F, (1),

o (34a)
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FIG. 3. (Color online) The squared variance of the collective
coordinates X7 of the two NAMRSs as the function of damping rates
k;, and kg of the left and right NAMRs, both «; and «j are nor-
malized by the effective coupling constant & Here, dy is the zero
fluctuation of the collective coordinates of the two NAMRs.

d K

" (34b)

As in the ideal case in Eq. (33) we also let ¢=—/2. Here,

é=laly (35)

is the effective coupling strength between the dc-SQUID and
two NAMRs. Also, «; and ky represent the damping rates of
the left and right NAMRs, respectively; and the associated
noise operators are F;(t) and Fg(r). We evaluate the proper-
ties of the states of the two NAMRSs by the variance of the
collective coordinates X;. We find that the damping of the
two NAMRs help producing two-mode squeezed states of
the two NAMRs, regardless of the initial states. The variance
of the collective coordinates Xy is calculated as

1.5k

Ky

[AXp = %(ZKRA§+ K_)+ %(ZKLAf— k)-8

(36)

under the Markov approximation and in the overdamped
case, {<k;/2 and ¢<kp/2. In the Appendix we outline the
main ideas of the derivation. Here,

KLKR

(37)

Ke=Kp* Kg, Ag= 5-
K Kp—4§&

When the zero-point fluctuations of the left and right
NAMRs are equal, we have
4
)

KL+ Kp

&
[AXp)] = ng(l -

Figure 3 shows the variance of the collective coordinates X7
versus the damping rates «; and k. It is clear from Fig. 3
that appreciable squeezing can be generated even when the
dampings of the two NAMRs are severe (ten times the cou-
pling constant &). This indicates that the squeezing is robust
against damping of the NAMRs. The maximum squeezing is
obtained when both damping rates (for the left and right

PHYSICAL REVIEW B 76, 064305 (2007)

NAMRSs) approach the coupling strength between them and
the dc-SQUID. Since the coupling strength & is proportion to
|a|, one can increase the squeezing rate by gradually increas-
ing the power of the microwave applied to the dc-SQUID. As
the damping rates of the two NAMRs increase, the squeezing
effect decreases steadily.

To consider the experimental feasibility of our proposal,
we choose the following parameters for the two NAMRs and
the dc-SQUID

m; =mg=10""% Kg, (39a)
w; = 1.5 GHz, (39b)
wg=1.2 GHz, (39¢)

[=10 um, (39d)
B, =Bp=1T, (39)
K; = kg =2 MHz, (39f)
E~=0.061 GHz, (399)
E;=120 GHz. (39h)

It was already demonstrated in experiments®*¢ that a 10 wm
long doubly clamped beam can oscillate with a frequency of
several GHz. The effective mass of this antenna-shaped
beam is much smaller than its weight. And its effective mass
can be further modified when the beams are under strains and
stresses. The numbers used here for the dc-SQUID are also
consistent with the experimental numbers shown in Ref. 37.
Then the additional magnetic flux from the two NAMRs,
Dy /Dy=5%1073<1, would satisfy our assumption in Sec.
II. The maximum number N, of energy levels confined in
the current biased potential energy is calculated as N,
=150. Therefore, the harmonic oscillator approximation and
the classical field approximation for the dc-SQUID are both
possible. The time needed to obtain the two-mode squeezed
state is determined by the effective coupling constant &. As-
suming the same damping rates for the two NAMRs, the
maximum squeezing A(Xy)=(1/2) 8y can be obtained. There-
fore, it should be possible to realize our proposal of generat-
ing two-mode squeezed states of the two NAMRs with cur-
rent experimental conditions.

To experimentally detect the generated two-mode
squeezed state of the two NAMRSs, a (in principle) relatively
direct method would be checking the variance of the collec-
tive coordinate X7 of the two NAMRs. Since the left and
right NAMRs are symmetric in the interaction Hamiltonian
(17), they can be treated as one virtual NAMR. To detect
two-mode squeezed states of the two NAMRs, the detection
methods should be able to approach standard quantum limit
of the NAMRs. With traditional displacement detection
methods,' 34! such as optical interferences, magnetic-
motive method, and coupled single electron transistor, the
best record of detection precision was about 4.3 standard
quantum limits.3® There are also other proposals for displace-
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ment detection by coupling the mechanical oscillator to some
two level system.!>1%2! These methods, in principle, can de-
tect quantum states of the NAMRSs. After the entangled state
is generated, one can switch the dc-SQUID to the phase qu-
bit regime,*”> and utilize the nonlinear coupling between the
virtual NAMR and the de-SQUID. Then the SQUID can be
used to measure the variance of X7, as discussed in Ref. 21.

IV. DISCUSSIONS AND CONCLUSIONS

In our proposal, we only consider the fundamental vibra-
tion modes of the NAMRs. Generally, there are also vibra-
tion modes with higher frequencies, torsional and strain-
stress oscillations in the NAMRs.! The vibration modes with
higher frequencies will be excited only when they happen to
resonate with the de-SQUID, which can be easily avoided by
optimizing the parameters of the NAMRSs. As for torsional
and strain-stress oscillations, they are hardly coupled to the
dc-SQUID. These modes of oscillations of the NAMRs will
not change the magnetic flux through the de-SQUID, thereby
these modes cannot be coupled to the dc-SQUID, even
through their frequencies match the resonant condition. It is
similar to the case of the experiments of magnetomotive de-
tection of flexural oscillation of NAMRs,! where torsional
and strain-stress oscillations have been neglected.

As mentioned in Sec. III, to generate two-mode squeezed
states of NAMRs, the NAMRSs should start in their ground
states or number states. The NAMRs should be cooled such
that the thermal excitation energy is less than those corre-
sponding to the NAMRSs’ frequencies. For a one-GHz
NAMR, this means that the temperature should be below
50 mK, which is still within the capability of dilution refrig-
erators. In principle, it is possible to prepare the NAMRs
used in our proposal in their ground states. Moreover, re-
cently there have been many efforts in reducing the tempera-
ture of mechanical resonators by active cooling.*>**7 Also a
temperature as low as 5 mK was already demonstrated for a
mechanical resonator.*” In addition, there are also theoretical
proposals for the production of number states of NMARs.*
Therefore, though currently the ground states and (or) num-
ber states of NAMRs might be difficult to prepare experi-
mentally, we expect these to be realized more earlier in the
near future. For example, if the temperature of a GHz
NAMR reaches 10 mk, the thermal occupation number will
be ~1073, which is nearly a ground state.

In conclusion, we have proposed a device to couple a
dc-SQUID to two NAMRs, which can be used to create an
effective coupling between these two NAMRs, and also to
measure and control the two NAMRs. We have shown that
two-mode squeezed states can be generated in a robust man-
ner by this device, in analogy to the two-mode parametric
down-conversion process in quantum optics. This two-mode
down-conversion process offers a protocol of producing en-
tanglement in two mechanical resonators in a solid state de-
vice, while previous proposals, see, e.g., Refs. 24, 25, and
49, were based on entanglement swapping by the assistance
of photons. Our proposal might be promising for the experi-
mental test of the existence of entangled states of macro-
scopic objects.
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APPENDIX: HEISENBERG-LANGEVIN EQUATION
FOR TWO NANOMECHANICAL RESONATORS

Using Egs. (34a) and (34b), a solution of the expectation
values (b, (t)) and (bg(t)) can be given as

(b)) ="V D, (0)cosh(&t) — bj(0)sinh(&r)], (Ala)

(bg) = " VDR pp(0)cosh(&r) — bj (0)sinh(&)].
(A1b)

It is seen that below the thresholds é<«;/2 and £<ky/2 we
have

<bL> = <bR> =0.

The variance of the collective coordinates X; can be evalu-
ated by the expectation values of the bilinear operators of the
two NAMRs. These are the expectation values of the qua-
dratic operators of the left NAMR

Li=(b}), L3=(b}"),

(A2)

(A3a)

Ly={bjb, +b;b}), (A3b)

the expectation values of the quadratic operators of the right
NAMR

R, =(bz), R3=(by), (Ada)

Ry ={bhbg + bgbk), (A4b)

and the expectation values of the quadratic operators of both
NAMRs

Cy=(bbg+bgb)=C}, (A5a)

Cy=(b;bj+bib;)=Cj. (A5b)

From Eq. (34) it is found that these expectation values
satisfy a closed set of equations of motion.>> To determine
the values involving the expectation values of the products of
the noise operators and the operators of the NAMRs, we
rewrite Egs. (34a) and (34b) and their corresponding Hermit-
ian ones in the matrix form

B=-MB+F, (A6)

where  B=[b,(1),b;(1),b(0),bp(0)]" and F
=[F (1), F}(t),Fg(t),Fi(t)]" are vectors, and [- - -]" represents
the transpose operation. Here
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KL
— 0 0
> £
0 % £ 0
M= (A7)
0 & =
2
KR
o 0 —
¢ 2
A formal solution of Eq. (A6) is given by
t
B(t)=e‘/‘/“8(0)+f e M F(1dy (A8)
0

Multiplying the above equation by F'(7) from the right side,
we obtain

t

B(t)ﬁ(t)ze_M’B(O)ﬁ(t)+J M T Fi).

0
(A9)

Since the operators of the NAMRs at the initial time =0 are
statistically independent of the noise operators, we have
(B(0)F'(1))=0. Using the fact that the corresponding ele-
ments of the matrix of the left part of Eq. (A9) and those of
the matrix of the right part of Eq. (A9) are equal, and com-
bining the Markov approximation, we obtain

PHYSICAL REVIEW B 76, 064305 (2007)

(b (OF} (1) = "3 (A10a)

K,
(br(t)Fi(1)) = 7’? (A10b)
All other products of the operators of the two NAMRs and
the noise operators are zero. Therefore, in the interaction
picture, finally when the expectation values of these bilinear
operators do not change with time, we obtain

L1=L3=R1=R3=C2=C3=0 (All)
and
2
Ly=""+ 2R, (A12a)
K, K,
2
Ry=— =4+ LA, (A12b)
K, Ky
4
C1:C4——_§A§, (A12C)
Ky

with §<k;/2 and é<kp/2. Also, in the interaction picture,
we have (b, (1))=(bg(t))=0 after a sufficiently long time.
Therefore, the variance of the collective coordinate X; be-

comes
[AXp) P = 8L, + SxRy + 6,85:(C1 + Cy).  (A13)

This provides the main result of Sec. III.
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