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We study theoretically the effects of heating on the magnetic flux moving in superconductors with a periodic
array of pinning sites �PAPS�. The voltage-current characteristic �VI curve� of superconductors with a PAPS
includes a region with negative differential resistivity �NDR� of S type �i.e., S-shaped VI curve�, while the
heating of the superconductor by moving flux lines produces NDR of N type �i.e., with an N-shaped VI curve�.
We analyze the instability of the uniform flux flow corresponding to different parts of the VI curve with NDR.
Especially, we focus on the appearance of the filamentary instability that corresponds to an S-type NDR, which
is extremely unusual for superconductors. We argue that the simultaneous existence of NDR of both N- and
S-type gives rise to the appearance of self-organized two-dimensional dynamical structures in the flux-flow
mode. We study the effect of the pinning site positional disorder on the NDR and show that moderate disorder
does not change the predicted results, while strong disorder completely suppresses the S-type NDR.
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I. INTRODUCTION

Negative differential resistivity �NDR� and conductivity
�NDC� can be observed in various nonlinear media. To illus-
trate the counterintuitive nature of this phenomenon, let us
consider a force acting on a set of moving particles: NDC
corresponds to a lower velocity of motion for these particles
when the force applied to them increases. Two different
types of NDR can be observed in the voltage-current char-
acteristics �VI curves� of nonlinear media.1–7 NDR of S type
is characterized by the existence of three different values of
the current I corresponding to a single value of the voltage V.
The corresponding VI curve is S shaped. A VI curve with
three different values of the voltage for a single value of the
current is referred to as NDR of N type. The corresponding
VI curve is N-shaped. NDR �or NDC� is commonly observed
in semiconductors, plasmas, superconductors and is used in
many nonlinear devices �see, e.g. Refs. 1–7�. In particular,
semiconductors with NDR are the basic elements of Gunn-
effect diodes and pnpn junctions.1,2 VI curves with NDR can
only be observed under specific conditions. For example, to
study N type NDR one has to include the corresponding
sample in an electric circuit with fixed voltage V. Vice versa,
to observe S-type NDR the sample should be included in a
circuit with fixed current I. If these conditions are not ful-
filled, the uniform current flow becomes unstable, and non-
uniform self-organized structures �e.g., filaments and over-
heated domains with higher or lower electric fields� arise in
the sample. Such structures are commonly observed in plas-
mas, semiconductors, and superconductors �see, e.g. Refs.
1–7�. Table I �using results from Refs. 1–13� compares NDR
in different nonlinear media. Note, the macroscopic manifes-
tations of NDR in different media could be rather similar
while the intrinsic physical mechanisms giving rise to NDR
could be different.

As a nonlinear medium with NDR, we study a supercon-
ductor with artificial pinning sites. The magnetic flux behav-

ior in such superconductors has attracted considerable atten-
tion due to the possibility of constructing samples with
enhanced pinning as well as with unusual voltage-current
characteristics.14–19 Present-day technology allows the fabri-
cation superconductors with well-defined periodic arrays of
pinning sites �PAPS�. Such structures include many thou-
sands of elements with controlled microscopic pinning pa-
rameters. Increased interest on these systems has arisen in
recent years, and a number of intriguing features related to
PAPS has been revealed.

In Ref. 20 the existence of several dynamical vortex
phases was predicted for square PAPS subjected to perpen-
dicular magnetic field, B, close to the first matching field
B�=�0 /a2, where �0 is the magnetic flux quantum and a is
the PAPS period. The geometry of the problem is shown in
Fig. 1, which is discussed in Sec. II. The effect of the dy-
namic phases on the VI curve is illustrated in Fig. 2�a�. Let
us assume that the field B is slightly higher than B� and the
number of the vortices in the sample Nv is higher than the
number of the pinning sites Np. Let us now slowly increase
the applied current j in the sample. For very low current
density j �phase I in Fig. 2� all vortices are pinned and their
average velocity v̄ is zero. With increasing the current j,
interstitial vortices, Nint=Nv−Np, start to move and the ve-
locity v̄ becomes nonzero and grows with j �phase II in Fig.
2�. With further increasing the current j, the driving force
acting on a single vortex, Fd= j�0 /c, overcomes the pinning
force, and a significant fraction of the vortices start to move.
This motion is uniform and very disordered. Phase III corre-
sponds to such a vortex-flow mode. At higher vortex veloci-
ties, the random motion of vortices becomes more ordered.
Some vortices become pinned in commensurate rows while
others move along vortex rows, which are incommensurate
with the underlying PAPS. Namely, when j exceeds a thresh-
old value, only incommensurate vortex rows move and the
vortex velocity exhibits a significant drop with the increase
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of the driving force �phase IV�. Note that the phases III and
IV have an analogy with the NDR behavior of electron mo-
tion in semiconductors with the increase of the voltage.
Namely, increasing the applied force on the moving particles

produces a lower velocity in them. At high current densities,
the driving force completely overcomes the pinning force
�phase V� and the curve v̄�j� tends to a linear one.

The results obtained in Refs. 20 and 21 prove that the VI
curves of superconductors with a square PAPS have a part
with NDR of the S type, since the electric field in the sample
is related to the average vortex velocity by the well-known
relation E=−v̄�j�B /c. Such a type of NDR is usual for
plasmas6,7 and semiconductors1,2 giving rise to important in-
stabilities of the uniform current flow known as pinch effect
and filamentary instability, when a current flow breaks into
filaments with lower and higher current densities.1–7 In su-
perconductors we have only a few examples of the S-type
NDR in the samples with the specific weak links.10

The described dynamical phases disappear in the case of
very disordered pinning arrays and, consequently, the NDR
of S type in the VI curves vanishes. Under realistic experi-
mental conditions, the properties of the superconductor in the
flux-flow regime are strongly affected by Joule heating since
the current density j necessary to overcome the pinning force
is high.5 An increase of the sample temperature T due to
Joule heat, jE, gives rise to a decrease of the pinning force,
and the current density can drop down with the growth of the
electric field. As a result, the VI curve with an NDR of N
type �the red dashed line in Fig. 2�b�� is commonly observed

TABLE I. Comparison between nonuniform nonequilibrium states in superconductors, semiconductors, plasmas, and manganites with VI
curves having negative differential resistivity �NDR�. �Ref. 21� Since IV curves in semiconductors map to VI curves in superconductors, then
NDC �for semiconductors� maps into NDR for superconductors. Here, N �S�-type shapes for semiconductors correspond to S �N�-type for
superconductors �Ref. 5�. The negative differential conductivity �NDC� found in Ref. 10 is analogous to the Gunn effect in semiconductors,
where electron-charge modulations lead to steps in j�E� in the NDC regime.

Superconductors Semiconductors Plasmas Manganites

Carriers flux quanta Charge quanta:
electrons or holes

Electrons Electrons,
hole

Characteristic
curve

Voltage-current
�VI� curve

Current-voltage
�IV� curve

IV curve IV curve

Homogeneous
state

Homogeneous flux
and current flows

Homogeneous
current flow

Homogeneous
current flow

Homogeneous
current flow

Origin of
S-shape NDR

In/commensurate vortex
Dynamical phases in PAPS

Nonlinear electron
transport

Ionization

Origin of
N-shape NDR

Overheating, Cooper pair
Tunneling �Ref. 8� vortex-core:

Shrinkage �Ref. 9� �T�Tc�;
Expansion �Ref. 10�, driven �Ref. 11�

�T�Tc�

Overheating, electron
or hole tunneling

Heating Heating �Refs. 12 and 13�

Filaments Overheating, Cooper pair
Tunneling �Ref. 8�. Vortex-core:

Shrinkage �Ref. 9� �T�Tc�;
Expansion �Ref. 10�.

Driven vortices �Ref. 11�
�T�Tc�

Current filaments,
pinch effect

Current filaments,
pinch effect

Domains Vortex-induced higher E
field overheated domains

Higher electric field
overheated domains

Higher electric
field overheated

domains

Higher electric
field overheated

domains

FIG. 1. �Color online� The model: vortices driven by a Lorentz
force produced by an applied current in a superconductor with a
square array of pinning sites. The period of the pinning array is a
=2�0. The pinning sites are shown by dark blue �dark gray� para-
bolic bars and by dark blue �dark gray� dots on the upper surface.
The black dashed lines connecting the dots on the top surface are a
guide to the eye. The vortices are shown by red-to-yellow �gray-to-
light gray� tubes and by red �gray� larger spots on the top surface.
The direction of the applied current j is indicated by a wide light
blue �light gray� arrow, and the Lorentz force acting on the vortices
Fd is shown by small red �gray� arrows. The direction of the exter-
nal applied magnetic field B is shown by the brown �gray� arrow.
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in superconductors for high current density.4,5 The uniform
state in samples with NDR of N type is also unstable,1,2 and
a propagating resistive-state boundary or the formation of
resistive domains can destroy the uniform flux-flow mode in
the superconductor.4,5,8 Increasing the pinning force and/or
decreasing the thermal coupling of the sample with its envi-
ronment �which decreases the cooling rate of the sample�,
one can achieve a situation where the NDR of both N- and
S-type simultaneously coexist in the VI curve �Fig. 2�b��.21 In
this case, we predict remarkable flux-flow instabilities. Note
also that the effect of thermal fluctuations on the flux-flow
regime in the superconductors with PAPS is somewhat
analogous to the effect of positional disorder in the pinning
sites. This effect should be taken into account, especially, at

temperatures close to the critical temperature of the super-
conductor Tc.

The effect of Joule heating on the VI curve of supercon-
ductors with PAPS was first outlined in Ref. 21. This gives
rise to the coexistence of both types of instabilities, which is
very unusual since nonlinear devices are typically either N
type or S type, but not both. Here we present a detailed
analysis of this problem. In addition, we study in detail the
effect of disorder on this phenomenon.

The paper is organized as follows. In Sec. II we formulate
the model of the flux motion taking into account the effect of
Joule heating. The heating manifests itself in thermal fluc-
tuations of the vortices and a variation of the superconductor
parameters due to the temperature increase. Both of these
effects are included in the model. In Sec. III the average
velocity of the vortices v̄ is found as a function of the applied
current density j. This dependence is obtained by means of
the molecular-dynamics integration of the equations of mo-
tion presented in Sec. II. As a result, we obtain the VI curves
of the sample with PAPS and study the effects of temperature
variation, thermal fluctuations, and positional disorder of the
pinning sites on these curves. In Sec. IV an analytical crite-
rion for the development of the filamentary instability in su-
perconductors with an NDR of S type is derived. In Sec. V
we analyze the effect of the interplay between S type and N
type NDR on the flux flow in superconductors with a PAPS.
We argue that the coexistence of the NDR of both types can
give rise to macroscopic nonuniform self-organized dynami-
cal structures in the flux-flow regime.

II. MODEL

We describe the flux motion in a three-dimensional �3D�
superconducting slab, infinite in the xy plane, using a 2D
model �assuming no changes in the z direction�. This ap-
proach has also been used in the past, e.g., in Refs. 20–23.
We consider a sample with a square array of Np pinning sites
interacting with Nv vortices related to the magnetic field by
B=Nv�0. The magnetic field is perpendicular to the slab �see
Fig. 1�. The period of the regular array is a=2�0 and we
focus on the case when the magnetic field B is slightly higher
than the first matching field B�, that is, Nv�Np. The vortices
are driven by the Lorentz force, Fd= j�0 /c, produced by the
current flowing in the x direction �see Fig. 1�. Thus, the
horizontal axis of Figs. 2–5, refer to the driving force Fd or
driving current j, since these are proportional to each other.
The overdamped motion of the ith vortex is described by the
equation

�vi = Fi
vv + Fi

vp + Fi
T + Fd, �1�

where vi is the velocity of the ith vortex, �
=�nHc2�T��0 /c2 is the flux-flow viscosity, �n is the normal
conductivity, and Hc2 is the upper critical field. Fi

vv is the
force per unit length acting on the ith vortex due to the
interaction with other vortices. The force per unit vortex
length Fi

vp describes the interaction of the ith vortex with the
pinning array. The term Fi

T arises due to the thermal-
fluctuation contribution to the force. As in standard ap-

FIG. 2. �Color online� The average vortex velocity v̄�E versus
current j for B /B�=1.074, rp=0.21�0 and Fp0 /F0=2 for increasing
�shown by red �black� solid circles� and for decreasing �blue open
squares� j �see Ref. 21�. �a� No heating effect is taken into account.
The regions corresponding to different phases are indicated by the
roman numerals from I to V �as in Refs. 20 and 21�. �b� The sample
heats up due to vortex motion. For small values of the drive j �up to
j�3� the effect of heating is negligible. For j�3.2, a jump from
phase II to phase III occurs. As a result of the heating, a transition
occurs abruptly at j�4.3, from regime IV to regime V, where the
vortex lattice is entirely unpinned and moves as a whole. A hyster-
esis now appears in region V: when decreasing the current j down
to the value at which the jump from phase IV to phase V previously
occurred, when the driving was increased, the overheated vortex
lattice now keeps moving as a whole. As a result, we obtain a
complicated N- and S-type VI curve. State A is unstable and the
sample divides into filaments in states B and C. State C is also
unstable. The corresponding stable states are on the lower �point E�
and on the upper �point D� VI-curve branches. Point j�4.5 corre-
sponds to the normal transition and at T�Tc we have the usual
Ohmic conductivity.
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proaches Fi
T�t� is a random function of time t, obeying the

correlation relations

�Fi
T�t��t = 0 �2�

and

�Fi
T�t�Fj

T�t���t = 2�kBT	ij	�t − t�� , �3�

where kB is the Boltzmann constant, �. . .�t denotes a time
average, 	ij is the Kronecker symbol, and 	�t� is the delta
function.

We describe the vortex-vortex interaction by the usual
expression for Abrikosov vortices

Fi
vv = 	 �0

2

8
2�3�T�

�

j=1

Nv

K1	 �ri − r j�
��T�


r̂ij , �4�

where � is the magnetic-field penetration depth, K1 is the
first-order modified Bessel function, the summation is per-
formed over the positions r j of Nv vortices in the sample, and
r̂ij = �ri−r j� / �ri−r j� is a unit vector in the direction of the
force acting between the ith and jth vortices.

The Np pinning sites �narrow indentations or “blind
holes,” which can accomodate a maximum of one vortex, for
the vortex densities used in our calculations� are located at
positions rk

�p�. The pinning potentials are approximated by
parabolic wells. Then, the pinning force per unit length act-
ing on the ith vortex can be written in the form

Fi
vp = 	Fp�T�

rp

�

k=1

Np

�ri − rk
�p���	 rp − �ri − rk

�p��
�0


r̂ik
�p�, �5�

where rp is the size of the elementary pinning potential well,
Fp�T� is the maximum pinning force, � is the Heaviside step
function, �0=��T=0�, and r̂ik

�p�= �ri−rk
�p�� / �ri−rk

�p�� is the unit
vector in the direction of the elementary pinning force. In
what follows, we estimate the maximum pinning force as

FIG. 3. �Color online� The average vortex velocity v̄�j� for
B /B�=1.074, Fp0 /F0=2.0 for increasing �red �black� solid circles�
and for decreasing �blue open squares� j and different radii of the
pinning sites: �a� rp=0.23�0; �b� rp=0.20�0; �c� rp=0.19�0. The
function v̄�j� only slightly changes for radii from rp

=0.20�0–0.25�0. For smaller rp, phase IV in the reverse branch
disappears �c� since the overheated vortex lattice cannot adjust itself
to the pinning array.

FIG. 4. �Color online� The average vortex velocity v̄�j� for in-
creasing �red �black� solid circles� and for decreasing �blue open
squares� j for large pinning sites radii: �a� rp=0.35�0; �b� rp

=0.45�0. Other parameters are the same as in Fig. 2. An increase of
rp increases the disorder in the system because vortices can then
move inside the pinning sites. Phase III disappears in �a�. However,
the hysteresis related to the heating remains. For larger rp �b�, phase
II disappears since all the vortices are pinned.
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Fp�T� =
Hc

2�T��2�T�
rp

, �6�

where ��T� is the coherence length.
The temperature dependence of the values entering our

model is found using the Ginzburg-Landau approach. There-
fore, Hc2�T�=�0 /2
�2�T�. The temperature dependence of
the penetration depth � is approximated as

��T� = �0	1 −
T2

Tc
2
−1/2

. �7�

We assume that the Ginzburg-Landau ratio 
GL=� /� is inde-
pendent of temperature. In this case, for the temperature de-
pendence of the maximum pinning force, we have

Fp�T� = Fp0	1 −
T2

Tc
2
 , �8�

where Fp0=Fp0�T=0�. We also assume that the normal con-
ductivity �n is temperature independent.

We simulate Eqs. �1�–�5� using the molecular dynamics
technique. Below we present the results for rectangular cells
with size 18�12 �0

2. Periodic boundary conditions are im-
posed at the cell boundaries. First, we should prepare an
initial state of our system. For this purpose we assume that
the initial temperature of the system is high and that the
vortex structure is in a liquid unpinned state. Then, we
slowly decrease the temperature down to T=0 and vortices
are captured by the pinning sites. When cooling down, vor-
tices adjust themselves to minimize their energy, simulating
field-cooled experiments. Starting from this initial state, we
increase the driving current and compute the average vortex
velocity v̄�j�, which is determined as

v̄�j� =
1

Nv
�

i

vi · x̂ , �9�

where x̂ is the unit vector in the x direction.
The equilibrium temperature distribution in the sample

can be found by solving the heat equation with Joule heating.
The average power of this heating per unit volume due to
vortex motion is jE= jv̄B /c. The heat flux q removed from
the sample boundaries by the external coolant is described by
the usual linear Kapitza law, q=Sh0�T−T0�, where S is the
sample surface, h0 is the heat-transfer coefficient, and T0 the
ambient temperature. To simplify the procedure, we assume
that the heat conductivity of the sample 
 is large, 
�h0w,
where w is the sample thickness. Under such a condition, the
temperature in the sample is uniform and it can be found
from the heat-balance equation,5

h0S�T − T0� =
v̄
c

jBV , �10�

where V is the sample volume. Further, we shall assume that
T0�Tc and neglect T0.

We now introduce dimensionless variables. The dimen-
sionless current �which is equal to the dimensionless driving
force fd�, dimensionless average vortex velocity Vx, and di-
mensionless magnetic-field induction b, are given by

FIG. 5. �Color online� The average vortex velocity v̄ as a func-
tion of the driving current j for B /B�=1.074, rp=0.2�0, and
Fp0 /F0=2.0 for increasing �red �black� solid circles� and for de-
creasing �blue open triangles� j for different amounts of disorder
�displacement of the centers of the pinning sites from their regular
positions� in the system: �a� dran=0.01�a /2�; �b� dran=0.05�a /2�; �c�
dran=0.1�a /2�; �d� dran=0.2�a /2�; �e� dran=0.5�a /2�; �f� dran=a /2.
The function v̄�j� does not appreciably change for a small amount
of disorder �a�. For dran�0.05�a /2� �b�, phase IV disappears in the
reverse branch. For dran�0.1�a /2� �c�, phase IV is lost in both
branches; only some reminiscent features remain, which disappear
for larger dran �d,e�. At maximal disorder dran=a /2 �f�, only phases
I, III, and V remain. However, there is a weak hysteresis related to
heating �the inset to �f��.
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fd =
j

j0
, Vx =

v̄
v0

, b =
B

B�

. �11�

The normalization values j0 and v0 are defined by

j0 =
c�0

8
2�0
3 , v0 =

c2

4

GL
2 �n�0

. �12�

In dimensionless units the heat-balance equation �10� relates
the temperature and the dimensionless driving force as

T

Tc
= KthVxfdb ,

where

Kth =
j0v0B�V

ch0TcS
�13�

is the ratio of the characteristic heat release to heat removal.
In our calculations we used the values of the parameters
characteristic of high-temperature superconductors: �0
=2000 Å, 
GL=100, �n=1016 s−1, V /S=1000 Å, Tc=90K,
B�=500 G, and h0=1 W/cm2 K. In this case, we find that
Kth=0.05–0.06 and Fp0 is of the order of F0=�0j0 /c. In the
simulations, we used Kth=0.0525 and Fp0=2F0.

III. SIMULATION RESULTS

A. Effect of heating: VI curve of N and S type

The calculated dependence of v̄ versus the current density
j in the absence of the Joule heating is shown in Fig. 2�a�, in
dimensionless units. The shape of this curve is similar to that
as found in Ref. 20 and 21 there exist five dynamical vortex
phases described in the Introduction and a pronounced hys-
teresis for increasing and decreasing current regimes.

A significant effect of the heating is observed if the cur-
rent density exceeds some threshold value, j�3.75 for the
case shown in Fig. 2�b�. In particular, the jump from phase II
to phase III becomes larger, and an abrupt transition occurs
between regimes IV and V, compared to the nonheating case
shown in Fig. 2�a�. The most important feature related to
Joule heating in the high current range is the appearance of
hysteresis in some regions of phases IV and V. For decreas-
ing current, the overheated vortex lattice keeps moving as a
whole at lower currents than the “cold” one �for increasing
j�. The transition part of the v̄�j� curve from phase IV to
phase V is shown by the dashed line in Fig. 2�b�. This part of
the VI curve is unstable for a given drive force and could be
found only for a fixed voltage.4

As a result, we obtain a new complex NDR of a hybrid
nature with both N- and S-type instabilities, which is very
unusual for any media, especially for superconductors. Each
type of NDR is characterized by its specific instabilities.1–7

Thus, the obtained VI curve is characterized by two kinds of
instabilities. For example, if the current density exceeds the
value j�3.5 �point A in Fig. 2�b��, the uniform current flow
becomes unstable and a filamentary instability1,2 occurs. Due
to this instability, the current flow breaks into filaments with
different supercurrent density, some with lower current jB

�state B� and others with higher current jC �state C�. How-
ever, the state C is, in its turn, unstable and decays. The
corresponding stable states are on the lower �E� and on the
upper �D� VI curve branches. That is, the filament breaks into
domains with higher and lower value of vortex flow speed v̄;
in other words, with higher and lower electric field. The sta-
bility and evolution of such a complicated structure is an
open question �see also Sec. V�.

In Fig. 3, the average vortex velocity v̄�j� is shown for
different radii of the pinning sites. The shape of the function
v̄�j� only slightly changes for the radii in the range rp

=0.20�0–0.25�0 �Figs. 3�a� and 3�b�. However, for radii
smaller than a certain value, phase IV in the reverse branch
�i.e., when decreasing the driving current j� disappears �Fig.
3�c�� since the overheated vortex lattice cannot adjust itself
to the pinning array and turns to the disordered motion in
phase III.

B. Effect of disorder

Let us study the effects of disorder on the NDR. Small
disorder can be effectively introduced to the system by in-
creasing the radius rp of the pinning sites; so vortices acquire
an additional degree of freedom and can move inside the
pinning sites. The function v̄�j� is shown in Fig. 4 for larger
pinning site radii, rp=0.35�0 �Fig. 4�a��, and rp=0.45�0 �Fig.
4�b��. In case of larger radii, phase III disappears, and the
motion of interstitial vortices �phase II� transforms directly
to the 1D incommensurate vortex motion �phase IV� �Fig.
4�a��. However, the robust hysteresis related to heating re-
mains. For larger radii of the pinning sites, phase II, related
to the motion of interstitial vortices, disappears since all the
vortices are pinned for weak enough drives �Fig. 4�b��.

To model disorder related to a distortion of the regular
PAPS, we introduced small random displacements for each
pinning site. Specifically, for the displacement of each pin-
ning site we consider a random angle �ran �0��ran�2
�
and a random radius rran �0�rran�rran

max, measured in units of
a /2, where a is a period of the �regular� pinning array� for
each pinning displacement.

The corresponding values of v̄�j� are shown in Fig. 5 for
different amounts of disorder. Note that small disorder does
not appreciably influence v̄�j� �Fig. 5�a��. However, for
rran

max�0.05�a /2� �Fig. 5�b��, phase IV disappears in the re-
verse branch of v̄�j�. For rran

max�0.1�a /2� �Fig. 5�c��, phase
IV is lost in both branches; only some reminiscent features
remain, which disappear for larger dran

max �Figs. 5�d� and 5�e��.
Finally, at full disorder rran

max=a /2 �Fig. 5�f��, only phases I,
III, and V remain. However, even in this case there is a weak
hysteresis related to heating �see the inset in Fig. 5�f��, ob-
served in experiments with random pinning.5

IV. FILAMENTARY INSTABILITY

It is well known that the uniform current and electric-field
distributions are unstable under definite conditions if the
sample VI curve has parts with NDR.1–7 Let us assume that
the sample with the VI curve shown in Fig. 2�b� is in a
current-biased regime. If the driving current exceeds the
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value j�3.75, the uniform current flow with the current den-
sity j becomes unstable with respect to the so-called filamen-
tary instability.1,2 Thus, the current flow in the sample breaks
up into stripes or filaments with two different alternating
current densities. This process is illustrated in Fig. 1�b�: the
sample in state A with current density jA breaks into fila-
ments with lower jB �state B� and higher jC �state C� current
densities.

To study the process in more detail, we consider a sample
connected to a standard electrical circuit, Fig. 6. The circuit
equation is

L
�I

�t
+ RI + lE = U , �14�

where I is the current in the circuit, L and R are the circuit
inductance and resistance, l is the sample length, E is the
electric field in the sample, U is the voltage at the circuit
terminals, which is assumed to be constant, and j= I /A,
where A is the sample cross section. Using Eq. �14� and
Maxwell equations we can write the equations describing the
development of the small perturbations of electromagnetic
field 	E, 	B, and current density 	j in the form

LA
�

�t
�	 j̄� + RA�	 j̄� + l	Ē = 0,

� � 	E = −
1

c

��	B�
�t

,

� � 	B =
4


c
�	j� . �15�

Here

	j =
�j

�E
�	E� +

�j

�B
�	B� ,

all quantities are assumed averaged over a volume including

a large number of vortices, 	 j̄ and 	Ē denote the average
values over the sample cross section. Below we assume for
simplicity that the sample has a zero demagnetization factor.

We shall seek the solution to Eqs. �15� in the standard
form: 	E, 	B�exp��t / t0�, where � is the value to be found,
and t0=L /R is the circuit relaxation time.

An instability develops if Re����0. In general we should
add to Eqs. �15� the equation for the small-temperature per-
turbations but here we study the filamentary instability for
which the temperature rise is not of crucial importance. We
also neglect the self-field effect and assume that the back-
ground magnetic field in the sample is uniform. To find the
filamentary instability criterion we can consider the pertur-
bations depending on the y coordinate only.1,2 In such a ge-
ometry, the perturbation of the electric field has only the x
component, while 	B has only the z component. Using 	B
=ct0	E� /�w, we find from Eqs. �15�

�� + 1�	 j̄ + �c
−1	Ē = 0, �16�

	E� − �	E� −
�ts

t0
	E = 0, �17�

where prime means differentiation over the dimensionless
coordinate y /w, w is the sample half-width, �c=RA / l, and

ts =
4
w2

c2

�j

�E
, � =

4
w

c

�j

�B

are the sample VI-curve parameters, which are positive or
negative depending on the relevant part of the VI curve at
given background fields E and B. Note that the value of �ts� is
the characteristic time of the magnetic-field relaxation in the
sample.

The differential equation �17� requires two boundary con-
ditions. We obtain the first one assuming that the applied
magnetic field B is constant. This means that 	B�1�=−	B�
−1� or 	E��1�=−	E��−1�. From the Maxwell equations �15�
we get 	B�1�−	B�−1�=8
w	 j̄ /c. Using these 	B’s, and

substituting 	 j̄ from Eq. �16�, we obtain the second boundary
condition in the form

	E��1� = −
��	Ē

�� + 1�
,

where

� =
4
w2l

c2AL
.

The solution of Eq. �17� reads

	E = C1 exp�p1y/w� + C2 exp�p2y/w� , �18�

where Ci are constants and

p1,2 =
�

2
±
�2

4
+

�ts

t0
.

Substituting Eq. �18� to the boundary conditions we obtain a
set of uniform linear equations for the constants C1,2. The
nontrivial solution of this equation set exists if its determi-
nant is zero. Thus we find the equation for the eigenvalue
spectrum � in the form

FIG. 6. Electrical circuit and superconducting sample. The cur-
rent filaments are shown schematically by light gray lines �Ref. 21�;
l is the sample length, w is the sample half-width, �w is the fila-
ment width, and the boundary conditions are stated at the sample
edges y= ±w.
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p1�p2 +
��

�� + 1�p2
�cosh p1 sinh p2

= p2�p1 +
��

�� + 1�p1
�sinh p1 cosh p2. �19�

In the simplest case of small ��j /�B�, when

p1 = − p2 = 
�ts/t0,

the solution of Eq. �19� can be readily found explicitly with
an accuracy up to ��2�

� = − 1 −
�t0

ts
= − 1 − �c

−1�E

�j
. �20�

It follows from the last relation that the instability occurs
only at the VI-curve branch with NDR when

ts �
�j

�E
� 0

and, moreover, the drop of the voltage should be large
enough,

� �E

�j
� � �c. �21�

In this case p1,2 are purely imaginary numbers and the solu-
tion of Eqs. �14� is periodic in the y direction. The charac-
teristic spatial period of the arising current filament structure
is of the order of

�w �
w

�p1����
=

w

�� + ts/t0�

. �22�

In a very unstable state, ��ts / t0��1, the filament width is
small, �w�w. The characteristic instability build-up time
becomes t0 /�. Thus, a sample with an S-type NDR in a VI
curve divides itself into small filaments with different current
densities �in different dynamic flux-flow phases III and IV� if
the resistance and inductance of the external circuit are re-
stricted by inequalities

R �
l

A
� �E

�j
�, L �

4
A

c2l
. �23�

The obtained results are valid if

��c
−1�E

�J
� � 	4
w

c

�j

�B

2

.

According to Eq. �21�, the left-hand side of the last inequal-
ity should be higher than unity, while the right-hand side is
much smaller than 1 for the parameter range studied in the
previous sections if the sample half-width w�1 mm. Note,
however, that taking into account the magnetic-field depen-
dence of the VI curve gives rise to some increase in its sta-
bility.

V. INTERPLAY BETWEEN N-TYPE AND S-TYPE
INSTABILITIES

In the stationary inhomogeneous state that arises after the
development of the filamentary instability, the electric field

should be uniform over the sample. The part, p, of the fila-
ment with the higher current jC and the part, 1− p, with the
lower current jB �see Fig. 2�b�� are defined by an evident
condition jA= pjC+ �1− p�jB, that is,

p =
�jC − jA�
�jC − jB�

.

For the case shown in Fig. 1�b� we find an estimate p�0.6.
As shown in Fig. 4, sufficiently high disorder destroys the

NDR of S-type in the VI-curve, but the NDR of N type can
still exist in this case due to sample heating. Such an un-
stable regime has been thoroughly studied for
superconductors,3–5 and we do not discuss it here.

A richer dynamics can be observed if the VI curve has
NDR parts of both N and S types, Figs. 2�b� and 3. In this
case the filaments with higher current density jC are unstable
if the system is far from the voltage-biased regime.1,2 The
instability of the filament with an N-type VI curve should
switch the filaments into state D �Fig. 2�b�� with high resis-
tivity or to the formation of the domain structure with higher
D and lower E resistivity.4 However, any possible decay of
the unstable state C gives rise to a nonuniform electric-field
distribution in the sample and, as a result, to nonzero �B /�t.
Thus, the state that appears after the instability develops is
not stationary but rather a dynamic one.

To clarify the situation, we consider two possible VI
curves shown in Fig. 7 �one red and another, labeled by “2,”
with a green branch� and assume that the total current value
in the circuit is fixed, I=AjA. In a more general case, after the
decay of the unstable state C the filaments with higher cur-
rent density will be overheated and transit to the higher re-
sistive state D. In this state D the flux lines move fast, which,
along with the temperature increase due to the thermal con-
ductivity, gives rise to the acceleration of the flux flow in the
lower-current filaments. As a result, the high-resistivity over-
heated state moves from point D to a lower electric-field
range, while the low-resistivity state �point B� moves to a
higher electric field range �point A�. If we assume that the
system has a VI curve of the type 2 �green �dark gray� dashed

FIG. 7. �Color online� Schematic VI curves �red �black� solid
line and green �dark gray� dashed line� of the superconductor for
two different values of the hysteresis due to overheating �Ref. 21�.
The more pronounced hysteresis loop �shown by the green �dark
gray� dashed line� corresponds to a larger value of the characteristic
heat release.
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curve in Fig. 7�, then the high-current filaments in D move to
the state A� with current density jA and a higher electric field
than in the initial state A. The filaments in point B move to
point A and jump to point A�. As a result, a new stable
uniform state with j= jA appears. However, if the VI curve
has the form shown by the red curve 1, the stable stationary
point with the current density jA does not exist. In this case,
the high electric-field state moves from point D to the mar-
ginal stability point F and then falls down to a lower branch
of the VI-curve �point F��. In this state F� the electric field is
lower than in the state B with lower current. As a result, the
state moves from F to F� and then to point A, which is the
only uniform state corresponding to the fixed current value
jA. However, this state is unstable, and the cycle

A → C → D → F → F� → A

is repeated �branch 1 is red in Fig. 7�. Another branch
�branch 2 with the green segment� of this cycle involves the
stable filament state B and is as follows:

A → B → A .

Such a dynamic state has a nonstationary pattern of resistive
domains coexisting and intertwined with current filaments.
The specific form of these patterns, and their dynamics can
be very complex, and requires investigations beyond the
scope of this study.

VI. CONCLUSIONS

The influence of temperature on the dynamic phases and
current-voltage characteristic of superconductors with peri-

odic pinning array was investigated here. It is demonstrated
that this effect can change the VI curve drastically. For a
range of values of the pinning-array parameters and heat-
transfer characteristics it is possible to obtain the VI curves
with a negative differential resistivity of �i� either N or S
type, �ii� VI curves with both types of NDR, or VI curves
without any NDR parts. The uniform flux flow is unstable if
the VI curve has a part with NDR. The formation of resistive
domain structures and/or propagating the resistive state
through the sample is a characteristic of VI curves of N type,
while a filamentary instability with sample regions �fila-
ments� having different current densities is a characteristic of
VI curves with NDR of S type. Much more complex regimes
can be expected in the case of VI curves with NDR parts of
both types. In this case the possibility of arising dynamical
nonuniform regimes is argued.
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