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We study the critical depinning current J., as a function of the applied magnetic flux ®, for quasiperiodic
(QP) pinning arrays, including one-dimensional (1D) chains and two-dimensional (2D) arrays of pinning
centers placed on the nodes of a fivefold Penrose lattice. In 1D QP chains of pinning sites, the peaks in J.(®)
are shown to be determined by a sequence of harmonics of long and short periods of the chain. This sequence
includes as a subset the sequence of successive Fibonacci numbers. We also analyze the evolution of J (P)
while a continuous transition occurs from a periodic lattice of pinning centers to a QP one; the continuous
transition is achieved by varying the ratio y=ag/a; of lengths of the short ay and the long a; segments, starting
from y=1 for a periodic sequence. We find that the peaks related to the Fibonacci sequence are most pro-
nounced when 7 is equal to the “golden mean.” The critical current J.(®) in a QP lattice has a remarkable
self-similarity. This effect is demonstrated both in real space and in reciprocal k space. In 2D QP pinning arrays
(e.g., Penrose lattices), the pinning of vortices is related to matching conditions between the vortex lattice and
the QP lattice of pinning centers. Although more subtle to analyze than in 1D pinning chains, the structure in
J (D) is determined by the presence of two different kinds of elements forming the 2D QP lattice. Indeed, we
predict analytically and numerically the main features of J.(®) for Penrose lattices. Comparing the J,.’s for QP
(Penrose), periodic (triangular) and random arrays of pinning sites, we have found that the QP lattice provides
an unusually broad critical current J.(®), that could be useful for practical applications demanding high J.’s

over a wide range of fields.
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I. INTRODUCTION

Recent progress in the fabrication of nanostructures has
provided a wide variety of well-controlled vortex-
confinement topologies, including different types of regular
pinning arrays. A main fundamental question in this field is
how to drastically increase vortex pinning, and thus the criti-
cal current J., using artificially produced periodic arrays of
pinning sites (APSs). These periodic APS have been exten-
sively used for studying vortex pinning and vortex dynamics.
In particular, enhanced J. and commensurability effects have
been demonstrated in superconducting thin films with square
and triangular arrays of sub-um holes (i.e., antidots)”” or
sub-um Ni triangles on top of Si substrate.® Moreover, blind
antidots (i.e., holes which partially perforate the film to a
certain depth),’ or pinning arrays with field-dependent pin-
ning strength,'® provide more flexibility for controlling prop-
erties such as pinning strength, anisotropy, etc. The increase
and, more generally, control of the critical current J.. in su-
perconductors by its patterning (perforation) can be of prac-
tical importance for applications in micro- and nanoelec-
tronic devices.

A peak in the critical current J,(®), for a given value of
the magnetic flux, say ®,, can be engineered using a super-
conducting sample with a periodic APS with a matching field
H,=®,/A (where A is the area of the pinning cell), corre-
sponding to one trapped vortex per pinning site. However,
this peak in J.(®), while useful to obtain, decreases very
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quickly for fluxes away from ®,. Thus the desired peak in
J (D) is too narrow and not very robust against changes in
®. It would be greatly desirable to have samples with APSs
with many periods. This multiple-period APS sample would
provide either very many peaks or an extremely broad peak
in J.(P), as opposed to just one (narrow) main peak (and its
harmonics). We achieve this goal [a very broad J,(®)] here
by studying samples with many built-in periods.!!

The development of new fabrication technologies for pin-
ning arrays with controllable parameters allows us to fabri-
cate not only periodic (square or triangular) but also more
complicated quasiperiodic (QP) arrays of pinning sites, in-
cluding Penrose lattices.'>~'4

The investigation of physical properties of QP systems
has attracted considerable interest including issues such as
band structure and localization of electronic states in two-
dimensional (2D) Penrose lattice,!>'¢ electronic and acoustic
properties of one-dimensional (1ID) QP lattices,'”!8
superconducting-to-normal phase boundaries of 2D QP
micronetworks, 23 QP semiconductor heterostructures and
optical superlattices,”* soliton pinning by long-range order,>
and pulse propagation®® in QP systems. Moreover, increasing
and, more generally, controlling the critical current in super-
conductors by its patterning (perforation) can be of practical
importance for applications in micro- and nanoelectronic de-
vices.

The original tiling has been studied in Ref. 12. The infla-
tion (or production) rules of “finite Penrose patterns” gener-
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ated by repeated application of deflation and rescaling have
been found, which show a definite hierarchical structure of
the Penrose patterns.'*

The electronic and acoustic properties of a one-
dimensional quasicrystal have been studied in Refs. 16 and
17. It has been shown, in particular, that there exist two types
of the wave functions, self-similar (fractal) and non-self-
similar (chaotic), which show “critical” or “exotic”
behavior.'® By both numerical (nonperturbative) and analyti-
cal (perturbative) approaches, it has been demonstrated'”-'3
that the phonon and electronic spectra of 1D quasicrystals
exhibit a self-similar hierarchy of gaps and localized states in
the gaps. The existence of gaps, and gap states, in QP GaAs-
AlGaAs superlattices has been predicted and found experi-
mentally.

Along with studying the structural, electronic, and acous-
tic properties of QP structures, considerable progress has
been reached in understanding the superconducting proper-
ties of 2D quasicrystalline arrays.'*?3 The effect of frustra-
tion, induced by a magnetic field, on the superconducting
diamagnetic properties has been revealed and the
superconducting-to-normal phase boundaries, T.(H), have
been calculated for several geometries with quasicrystalline
order, in a good agreement with experimentally measured
phase boundaries.”?> A comprehensive analysis of super-
conducting wire networks including quasicrystalline geom-
etries and Josephson-junction arrays in a magnetic field
has been presented in Refs. 22 and 23. An analytical
approach???? was introduced to analyze the structures which
are present in phase diagrams for a number of geometries. It
has been shown that the gross structure is determined by the
statistical distributions of the cell areas, and that the fine
structures are determined by correlations among neighboring
cells in the lattices. The effect of thermal fluctuations on the
structure of the phase diagram has been studied” by a cluster
mean-field calculation and using real-space renormalization
group.

In this paper, we study another phenomenon related to
superconducting  properties of quasiperiodic  systems,
namely, vortex pinning by 1D QP chains and by 2D arrays of
pinning sites located at the nodes of QP lattices (e.g., a five-
fold Penrose lattice). Some of the properties of J, in 1D QP
chains and by 2D QP arrays of pinning sites have been re-
cently also studied in Ref. 11. It should be noted that in
superconducting networks the areas of the network
plaquettes play a dominant role.'®?> However, for vortex
pinning by QP pinning arrays, the specific geometry of the
elements which form the QP lattice and their arrangement
(and not just the areas) are important, making the problem
complicated.

In Sec. II we introduce the model used for describing
vortex dynamics in QP pinning arrays and for determining
the critical depinning current J,. which is analyzed for differ-
ent quasicrystalline geometries.

The pinning of vortices by a 1D QP chain of pinning sites
(i.e., the Fibonacci sequence) is discussed in Sec. III. We
consider a continuous transition from a periodic to the QP
chain of pinning sites and we monitor the corresponding
changes in the critical current J,. as a function of the applied
magnetic flux ®. A remarkable self-similarity of J.(®) is
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demonstrated in both real space and in reciprocal k space
(Sec. IV).

Sections V-IX study the pinning of flux lattices by 2D QP
pinning arrays including the fivefold Penrose lattice. In Sec.
VI, we analyze changes of the function J,.(®) during a con-
tinuous transition from a periodic triangular lattice of pin-
ning sites to the Penrose lattice. Based on detailed consider-
ations of the structure and specific local rules of construction
of the Penrose lattice, we predict the main features of the
function J.(®). Numerical simulations with different finite-
size Penrose lattices confirm the predicted main features for
large-size lattices, that is important for possible experimental
observations of the revealed quasiperiodic features (Sec.
VII). We also obtain analytical results supporting our conclu-
sions (Sec. VIII). Moreover, in Sec. IX we also discuss the
changes in the critical current by adding either a “quasiperi-
odic” modulation or random displacements to initially peri-
odic pinning arrays.

II. MODEL

We model a three-dimensional (3D) slab infinitely long in
the z direction, by a two-dimensional (2D) (in the xy plane)
simulation cell with periodic boundary conditions, assuming
the vortex lines are parallel to the cell edges. To study the
dynamics of moving vortices driven by a Lorentz force, in-
teracting with each other and with pinning centers, we per-
form simulated annealing simulations by numerically inte-
grating the overdamped equations of motion (see, e.g., Refs.
27-30):

nvi=f= 0+ £+ f] + £ (1)

Here, f; is the total force per unit length acting on vortex i,
£7° and £” are the forces due to vortex-vortex and vortex-pin
interactions, respectively, fl.T is the thermal stochastic force,
and f ? is the driving force acting on the ith vortex; 7 is the
viscosity, which is set to unity. The force due to the interac-
tion of the ith vortex with other vortices is

N,
\ ri—ril).
f?”:EfOKI( l)\ Lij, (2)
J
where N, is the number of vortices, K| is a modified Bessel
function, N is the magnetic field penetration depth, f;
=(r;—r;)/|[r;—r;, and

_ 95
ﬁ‘s#ﬁ'

Here ®y=hc/2e is the magnetic flux quantum. It is conve-
nient, following the notation used in Refs. 27-30, to express
all the lengths in units of N\ and all the fields in units of
®,/\%. The Bessel function K,(r) decays exponentially for r
greater than \, therefore it is safe to cut off the (negligible)
force for distances greater than 5\. The logarithmic diver-
gence of the vortex-vortex interaction forces for r—0 is
eliminated by using a cutoff for distances less than O.1\.

Vortex pinning is modeled by short-range parabolic poten-
tial wells located at positions r](cp). The pinning force is
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where N, is the number of pinning sites, f,, is the maximum
pinning force of each potential well, r, is the range of the

. . . .. . ~(p)
pinning potential, © is the Heaviside step function, and T,

=(ri—r;(cp))/|ri—r;((p)|-
The temperature contribution to Eq. (1) is represented by
a stochastic term obeying the following conditions:

(ffy=0 (4)

and

(i (f; (1) = 2mkpT 5,80t —1"). ()

The ground state of a system of moving vortices is ob-
tained as follows. First, we set a high value for the tempera-
ture, to let vortices move randomly. Then, the temperature is
gradually decreased down to 7=0. When cooling down, vor-
tices interacting with each other and with the pinning sites
adjust themselves to minimize the energy, simulating the
field-cooled experiments.3?33

In order to find the critical depinning current J. we apply
an external driving force gradually increasing from f,;,=0 up
to a certain value f,=f%, at which all the vortices become
depinned and start to freely move. For values of the driving
force just above f¢, the total current of moving vortices J
~(v) becomes nonzero. Here, (v) is the normalized (per vor-
tex) average velocity of all the vortices moving in the direc-
tion of the applied driving force. In numerical simulations,
this means that, in practice, one should define some threshold
value J,,;, larger than the noise level. Values larger than J,;,
are then considered as nonzero currents. However, instead
using this criterion-sensitive scheme, we can use an alterna-
tive approach based on potential-energy considerations. In
the case of deep short-range potential wells, the energy re-
quired to depin vortices trapped by pinning sites is propor-
tional to the number of pinned vortices Nl()p). Therefore in this
approximation we can define the “critical current” as fol-
lows:

ng)(q))
N, (@)’

J(P)=J, (6)
where J, is a constant, and study the dimensionless value
J!=J.1J, (further on, the primes will be omitted). Through-
out this work, we use narrow potential wells as pinning sites,
characterized by r,=0.04A-0.1A. Our calculations show
that, for the parameters used, the dependence of the critical
current J.(®) defined according to Eq. (6), is in good agree-
ment to that based on the above general definition of J.
(which involves an adjustable parameter J;,). The advan-
tages of using J,. defined by Eq. (6) are the following: it (i)
does not involve any arbitrary threshold J,;, and (ii) is less
CPU-time consuming, allowing the study of very large-size
lattices. Moreover, the goal of this study is to reveal specific
matching effects between a (periodic) vortex lattice and ar-
rays of QP pinning sites, and to study how the quasiperiod-
icity manifests itself in experimentally measurable quantities
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(e Nf}p s N,) related to the vortex pinning by QP (e.g., the
Penrose lattice) pinning arrays.

III. PINNING OF VORTICES BY A 1D QUASIPERIODIC
CHAIN OF PINNING SITES

In this section we study the pinning of vortices by one
dimensional (1D) QP chains of pinning sites.

A. 1D quasiperiodic chain

As an example of a 1D QP chain, or 1D quasicrystal, a
Fibonacci sequence is considered, which can be constructed
following a simple procedure: let us consider two line seg-
ments, long and short, denoted, respectively, by L and S. If
we place them one by one, we obtain an infinite periodic
sequence:

LSLSLSLSLSLSLSLS - . (7)

A unit cell of this sequence consists of two elements, L and
S. In order to obtain a QP sequence, these elements are trans-
formed according to Fibonacci rules as follows: L is replaced
by LS, S is replaced by L:

L—LS, S—L. (®)
As a result, we obtain a new sequence:
LSLLSLLSLLSLLSL ---. 9)

Iteratively applying the rule (8) to the sequence (9), we
obtain, in the next iteration, a sequence with a five-element
unit cell (LSLLS), then with an eight-element unit cell
(LSLLSLSL), and so on, to infinity. For the sequence with an
n-element cell, where n— oo, the ratio of numbers of long to
short elements is the golden mean value,

r=(1+5)2. (10)

The position of the nth point where a new element, either L
or S, begins is determined by'*

x,=n+ylyn], (11)

where [x] denotes the maximum integer less or equal to x.
Equation (11) corresponds to the case when the Fibonacci
sequence has a ratio y=ag/a; of the length of the short seg-
ment ag to the length of the long segment ;. Ratios y other
than 1/7 correspond to other chains which are all QP. Along
with the golden mean value of y=1/7, we use in our simu-
lations ’s varying in the interval between 0 and 1: 0<y
<1, when analyzing a continuous transition from a periodic
to a QP (Fibonacci sequence) pinning array.

To study the critical depinning current J. in 1D QP pin-
ning chains, we place pinning sites on the points where L or
S elements of the QP sequence link to each other. Therefore
the coordinates of the centers of the pinning sites are defined
by Eq. (11) with y=ag/a;.

B. Pinning of vortices by a 1D periodic chain of pinning sites

We start with a periodic chain of pinning sites, which can
be considered, in the framework of the above scheme, as a
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FIG. 1. Dimensionless critical depinning current J,., as a func-
tion of the applied magnetic flux ®, in a 1D periodic chain of
pinning sites, for a cell containing 25 pinning sites, N,=25 and
fp!fo=2.0. The indicated fluxes ®,, ®,, and ®5 correspond to the
first, second, and third matching fields. The function J.(®) is shown
for two different values of the pinning site radius, 7,=0.1\ (a), and
r,=0.04\ (b). When r,, decreases, the main commensurability peaks

P
become sharper, as shown in (a) and (b).

limiting case of a “QP” chain with y=1, i.e., ag=a;=1. In
Fig. 1(a), the critical current JL,~NI()” >/NU is shown as a func-
tion of the applied magnetic flux @ for f,/f;=2 and for a
pinning site radius r,=0.1N. Sharp peaks of the function
J () correspond to matching fields. Since the dimensionless
critical current we plot is that per vortex and is proportional
to the number of pinned vortices and inversely proportional
to the total number of vortices [Eq. (6)], therefore the mag-
nitude of the peaks versus @~ N, decreases as 1/®. Then
the maximum heights of the peaks are J.(®))=1, J.2D,)
=0.5, and J.(3®,)=0.33. Note that these values are obtained
provided each pinning site can trap only one vortex, which is
justified for the chosen radius of the pinning site and for the
vortex densities considered. In addition, there are weak wide
maxima corresponding to ®,/2 and other “subharmonics,”
ie.,, ®;+®,/2 [Fig. 1(a)], where i is an integer. For very
small values of ®,, the vortex density is very low, and vor-
tices almost do not interact with each other. As a result, in
the ground state they all become trapped by pinning sites,
and J, is maximal for small ®,.

For smaller radii of the pinning sites, r,=0.04\ [Fig.
1(b)], the J (D) peaks corresponding to matching fields be-
come sharper because for smaller values of r,, it is more
difficult to fulfill the commensurability conditions. Any fea-
tures around the main peaks, including subharmonics, are
suppressed. Note also a “parity effect” takes place in this
case: since the number of pinning sites per cell is odd (N,
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=25 in Fig. 1), therefore J.(®) peaks are suppressed for
®,/2 and for even values of i in the sequence @, +®,/2.

IV. PINNING OF VORTICES BY A 1D QUASIPERIODIC
CHAIN OF PINNING SITES: GRADUAL EVOLUTION
FROM A PERIODIC TO A QUASIPERIODIC CHAIN

Let us consider a QP chain of pinning sites with spacings
between pinning sites given by a; (long) and ag (short). The
long and short segments alternate according to the Fibonacci
rules forming a Fibonacci sequence. The number of pinning
sites per cell coincides with the number of elements of this
sequence per unit cell. It is natural to take a chain with a
number of elements equal to one of the successive Fibonacci
numbers as a 1D cell, although in principle it could be of any
length. We impose periodic boundary conditions at the ends
of the cell.

The larger cell we take, the closer we are to describing a
truly QP structure. However, it turns out that even a finite
part of a QP system (1D chain or 2D QP lattice) provides us
with reliable information concerning properties of the whole
system. This is based on the structural self-similarity of QP
systems. These properties are studied here for the critical
depinning current J, and have also been demonstrated for
other physical phenomena.!”-18:20-23.31

Figure 2 shows the evolution of J. as a function of the
number of vortices, N, ~ ®, for various values of the param-
eter y. The top curve represents the limiting case of a peri-
odic chain (y=1.0) with typical peak structure discussed
above (Fig. 1). The chain contains N,=21 pinning sites. As a
result, commensurability peaks appear at N,=21, 42, 63,
etc., i.e., multiples of 21. A small QP distortion of the chain
does not appreciably affect the peak structure of the function
J.(N,) (y=0.9). When the deviation of the factor y from
unity becomes larger (y=0.8, 0.7), commensurability peaks
for N,=42, 63, and other multiples of 21 decrease in magni-
tude. At the same time, new peaks appear at N,=55, 76
(=55+21), 97 (=76+21) for y=0.8. Then, with further de-
crease ofy (y=0.7), these peaks remain (N,=55 even grows
in magnitude), and a new peak at N,=34 arises.

For the golden mean-related value of y=1/7~0.618, we
obtain a set of peaks, which are “harmonics” of the numbers
of long and short periods of the chain (or reciprocal lengths
a; and ay), i.e.,

xgelgks,i=AiNL+BiNS=_i+_i’ (12)
as ap

where N; and Ng are the numbers of long and short elements,
respectively; A; (A]) and B; (B]) are generally (positive or
negative) multiples or divisors of N; and Ng; the upper index
“QP” denotes “quasiperiodic.” It is easy to see that this set
includes as a subset the sequence of successive Fibonacci
numbers. In particular, the following well-resolved peaks of
the function J.(N,) appear for y=1/7~0.618: N,=13 [=N,
=13, 13 is a Fibonacci number (FN)]; N,=17 [=(2N,
+Ng)/2, where (2N, +Ng)=34 is a FN]; N,=21 [=N,=N,
+NS, 21 is a FN]; N,=~27-28 [=(3N;+2Ng)/2, where
(BN +2Ng)=55 is a FN]; N,=34 (2N, +Ng); N,~44-45
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FIG. 2. (Color online) Critical depinning urrent J,, as a function
of the applied magnetic flux (for convenience, shown as a function
of the number of vortices, N,~®), in a 1D QP chain of pinning
sites with f,/fo=1, r,=0.1\, for chains characterized by different
ratios of the lengths of short ag to long a; spacings, y=ag/a;. For
small deviations of the chain from a periodic chain
(y=0.9-1), commensurability peaks are similar to those shown in
Fig. 1. For intermediate values of y (y=0.2-0.8), peaks are deter-
mined by a sequence of harmonics of numbers of long and short
periods of the chain, which includes the sequence of successive
Fibonacci numbers, most pronounced for y=1/7~0.618, where 7
=(1+5)/2=1.618 is the golden mean. For very small y (e.g., ¥
=0.1), the QP chain effectively becomes periodic but with the num-
ber of pinning sites equal to the number of long periods in the
chain.
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[=(5N;+3Ng)/2, where (5N +3Ng)=89 is a FNJ]; N,=55
[=(3N,+2Ny), 55 is a FN]; N,=68 [=(4N,+2Ny)]; N,=89
[=(5N,+3Ny), 89 is a FN]. In summary, the most pro-
nounced peaks are at N,=13, 17, 21, 34, 55, 89, which
(except the point N,=17=34/2) form a sequence of succes-
sive FNs.

The above QP peaks only slightly degrade at y=0.6.
However, when the length of the long segment a; becomes
twice the length of the short one ag, i.e., y=0.5, sharp com-
mensurability peaks appear which are related to the small
segment of the chain with length ag=a;/2. Namely, we ob-
tain peaks at N,=34~ (2N, +Ns) and at other values of N,
which are subharmonics of 2N; +Ng: N,=17, 34, 68. Other
peaks, in particular, those related to the Fibonacci sequence,
are much less pronounced for y=0.5. For y=0.4, the peaks
are at N,=13, 17, 34, 47 (=3N;+Ng), 68, and 81. A very
strong (recall that the maximum amplitude of the peak is
~1/N,) peak at N,=81 is a “resonance” peak corresponding
to the ratio of B;/A;=2/5=v, i.e., SN +2Ng=81. When y
=0.3, the resonance ratio B;/A;=0.3, therefore a strong peak
appears for the “nearest to 0.3” value B;/A;=0.33: 3N; +Ng
=47, and also for 6N;+2Ng=94. Another ‘“close to 0.3”
value is B;/A;=0.25, which is responsible for the peaks at
N,=30 (2N;+Ng/2) and N,=60 (4N, +Ns). Also, peaks at
N,=13, 17, and 55 are present. The resonant peak for 7y
=0.2 (i.e., for the ratio y=B;/A;=0.2) appears at N,=73
(=5N;+Ns). The closest neighboring peaks are at N,=60
(=4N;+Ng) and N,=86 (=6N +Ny), [also N,=43 (=3N,
+Ng/2)], characterized by ratios B;/A;=0.25 and B;/A;
=0.17, correspondingly. Finally, for y=0.1 we arrive at the
situation when we have an almost periodic chain but with a
period a different from that for y=1.0: a’ =qa; since ag<<a;.
The number of pinning sites becomes N,=N;=13, and we
obtain commensurability peaks at the positions which are
multiples of N,,:13, ie., at N,=13, 26, 39, 52, which is
typical for periodic chains of pinning sites.

In order to demonstrate that the above analysis is general
and reveals the QP features independently of the length of a
specific chain of pinning sites, let us compare results from
the calculation of J.(N,) for different chains. In Fig. 3(a), the
function J.(N,) is shown for four different 1D QP chains,
Np=21, Np=34, Np=55, and Np=89, and the same y=1/7.
Figure 3(a) clearly shows that the positions of the main
peaks in J., ie., those corresponding to a Fibonacci se-
quence, and other peaks whose positions are described by
Eq. (12), to a significant extent, do not depend on the length
of the chain. The peaks shown in Fig. 3 form a Fibonacci
sequence: N,=13, 21, 34, 55, 89, 144, and other “harmon-
ics”: N,=17, 27-28 (=55/2), 44-45 (=89/2), etc. At the
same time, longer chains allow us to better reveal peaks for
larger Fibonacci numbers. Thus, for chains with N,=144
[Fig. 3(b)] peaks at the next Fibonacci numbers are pro-
nounced: N,=144, 233, 377.

While the curves for different chains are plotted in Fig.
3(a) in the same scale, Fig. 3(c) shows these curves in indi-
vidual scales. Namely, we rescale each J. by normalizing
each J. by the number of pinning sites in each curve. Thus
®, corresponds to N,=21 for the chain with N,=21, to N,
=34 for the chain with Np=34, etc. After this rescaling, the
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FIG. 3. (Color online) (a) The critical depinning current J,, as a
function of the number of vortices, N,~®, for different 1D QP
chains, N,,=34 (top blue dashed line), N,=55 (green dotted line),
and N, =89 (bottom red solid line), and the same y=ag/a;=1/7[cf.
Fig. 1(a) in Ref. 11]. The parameters used here are f,/fy=1.0 and
r,=0.1\. Independently of the length of the chain, the peaks for all
of the curves include as a subset the sequence of successive Fi-
bonacci numbers (indicated by blue arrows in the horizontal axis)
and their subharmonics. (b) J.(N,) for a long chain N, =144 and the
same y=1/7. Notice that now N,, is much larger than in (a). (c) The
function J.(®/®d,) for the same set of 1D chains (using the same
colors), normalized by the number of pinning sites for each chain.
The curves for chains with different N,’s display the same sets of
peaks, namely, at ®/d,=1 (first matchrng field) and ®/d,=0.5, as
well as at the golden-mean-related values: ®/®;=7/2, ®/P,;=(7
+1)/2=712, ®/D=7, /D =(1+7)/2=712, P/P=7=7+1,
®/®,=7+1 [cf. Fig. 1(b) in Ref. 11]. Therefore similar sets of
peaks are obtained for both cases: for the curves plotted in the same
scale (a),(b); for the curves plotted in individual scales, i.e., normal-
ized on the number of pinning sites in the chain (c). This behavior
demonstrates the self-similarity of J.(®).
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J. curves approximately follow each other and have pro-
nounced peaks for the golden-mean-related values of ®/® |,
as shown in Fig. 3(c). For example, ®/®,= 7 corresponds to
N,=34 for the chain with N,=21, to N,=55 for the chain
with Np=34, to N,=89 for Np=55, to N,=144 for Np=89,
and to N, =233 for the chain with N,=144. Note that these
peaks (i.e., corresponding to the golden mean) are most pro-
nounced for each chain in Figs. 3(a) and 3(b).

Therefore the same peaks of the function J.(®P) for differ-
ent chains are revealed before and after rescaling. This
means that the function J.(®) for the 1D QP chain is self-
similar. Below, we demonstrate the revealed self-similarity
effect in a reciprocal k space.

Fourier transform of the vortex distribution function on a 1D
periodic chain of pinning sites: Self-similarity effect

As we established above, the revealed QP features [e.g.,
peaks of the function J.(®~N,)] (i) are independent of the
length of the chain and (ii) the longer chain we take, the
more details (e.g., “subharmonics”) of QP features can be
observed.

This result is related to an important property of QP sys-
tems, self-similarity, which could be better understood by
analyzing the Fourier transform of the distribution function
of the system of vortices pinned on a QP array

In & space, the distribution function F (q) of a system of
NQ’) pinned vortices can be represented as the inverse Fourier
transform of the 1D distribution function F ) (n) of the vor-
tices in real space:

N!(]p)
FP(q) = —; 2 FP(nexpl-2mign/NY}. (13)
v n=1

Figure 4 shows the Fourier transform of a system of
pinned vortices for a _y equal to the inverse golden mean:
1/y=a;lag=7=(1+45)/2. The plots shown in Figs.
4(a)-4(d) are obtained according to the following rule. The
portion of the horizontal axis which is limited by the two
arrows in Fig. 4(a) is rescaled and shown in Fig. 4(b). In the
same way, the portion limited by the two arrows in Fig. 4(b)
is rescaled and shown in Fig. 4(c). Figure 4(d) is obtained
following the same procedure. Note that each subsequent
scaling is accompanied by flipping the direction of the g axis
to the opposite direction. A similar property is clear from the
experimental diffraction patterns of quasicrystals.'* The pen-
tagons of Bragg peaks have smaller pentagons inside them,
which are inverted. As seen in Fig. 4, each subsequent sub-
division leads to a subset of peaks similar to the entire set of
peaks.

This analysis clearly demonstrates the self-similarity of
the distribution function of the vortices pinned on a QP 1D
array of pinning sites. Similarly to the observed behavior of
the function J.(®) when increasing the length of the chain of
pinning sites, the Fourier transform of the distribution func-
tion of the vortices pinned on a QP array reproduce its main
features (peaks) in a self-similar way, when increasing the
range in k space, and simultaneously acquires a more elabo-
rate structure with smaller self-similar peaks.
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FIG. 4. The self-similar Fourier transform of the distribution
function (vortex density) of the system of N,=144 vortices pinned
on a QP array, for y=1/7. The portion limited by the two arrows in
(a) is successively magnified several times and the corresponding
results shown in (b), (c), and (d).

As we discussed above, the main commensurability peaks
evolve from a perfectly periodic set of the type ®,=m®,,
where m>1 is a positive integer [through the set of QP
peaks defined by Eq. (12)], to another set of periodic peaks
®;=md], when the “quasiperiodicity parameter” y=ag/a;
is gradually tuned between the values y=1.0 and y=0 (see
Fig. 2). These limits (y=1.0 and y=0) correspond to peri-
odic chains.
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FIG. 5. Fourier transform of the distribution function of the
vortices (N,=144) interacting with a QP array of pinning sites, for
different values of y=1.0 (a), 0.8 (b), 0.5 (c), 0.1 (d). The value
y=1 corresponds to the limit of a periodic chain. Varying y from 1,
we introduce quasiperiodicity (the most pronounced for y=1/7
~(0.618) in the chain. The y=1 case recovers the periodic limit
(with another period). The main central sharp peak, corresponding
to the periodic chain used for (a), continuously transforms—
through the set of self-similar patterns [(b) and (c)] corresponding
to QP chains (see Fig. 4)—to another peak (d) produced by a peri-
odic chain with the number of sites equal to the number of long
segments of the initial periodic chain with y=1.0 shown in (a).

Figure 5 illustrates the corresponding evolution of the
Fourier-transform of the distribution function of vortices
pinned on a 1D QP array of pinning sites.

For y=1 [Fig. 5(a)], there is a single sharp peak (accom-
panied by negligibly small satellites) corresponding to a pe-
riodic chain. For smaller y’s [e.g., y=0.8, Fig. 5(b), y=0.8,
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Fig. 5(c), or y=0.618, Fig. 4(a)], a set of satellite peaks
appears around the main peak. Simultaneously, the intensity
of this peak decreases giving rise to another main peak for
smaller value of ¢ [Fig. 5(d)], which corresponds to a peri-
odic chain with a larger period.

V. PINNING OF VORTICES BY 2D QUASIPERIODIC
PINNING ARRAYS

In the previous section we studied the pinning of vortices
by 1D QP chains of pinning sites. In particular, we showed
how the quasiperiodicity manifests itself in the critical depin-
ning current, J.. ~Nl(}p )/ N, when increasing the applied mag-
netic flux, ® ~ N,. We found that the positions of the peaks
of the function J.(®) are governed by “harmonics” of long
and short periods of the QP chain of pinning sites. Indepen-
dently of the length of the chain (for N,=21), the peaks
form a QP sequence including the Fibonacci sequence as a
fundamental subset. This self-similarity effect is clearly dis-
played in the Fourier transform of the distribution function of
the vortices on a 1D QP array of pinning centers. The evo-
lution of QP peaks, when gradually changing the “quasiperi-
odicity” parameter 7y, has revealed a continuous transition
from a QP chain—through the set of QP states (most pro-
nounced for y=1/7~0.618)—to another periodic chain, y
=0, with a longer period. This phenomenon has been studied
both in real space and in reciprocal k space.

In the present section and in the next sections, we analyze
vortex pinning by 2D QP arrays; in particular, by an array of
pinning sites placed in the nodes of a fivefold Penrose lattice.
Before tackling the Penrose-lattice pinning array, let us start
with a simplified system which one can call “2D-
quasiperiodic” (2DQP) since it is a 2D system periodic in
one direction (x direction) and QP in the other direction (y
direction).

2D-quasiperiodic triangular lattice of pinning sites

In an infinitely long one-dimensional homogeneous super-
conductor without any pinning centers, vortices obviously
are equidistantly distributed, forming a periodic chain. Simi-
larly, as it is well known, in a three-dimensional supercon-
ductor (or in quasi-two-dimensional slabs or films), vortices
organize themselves in a periodic triangular lattice, shown
schematically in Fig. 6(a). If we keep the lattice undistorted
along the x direction and introduce a quasiperiodic deforma-
tion along the y direction, similarly to the case of a 1D QP
chain, we obtain a 2QP triangular lattice as shown in Figs.
6(b) and 6(c). The quasiperiodicity parameter 7y, for this
2DQP lattice is defined as the ratio of the short to long pe-
riods, a; to ag [see Fig. 6(c)]. The 2DQP triangular arrays of
pinning sites are shown for y,=1.0 [Fig. 6(a)], y,=1/7,
where 7=(1+15)/2 [Fig. 6(b)], ,=0.5 [Fig. 6(c)]. The cor-
responding functions J.(N,~®) are presented in Figs.
6(d)-6(f) for the following pinning parameters: f,/f,=2.0,
and r,=0.1A.

For the triangular array of pinning sites [Fig. 6(a)], we
obtain a well-resolved main commensurability peak [Fig.
6(c)], corresponding to the first matching field, at ®=,.
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Note that the vortex lattice is in general incommensurate
with a triangular lattice of pinning sites for the second
matching field, i.e., when ®=2®d, (see, e.g., Ref. 28). For
instance, for the parameters used in our simulations, only
each second row of pinning sites is occupied at ®=2P,,
resulting in a very weak maximum of the function J.(N,
~®) at that point; the parameters used (f,/f,=2.0, r,
=0.1\) are nearly optimal for revealing features of the func-
tion J,.(®) related to quasiperiodicity.

When tuning 7y out of the periodic value y,=1.0, the main
peak decreases in magnitude, and a maximum forms near it
at a larger value of N,~ ®. These changes are demonstrated
in Fig. 6(e) [the corresponding pinning array is shown in Fig.
6(b)] for y,=1/m.

It should be noted that here the parameter ¥, has a differ-
ent meaning, in the case of triangular 2DQP lattices, com-
pared to the case of y for the 1D QP chains considered in the
previous section. In a 1D QP chain, y=ag/qa; is the ratio of
distances between pinning sites, whereas in a triangular
2DQP lattice 7, defines the ratio of the distances between the
rows of pinning sites [see Fig. 6(c)]. It is easy to show that
the ratio of distances between the neighboring pinning sites
in a triangular 2DQP lattice is

, \/(1+y§)az+12a2
"IN+ D+ 1290 (14)

where a is the period of the 2DQP triangular lattice along the
(periodic) x direction. Thus for y,=1/7, the parameter y’
defined by Eq. (14) becomes y' =0.7.

For y,=0.5 (y'=0.6), the function J.(N,) is plotted in
Fig. 6(f). The main peak is further depressed, while the clos-
est satellite peak becomes more pronounced. In addition,
other satellite peaks appear, which are much less pro-
nounced.

VI. TRANSITION FROM A TRIANGULAR TO A
QUASIPERIODIC PENROSE-LATTICE ARRAY
OF PINNING SITES

Above, we have revealed some features of the behavior of
the critical depinning current J, as a function of the applied
magnetic flux @ (or as a function of the number of vortices
in the system N,~®). They have been found under the
transformation of a triangular lattice to a 2DQP triangular
lattice (array) of pinning sites.

Consider now a similar procedure but the final configura-
tion of the transformation from a triangular lattice will be a
2D QP array of pinning sites, namely, an array of pinning
sites located at the nodes of a fivefold Penrose lattice. This
kind of lattice is representative of a class of 2D QP struc-
tures, or quasicrystals, which are referred to as Penrose til-
ings. These structures possess a local order and a rotational
(five- or tenfold) symmetry, but do notr have translational
long-range order. Being constructed of a series of building
blocks of certain simple shapes combined according to spe-
cific local rules, these structures can extend to infinity with-
out any defects.'* Below, we will discuss in more detail the
structure of the Penrose lattice.
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FIG. 6. The spatial distribution of pinning sites for a triangular lattice (i.e., periodic) (a), and 2D-quasiperiodic (2DQP) triangular, i.e.,
periodic along one direction (the x direction) and QP along the other one (the y direction), (b) and (c). The parameter v, is defined as a ratio
of short (ag) to long (a;) periods in the y direction, as shown in (c). The values of the parameter y, are y,=1.0 (a), y,=1/7, where 7
=(1+15)/2 (golden mean) (b), ¥=0.5 (c). The critical depinning current J, as a function of the number of vortices, N, ~ ®, for triangular
(d) and the 2DQP triangular lattices [shown in (b) and (c)] (e) and (f), correspondingly, for f,/f;=2.0, r,=0.1\.

The transformation of a triangular lattice to the Penrose
one is a rather nontrivial procedure, as distinct from the
transformation to a 2DQP triangular lattice done above when
we simply stretched some of the inter-row distances and
squeezed other ones according to the Fibonacci rules [Eq.
(8)] for a one-dimensional QP lattice. In order to find inter-
mediate configurations between the triangular lattice and the

> 'p

Penrose lattice, we employ the following approach. First, we
place noninteracting vortices at the positions coinciding with
the nodes of the Penrose lattice (these can be considered as
pinning sites for vortices, which right afterwards are
“switched off”’). Then we let the vortices freely relax under-
going the vortex-vortex interaction force at low temperatures
(and no pinning force). The vortices relax to their ground
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state, which is a triangular lattice. During the relaxation pro-
cess, we do a series of “snapshots,” recording the coordinates
of the vortex configurations at different times. The sets of
coordinates obtained are then used as coordinates of pinning
sites. We arrange these sets in antichronological order to
model a continuous transition of the pinning array from its
initial configuration, a triangular lattice, to its final configu-
ration, a Penrose lattice.

In Figs. 7(a)-7(d), four of these configurations of pinning
sites are shown. The triangular lattice is presented in Fig.
7(a). Two intermediate configurations are shown in Figs. 7(b)
and 7(c). The pinning sites plotted in Fig. 7(d) are located on
the vertices of a Penrose lattice. For comparison, a pinning
array in the form of a triangular lattice [Fig. 7(a)] is also
presented in Figs. 7(b)-7(d) as open blue circles. The func-
tions J.(®) calculated for the pinning arrays shown in Figs.
7(a)-7(d), are plotted, respectively, in Figs. 7(e)-7(h). The
function J.(®) for the triangular lattice [Fig. 7(e)] is also
plotted, for comparison, in Figs. 7(g) and 7(h) as a blue
dashed curve.

The main commensurability peak related to the first
matching field in a triangular lattice of pinning sites, ob-
served at @=®, [Fig. 7(e)], turns out to be rather stable with
respect to moderate deformations of the lattice [Fig. 7(f)];
see also Fig. 7(b)]. It still has a maximum height in Fig. 7(f),
although it broadens. However, the depths of the valleys near
the peak decreases by about 20—30 %. Two sharp peaks near
d=d,/3 and ®=D,/6 [Fig. 7(e)], related to the commen-
surability of the long-range order in a triangular lattice, dis-
appear. With further deformation, e.g., for the pinning array
shown in Fig. 7(c), the main peak still remains but only
about 80% of the vortices are pinned in this case. The func-
tion J,(®d) becomes somewhat smoother, and it does not dis-
play any pronounced features (for ®=2®,/3) except the
main maximum.

The transition to a Penrose-lattice array of pinning sites
[Fig. 7(d)] is accompanied by the appearance of a specific
fine structure of the function J.(®). Namely, two well-
resolved features on the broad main maximum [Fig. 7(h)] are
the most pronounced ones. Other, less pronounced, features
will be discussed below for larger Penrose-lattice arrays. For
large arrays, the function J.(®) is much less affected by
fluctuations related to the entrance of each single vortex in
the system, which are significant for the small-size array
shown in Fig. 7(d)] (N,=56). This small-size array is used
here just as an illustration, for studying the transition from a
periodic (triangular) to a QP (Penrose lattice) pinning site
array. However, studying even a relatively small piece of a
QP structure provides some useful information about proper-
ties of the whole system based on the self-similarity of the
lattice, which was revealed for 1D QP chains in the previous
section, and which will be demonstrated below for 2D QP
structures.

The Penrose and the 2DQP triangular lattice [Fig. 6(f)]
both have an important similar feature: their J.(®) has two
nearby maxima. Thus our previous analysis based on several
alternative ways to continuously deform a periodic lattice to
a QP one shows that the features shown are hallmarks of QP
pinning arrays.
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In the next section, the origin of the features observed will
be explained on the basis of a detailed analysis of the struc-
ture and of the building blocks forming a fivefold Penrose
lattice. Other, less pronounced, features will also be dis-
cussed. Some of them will be found in larger arrays in our
numerical simulations.

VII. ANALYSIS OF THE FINE STRUCTURES
OF THE FUNCTION J (®) IN A QUASIPERIODIC
PENROSE-LATTICE ARRAY OF PINNING SITES

The structure of a fivefold Penrose lattice is shown in Fig.
8. As an illustration, a fivefold symmetric fragment which
consists of 46 points (nodes of the lattice) is presented [Fig.
8(a)]. According to specific rules, the points are connected by
lines in order to display the structure of the Penrose lattice
[compare, e.g., to Fig. 7(d)]. The elemental building blocks
are rhombuses with equal sides a and angles which are mul-
tiples of #=36°. There are rhombuses of two kinds forming
the Penrose lattice [Fig. 8(b)]: (i) those having angles 26 and
30 (so called “thick”; they are empty in Fig. 8), and (ii)
rhombuses with angles 6 and 46 (so called “thin”; they are
colored in orange in Fig. 8).

Let us analyze the structure of the Penrose lattice from the
point of view of its pinning properties, when pinning sites
are placed in the vertices of the lattice. In particular, we are
interested whether any specific matching effects can exist in
this system between the pinning lattice and the interacting
vortices, which define the critical depinning current at differ-
ent values of the applied magnetic field [i.e., the function
J(P)].

On the one hand, QP (quasicrystalline) patterns are intrin-
sically incommensurate with the flux lattice for any value of
the magnetic field,'*?? therefore, in contrast to periodic (e.g.,
triangular or square) pinning arrays, one might a priori as-
sume a lack of sharp peaks in J.(®) for QP arrays of pinning
sites.

On the other hand, the existence of many periods in the
Penrose lattice can lead to a hierarchy of matching effects for
certain values of the applied magnetic field, resulting in
strikingly broad shapes for J ().

In order to match the vortex lattice on an entire QP pin-
ning array, the specific geometry of the elements which form
the QP lattice is important as well as their arrangement,
as distinct from the flux quantization effects and
superconductor-to-normal phase boundaries for which the ar-
eas of the elements only plays a role.”>?> As mentioned
above, a fivefold Penrose lattice is constructed of building
blocks, or rhombuses, of two kinds. While the sides of the
rhombuses are equal (denoted by a), the distances between
the nodes (where we place pinning sites) are not equal
(which is problematic for vortices). The lengths of the diago-
nals of the rhombuses are as follows [Fig. 8(b)]: 1.176a (the
short diagonal of a thick rhombus); (1+ \g)a/ 2=7a
~ 1.618a, where 7is the golden mean (the long diagonal of a
thick rhombus); [(14+v5)/2-1]a=(7—1)a=0.618a (the
short diagonal of a thin thombus); 1.9024 (the short diagonal
of a thin rhombus).
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FIG. 7. (Color online) Left column: Transformation of a triangular lattice of pinning sites to a fivefold Penrose lattice. The distributions
of the pinning sites in the triangular lattice (shown by blue solid circles in (a) and by blue open circles in (b), (c), and (d), for comparison).
Intermediate configurations [shown by red solid circles in (b) and (c)] between the triangular (a) and the Penrose lattice [shown by red solid
circles in (d)]. Right column: The corresponding critical depinning currents, J,, as a function of the applied magnetic flux, ®, for the pinning
arrays shown in (a) to (d), respectively: for the triangular lattice [shown by blue solid line in (e) and by blue dashed lines in (f), (g), and (h),
for comparison]; for the intermediate configurations [shown by red solid lines in (f) and (g)]; for the Penrose lattice [shown by the red solid
line in (h)]. For the Penrose lattice case in (b), the drop in J(®) is an artifact of the boundary conditions. Namely, the Penrose lattices of
pinning sites did not fit the square cell used in the simulations. Thus the freely moving vortices near the edges significantly decreased the
value of J,, especially near ®@,. This problem will be dealt with separately in Fig. 14 and in Eq. (16).
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FIG. 8. (Color online) The structure of a fivefold Penrose lattice
(a) [cf. Fig. 2(a) in Ref. 11]. The elemental building blocks are
rhombuses with equal sides ¢ and angles which are multiples of 6
=36°. There are rhombuses of two kinds: those having angles 26
and 30 (so called “thick”), and rhombuses with angles # and 46 (so
called “thin”) (b). The distances between the nodes, i.e., the lengths
of the diagonals of the thombuses are 1.176a (the short diagonal of
a thick rhombus); (1+\55)g/2=7'a~ 1.618a (the long diagonal of
a thick rhombus); [(1+v5)/2—1]a=(7—1)a=0.618a (the short
diagonal of a thin rhombus); 1.902a (the short diagonal of a thin
rhombus) (b).

Based on this hierarchy of distances, we can predict
matching effects [and corresponding features of the function
J(®)] for the Penrose-lattice pinning array.

First, we can expect that there is a “first matching field”
(let us denote the corresponding flux as ®;) when each pin-
ning site is occupied by a vortex. Although sides of all the
rhombuses are equal to each other similarly to that in a pe-
riodic lattice, nevertheless this matching effect is not ex-
pected to be accompanied by a sharp peak. Instead, it is a
broad maximum since it involves three kinds of local “com-
mensurability” effects of the flux lattice: with the rhombus
side a; with the short diagonal of a thick rhombus, 1.1764,
which is close to a; and with the short diagonal of a thin
rhombus, which is the golden mean times a, 0.618a [see Fig.
8(b)].

It should be noted that this kind of matching assumes that
a vortex lattice is rather weak, i.e., the effect can be more or
less pronounced depending on the specific relations between
the vortex-vortex interaction constant and the strength of the
pinning sites as well as on the distance between pinning sites
and their radius. Assuming that the vortex-vortex interaction
constant is a material parameter, all others can be adjustable
parameters in experiments with artificially created QP pin-
ning arrays. For instance, the pinning parameters can be “ad-
justed” by using as pinning centers antidots, i.e., microholes
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of different radii “drilled” in a superconductor film,"?>

blind antidots® of different depths and radii.

Further, we can deduce that next to the above “main”
matching flux there is another matching related with the fill-
ing of all the pinning sites in the vertices of thick rhombuses
and only three out of four of the pinning sites in the vertices
of thin rhombuses, i.e., one of the pinning sites in the verti-
ces of thin thombuses is empty. For this value of the flux,
which is lower than @, matching conditions are fulfilled for
two close distances, a (the side of a rhombus) and 1.176a
(the short diagonal of a thick rhombus), but are not fulfilled
for the short diagonal, a/7, of the thin rhombus.

Therefore this QP feature is related to the golden mean
value, although not in such a direct way as in the case of a
1D QP pinning array. This 2D QP matching results in a very
wide maximum of the function J,(P). The position of this
broad maximum, i.e., the specific value of ® (denoted here
by ®cancysinin= Py =0.757®;) could be found as follows.
The ratio of the numbers of thick and thin rhombuses is
determined by the Fibonacci numbers and in the limit of
large pinning arrays, N,— o this ratio tends to the golden
mean. The number of unoccupied pinning sites is governed
by the number of thin rhombuses. However, some of the thin
rhombuses are separated from other thin rhombuses by thick
ones (call them single thin rhombuses), but some of them
have common sides with each other (double thin rhombuses).
Therefore the number of vacancies (i.e., unoccupied pins) is
then the number of single thin rhombuses plus one half of the
number of “double” thin rhombuses,

or

1
N;n(cbv/t) =Ny + Eth’ (15)

where N)" is the number of unoccupied pinning sites at
d=d,,, N, and N are the numbers of single and double
thin rhombuses, correspondingly.

For higher vortex densities (e.g., for ®=®;  iiavinick
=®d,,;=1.482®,), we can expect the appearance of a feature
(maximum) of the function J.(®) related to the entry of a
single interstitial vortex into each thick rhombus. The posi-
tion of this maximum is determined by the number of vorti-
ces at =, which is NU(<I>)=NP, plus the number of thick
rhombuses, N'*, Since the ratio of the number of thick to
that of thin thombuses is the golden mean, 7=(1+ \E)/ 2 (in
an infinite lattice; in a finite lattice, it is determined by a ratio
of two successive Fibonacci numbers), then N:_EICkZth/T,
where Ny, is the total number of rhombuses. Here we used:
I/rm=71-1.

In Fig. 9(a), the function J.(®) is plotted for an array of
pinning sites in the form of a part of the Penrose lattice,
shown in Figs. 9(c)-9(e), which consists of 20 thick (N?ﬁ‘d‘
=20) and 15 thin (N§"=15) rhombuses and contains 46
nodes (pinning sites). The nodes are connected by lines in
order to show the rhombuses.

The distribution of vortices for ®=®d, is shown in Fig.
9(c). The number of vortices N,, coincides with the number
of pinning sites N,, and almost all the vortices are pinned.
Note that since we use a square simulation cell, some of the
vortices are always outside the “Penrose sample.” These vor-
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1.04
Penrose, N, = 46 (a)

y )

FIG. 9. (Color online) The critical depinning current J,. as a function of the applied magnetic flux, ® ~ N,, for an array of pinning sites
placed at the nodes of a fivefold Penrose lattice (for a part of the lattice which contains N,=46 pinning sites) (a). The distributions of vortices
(shown by green dots) pinned on the Penrose-lattice pinning site array [cf. Figs. 2(b)-2(d) in Ref. 11] (pinning sites are shown by red open
circles connected by orange solid lines used in order to show the Penrose lattice structure, i.e., thick and thin rhombuses), for specific values
of the applied magnetic flux: (b) @ =P, cuncyimin= Py =0.757®, vortices occupy all the pinning sites except those in one of the two vertices
(connected by the short diagonal) of each thin rhombus, each single and each pair of double thin rhombuses contain one unoccupied pinning
site at the matching field ®,; (c) ®=®P, the number of vortices N, coincides with the number of pinning sites N,, and almost all the
vortices are pinned (because of using a square simulation cell, some of the vortices are always “interstitial” but allow to keep the average
vortex density in the entire simulation cell; due to these additional vortices, the value of the function J.(®) effectively reduces by a “filling”
factor p=Ap/A=0.575, where Ap and A are the areas of the Penrose-lattice “sample” and of the simulation region; (d) ®=®;, . sitial/thick
= @;1=1.482d,, vortices occupy all the pinning sites and interstitial positions inside each thick rhombus, one vortex per each thick
rhombus. The parameters are f,/f;=2.0, r,=0.1\.

tices mimic the externally applied magnetic field and deter-
mine the average vortex density in the entire simulation cell.
Because of these additional vortices, the value of the func-
tion J.(®P) effectively reduces approximately by a “filling”
factor » which is
Ap
=— = 0.575. 16
=" (16)
Here Ap and A are the areas of the Penrose lattice (i.e., the
area of all the rhombuses) and of the simulation region.

The value of the function J.(®) in the maximum ®=®,
[Fig. 9(a)] is J.=0.55, i.e., corresponds to almost perfect
matching [two pinning sites occurred to be unoccupied in the
distribution shown in Fig. 9(c)] taking into account Eq. (16).

Let us now more carefully analyze the calculations of
J(®) for the Penrose lattice, presented in Fig. 9. In Fig. 9(b),
the distribution of vortices is shown for ®=®,,. Vortices
occupy all the pinning sites except those situated in one of
the two vertices, connected by the short diagonal, of each
thin rhombus. Thus each single and each pair of double thin
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rhombuses contain one vacancy (unoccupied pinning site) at
the matching field ®,,. The corresponding maximum is in-
dicated by the arrow (b) in Fig. 9(a).

The location of vortices for ®=®; [the maximum (¢) in
Fig. 9(a)] is shown in Fig. 9(c); here the number of vortices
N, coincides with the number of pinning sites N, and almost
all the vortices are pinned.

The distribution of vortices for ®=®;, [Fig. 9(d)] is also
in agreement with our expectation: vortices occupy all the
pinning sites (there is only a single “defect” in the distribu-
tion shown in Fig. 9(d): one vortex left the pinning site and
became interstitial) plus interstitial positions inside each
thick rhombus, i.e., one vortex per each thick rhombus.
However, the corresponding feature of the function J.(P)
[arrow (d) in Fig. 9(a)] is less pronounced than the two above
maxima at ®=®, and at P=D .

In addition, there is a weak feature of the function J ()
at ®=®, /2, which more clearly manifests itself for larger
Penrose-lattice pinning arrays [see Fig. 10(a)].

Therefore the calculated distributions of the vortices
pinned on the Penrose-lattice pinning site array and the re-
sulting function J.(®P) have revealed the QP features which
are in agreement with our expectations. The specific struc-
ture of the function J.(®) is consistent with two previous
derivations both based on continuously deforming a QP lat-
tice into a Penrose one (Secs. V and VI).

In Fig. 10(a), the function J.(N,) is shown for a larger
Penrose-lattice array of pinning sites, N,=301. The above
QP features in J(N,) are much more pronounced in this case
than for smaller arrays because of a considerable reduction
of the “noise” related with an entry of each single vortex in
the system.

In particular, the main maximum of the function J.(N,),
which corresponds to the matching condition ®=® (N,
=301), transforms into a rather sharp peak with the magni-
tude 7. Also, a local maximum of J.(®) at d=b,,/2, is
more pronounced for Np=301, as mentioned above.

Finally, Fig. 11 demonstrates the function J.(®), calcu-
lated for different samples with Np=46, 141, and 301 [Fig.
11(a)], and also for different criteria of J,: for the “static”
and dynamical criteria [Fig. 11(b)]. In the dynamical simula-
tions of J,. using a threshold criterion, i.e., J. is obtained as
the minimum current J o f¢ which depins the vortices. In the
Appendix, we show the onset of vortex motion when the
applied current J exceeds the critical current: J>J,. The re-
sults obtained using these two criteria are essentially equal,
and throughout this work we use the static criterion defined
above.

VIII. ANALYTICAL APPROACH

The aim of this section is to find conditions when vortices
can match the Penrose pinning array. Obviously, vortices
cannot be pinned if the intervortex interaction is strong
enough with respect to the pinning potential. Thus the mul-
tipeak structure of the critical current has to gradually disap-
pear when increasing the stiffness of the vortex lattice.

The analytical approach proposed below compares the

elastic energy E, with respect to the pinning energy E;, only
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FIG. 10. (Color online) The critical depinning current J, as a
function of the applied magnetic flux, & ~N,, for an array of pin-
ning sites placed at the nodes of a fivefold Penrose lattice (for N,
=301) (a). The distributions of vortices (shown by green solid
circles) pinned on the Penrose-lattice pinning site array (shown by
red open circles), for specific values of the applied magnetic flux
which correspond to two matching fields: (b) ®=d,,, vortices oc-
cupy all the pinning sites except one in each thin rhombus; (c) ®
=®, all the vortices are pinned. The parameters are the same as in
Fig. 9.
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FIG. 11. (Color online) (a) The critical depinning current J,. as a
function of the applied magnetic flux, ® ~N(U" )/ N, shown for three
different Penrose-lattice pinning site arrays: N,=46 (shown by blue
solid line), N,,=141 (shown by green solid line), N,=301 (shown by
red solid line). The revealed features are hallmarks of a Penrose-
lattice pinning site array. (b) Comparison of J, as a function of the
applied magnetic flux, calculated using the static and dynamical
criteria. The latter means calculating J. using a threshold criterion,
i.e., J.. is obtained as the minimum current J o f* ? which depins the
vortices. The results obtained using these two criteria are essentially
equal.

at the matching conditions discussed above, and thus the
general question of stability for any values of the magnetic
field requires a much more elaborate theory.

Since the Penrose lattice is intrinsically incommensurate
with the equilibrium triangular pinning lattice, vortices can
be trapped by pinning sites only if the gain of energy related
to pinning is larger than the elastic energy, i.e., Ey,—Eqy
>0. Let us compare the elastic E, and pinning E;, energies
of the vortex lattice at H; and at (the lower field) H,,, cor-
responding to the two maxima of J,. [e.g., Figs. 9(a), 10(a),
and 11]. Vortices can be pinned if the gain E;,= Uy By of
the pinning energy is larger than the increase of the elastic
energy 3473 related to local compression U, and shear ug,e,;
deformations
+ Cegll? (17)

shear®

2
Ey=Cu

com

where C;; and Cgg are the corresponding elastic moduli.
Here, Uy, ~ f,rp» Nyin is the density of pinning centers,
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B(H = H,) = HIH, = B/(Pgn,,).

and B(H>H,)=1 is the fraction of occupied pinning sites
(B=1 for H=H,, and B=0.757 for H=H,), a.=(2/
\e@,Bnpin)Uz is the equilibrium distance between vortices in
the triangular lattice, b is the minimum distance between
vortices in the distorted pinned vortex lattice (b=a/ T for H
=H, and b=a for H=H,,), and

®,B B?

Cop=—2—, Cjj=—————
7 6am 2 T 4m(1 +2\2%3)

(18)
are the shear and compressibility moduli for a characteristic
wave vector k of the deformations. From the numerically
obtained vortex distributions, we estimate that the compres-
sion and shear deformation is of the same order |ugy|
~ |ughear| ~ [(@eq—b) |/ aeq, while the deformation wave vector
k changes from O for long-wave deformations to short-range
deformations with k= (1,,) /%, Since we need to integrate
over all wave vectors, it is reasonable to assume, for

estimates, that the characteristic wave vector for the
)12

compression _deformation is  about = ky /2~ (1,

<2} (1-H/H_)/\~70/\ for our simulations, i.., the
above approximation for elastic moduli is appropriate. For
characteristic short-wave deformations, the shear and com-
pressibility moduli are about the same order (C,; = Cq), and
the deviation of the elastic matrix from the continuous ap-
proximation can also renormalize the estimated elastic en-
ergy by a factor of the order of 1. Keeping in mind the
shortcomings of this qualitative model, we finally derive

2
_ Bf. diffnginq)o
Epin_Eel - 471_)\2 ’ (19)
where
4mNU, B3\ |
diff = cI)2 = Bg{ 1- b( ) . (20)
0

with {~1+Cgs/C;;=1+1/3~ 1. The function fy;; is shown
schematically in the inset of Fig. 12. Near matching fields, J,.
has a peak when fg>0 (and no peak when fg4<0). Since
only two matching fields provide fy;>>0, then our analysis
explains the two-peak structure observed in J,. shown in Figs.
9(a), 10(a), and 11. For instance, for the main matching fields
Eq. (20) gives fgis(P,,)=0.0056, f4s(P;)=0.0058, and

Faiee(Pyr) ==0.09. Since fy;>0 for the external fluxes P,

and ®,,, this indicates that pinning wins over elasticity and
vortices should be pinned, in agreement with our numerical
results. In contrast, since f;<<O0 at for @, then the pinning
is weaker than the elastic energy, and vortices are not pinned.
Note that for weaker pinning, the two-peak structure gradu-
ally turns into one very broad peak, and eventually zero peak
for weak enough pinning (see Fig. 12). The J, peaks corre-
sponding to higher matching fields are strongly suppressed
because of the fast increase (%B?) of the compressibility
modulus C;; and thus the elastic energy with respect to the
pinning energy; the latter cannot exceed the maximum value
Upin/tpin- The subharmonic peaks of J,., which could occur for
lower fields H<H,,, are also suppressed due to the increase
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FIG. 12. (Color online) The critical current J.(®) for Penrose-
lattice arrays for different pinning strength f,/f,=2.0 (red solid
line), f,/fo=1.4 (green solid line), f,/f,=0.5 (blue solid line) [cf.
Fig. 2(e) in Ref. 11]. The peak at ®; is suppressed for weaker
pinning (f,/fy=1.4). Eventually, all the main peaks disappear for
sufficiently weak pins (f,,/f;=0.5). The inset shows the dimension-
less difference f;¢ of the pinning and the elastic energies versus the
pinning-to-interaction energy ratio, for the broad J. peak at @,
(red dashed line) and for ®; (red solid line). Only fg4;;>0 gives
stable peaks in J,.

of C;; associated with the growing spatial scales 1/k of the
deformations.

IX. CRITICAL CURRENT J.(®) IN A RANDOMLY
DISTORTED TRIANGULAR LATTICE

Above we have studied the function J.(®) for periodic,
QP 2D arrays of pinning sites and analyzed the transition
from the periodic triangular lattice to the QP Penrose lattice
[see Fig. 7]. One of the issues, which is related to this analy-
sis and can be useful for practical applications, is the in-
crease of the critical current [shown, e.g., in Fig. 7(f)] in the
regions corresponding to minima of J.(®) for periodic (tri-
angular) pinning arrays. The situation shown in Fig. 7(f)
seems to be the optimal from the point of view of a homo-
geneous increase of J.(®) without degradation of the main
peak at ®=®,. Recall that it corresponds to a slightly “qua-
siperiodically distorted” triangular lattice [see Fig. 7(b)]. The
pinning sites of the triangular lattice are shifted from their
“correct” positions but not randomly: their positions are de-
termined by vortex-vortex interaction, which tries to restore
the triangular lattice, and by the memory about previous con-
figurations including the initial one, i.e., the Penrose lattice.
Analyzing the lattice presented in Fig. 7(b) we can deduce
that it keeps some short-range order (i.e., distorted triangular
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cells similar in shape and size to those in the triangular lat-
tice) but does not have long-range order of the triangular
lattice. As a result, the main peak remains, since it is related
to the short-order matching effects (i.e., over the distances of
the order intersite spacings a). The sharp decrease around the
maximum and appearance of the deep valleys is explained by
the absence (due to long-range order, i.e., over distances
longer than a) of any matching effects for the flux densities
close to ®=®, (there is no matching for ®=P,/2 or ®
=150, and ®=2P, for the triangular lattice). When the
long-range order is destroyed, as shown in Fig. 7(b), match-
ing effects other than ®=®, become allowed.

It is appropriate to mention here that the QP Penrose lat-
tice possesses a short-range order but does not have a long-
range translational order. In such a way, the quasiperiodically
distorted triangular lattice [Fig. 7(b)] or the QP Penrose lat-
tice itself are good candidates for the optimal enhancement
of the critical current in the regions where the function J.(®)
have minima for a periodic lattice. [It should be noted here
that the curves shown, e.g., in Fig. 7(h), for the triangular
and the Penrose lattices are calculated for the same cell, al-
though the effective area of the Penrose lattice is smaller
than that of the triangular lattice with the same number of
pinning sites. This discrepancy is taken into account by the
“filling factor” introduced by Eq. (16). It should be also re-
called, when comparing the function J,.(®) for the case of the
triangular and the Penrose lattices, that the main maximum
of the curve for the Penrose lattice (see Fig. 11) is the second
sharp peak at ®=P,.]

In this respect, it is interesting to compare the above re-
sults for the quasiperiodic distortion of the triangular lattice
with its random distortion. For this purpose, we introduce a
random angle a,,,: 0 <ay,, <2, and a random radius of the
displacement d,,: 0<r, <rmer, where rio* is the maximal
displacement radius, which is a measure of noise measured
in units of a/2, where a is the (triangular) lattice constant.

In Fig. 13, randomly distorted triangular lattices are
shown for ri5=0.2(a/2) [Fig. 13(a)], 0.3(a/2) [Fig. 13(b)],
0.4(a/2) [Fig. 13(c)], and for a/2 [Fig. 13(d)]. For compari-
son, the triangular lattice is also shown in Figs. 14(a)-14(d).
The corresponding functions J.(®) are presented, respec-
tively, in Figs. 13(e)-13(h). At low levels of noise [e.g., Fig.
13(e) and 13(f)] the valleys (minima) start to fill due to the
disappearance of the long-range order, similarly to the case
of the Penrose lattice, although accompanied with a weaker
enhancement of J,. than for the case of the quasiperiodic
distortion [Fig. 7(f)]. For higher levels of noise, the main
peak degrades without any essential enhancement of J,. in the
neighborhood [Figs. 13(g) and 13(h)].

For comparison, we also show in Fig. 14 the J,.(®) for a
Penrose lattice [calculated for the sample with N,=301, only
for the area of the Penrose lattice Ap, see Eq. (16)]. Notice
that the QP lattice leads to a very broad and potentially use-
ful enhancement of the critical current J.(®), even compared
to the triangular or random APS. The remarkably broad
maximum in J.(®) is due to the fact that the Penrose lattice
has many (infinite, in the thermodynamic limit) periodicities
built in it.'"* In principle, each one of these periods provides
a peak in J.(®). In practice, like in quasicrystalline diffrac-
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FIG. 13. (Color online) Left column: Randomly distorted triangular lattices for ), =0.2(a/2) (a), 0.3(a/2) (b), 0.4(a/2) (c), and for a/2
(d). For comparison, the triangular lattice is also shown. Right column: The functions J.(®) corresponding to the distributions of pinning
sites shown in (a)—(d), are presented, respectively, in (e)—(h). At low levels of noise (e), (f), the valleys (minima) start to fill due to
disappearance of the long-range order, similarly to the case of the Penrose lattice, although accompanied with a weaker enhancement of J,
than for the case of the “quasiperiodic distortion” [Fig. 7(f)]. For higher levels of noise, the main peak degrades without any essential

enhancement of J,. in the neighborhood (g), (h).

tion patterns, only few peaks are strong. This is also consis- (microholes of different radii “drilled” in the film,' or blind
tent with our study. Furthermore, the pinning parameters can antidots® of different depths and radii. Thus, our results could
be adjusted by using as pinning centers either antidots be observed experimentally.
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FIG. 14. (Color online) The critical current J,(®) for a 301-site
Penrose lattice (red solid line), (recalculated for flux only on the
Penrose area, Ap), triangular (dark blue triangles and solid line) and
random (dark green diamonds and solid line) pinning arrays [cf.
Fig. 2(f) in Ref. 11]. The Penrose lattice provides a remarkable
enhancement of J.(®) over a very wide range of values of ® be-
cause it contains many periods in it.

X. CONCLUSIONS

The critical depinning current J., as a function of the ap-
plied magnetic flux @, has been studied in QP pinning ar-
rays, from one-dimensional chains to two-dimensional arrays
of pinning sites set in the nodes of quasiperiodic lattices
including a 2D-quasiperiodic triangular lattice and a fivefold
Penrose lattice.

In a 1D quasiperiodic chain of pinning sites, positions of
the peaks of the function J.(®) are governed by “harmonics”
of long and short periods of the quasiperiodic chain. Inde-
pendently of the length of the chain, the peaks form a set of
quasiperiodic sequence including a Fibonacci sequence as a
basic subset. Analyzing the evolution of the peaks, when a
continuous transition is performed from a periodic to a qua-
siperiodic lattice of the pinning sites, we found that the peaks
related to the Fibonacci sequence are most pronounced when
the ratio of lengths of the long and the short periods is the
golden mean. A comparison of the sets of peaks for different
chains shows that the functions J.(®) for the 1D quasiperi-
odic chain is self-similar. In the k space, the self-similarity
effect is displayed in the Fourier transform of the distribution
function of the system of vortices pinned on a 1D quasiperi-
odic array of pinning centers. The evolution of quasiperiodic
peaks when gradually changing the “quasiperiodicity” pa-
rameter y (i.e., ratio of the lengths of short to long elements
of a quasiperiodic chain) has revealed a continuous transition
from a periodic chain—through the set of quasiperiodic
states—to another periodic chain with a longer period. This
phenomena has been studied both in real space and in recip-
rocal k space.

In 2D quasiperiodic pinning arrays (e.g., Penrose lattice),
the pinning of vortices is related to matching conditions be-
tween a triangular vortex lattice and the quasiperiodic lattice
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of the pinning centers. Although more complicated than in
1D pinning chains, the specific behavior of J.(P) is deter-
mined by the presence of two different kinds of elements—
thick and thin rhombuses—forming the quasiperiodic lattice.
Based on these considerations, the positions of the main
maxima of J.(P) for Penrose lattice are predicted.

In particular, for the first matching field each pinning site
is occupied by a vortex. The corresponding maximum of the
function J.(P) is broad since it involves at least three kinds
of local matching effects of the flux lattice, with the rhombus
side and with short diagonals of thick and thin rhombuses.

Another Penrose-lattice matching field is related with lo-
cal matching effects which involve the intervortex distance
of the vortex flux lattice, the rhombus side, and the short
diagonal of thick rhombus. For this field, all the pinning sites
are occupied, which are situated in the vertices of thick
rhombuses and only three out of four in the vertices of thin
rhombuses. The number of unoccupied pinning sites is gov-
erned by the number of thin rhombuses. Some of the thin
rhombuses are single (i.e., separated from other thin rhom-
buses by thick ones), while some of them are double (i.e.,
have common sides with each other). Therefore the number
of vacancies is the number of single thin rhombuses plus
one-half of the number of “double” thin rhombuses. One
more important feature of the function J.(P) occurs for
higher vortex densities, when a single interstitial vortex en-
ters each thick rhombus. Numerical simulations performed
for various sample sizes have revealed a good agreement
with our predictions.

The revealed features can be more or less pronounced
depending on specific relations between the vortex-vortex
interaction constant and the strength of the pinning sites, as
well as on the distance between pinning sites and their ra-
dius. While the vortex-vortex interaction constant is a mate-
rial parameter, all others can be adjustable parameters in ex-
periments with artificially created quasiperiodic pinning
arrays. This can be reached by using, for instance, antidots
(i.e., microholes “drilled” in a superconductor film) or blind
antidots of different depths and radii as pinning centers. Our
calculations provide the necessary relations between these
parameters for possible experimental realizations.

A continuous deformation of the Penrose lattice to a pe-
riodic triangular lattice (i) shows that the above revealed fea-
tures are hallmarks of quasiperiodic pinning arrays; (ii) pro-
vides us with a tool for the controlled change of the
magnitude, sharpness and the position of the peaks of J .(P)
that is important for possible applications. In particular, our
analysis shows that the quasiperiodic lattice provides an un-
usually broad critical current J.(®), that could be useful for
practical applications demanding high J,.’s over a wide range
of fields.
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FIG. 15. (Color online) Vortex flow patterns for J>J,, calculated for a Penrose sample with N, =141 (pinning sites shown by red circles).
(a) Ground-state vortex configuration (vortices shown by green/light gray dots) when ® =~ ®, and no driving force is applied. (b)-(d) The
onset of the flux motion for J>J,, following the traces of moving vortices over distances about 0.5\ (b), I\ (c), and 2\ (d). On the
subsequent consecutive snapshots, vortex trajectories are shown by black dotted lines (the blue/dark gray solid circles show the last snapshot

on each panel).
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APPENDIX: ONSET OF VORTEX MOTION
FOR CURRENTS HIGHER THAN THE CRITICAL
CURRENT: J>]J,

Here we present vortex flow patterns for currents exceed-
ing the critical value, J>J.. In Fig. 15, the vortex flow pat-
terns are shown calculated for a Penrose sample with N,
=141 (pinning sites shown by red circles). The ground-state
vortex configuration is shown in Fig. 15(a) (vortices shown
by green dots) for ®=~®; and when no driving force is ap-
plied. This vortex configuration is similar to those shown in

Figs. 9(c) and 10(c), when the number of vortices (within the
sample area) is equal to the number of pinning sites, and all
the vortices are pinned. When an increasing driving force
fa~J is applied, the vortices do not move until f,; reaches
some threshold value, when vortices depin. The current
which corresponds to the driving force depinning the vorti-
ces, is then defined as the critical current J, (dynamical cri-
terion). A comparison of J.’s calculated using this criterion
and the static criterion, is shown above in Fig. 11(b). When
unpinned, the vortices move along complicated trajectories,
or “channels” created by pinning arrays and interacting with
other vortices. Figures 15(b)-15(d) show the onset of the
flux motion for J>J, following the traces of moving vorti-
ces over distances about 0.5\ (b), 1\ (¢), and 2\ (d). On the
subsequent consecutive snapshots, vortices are shown by a
sequence of consecutive open blue circles (and by blue/dark
gray solid circles for the last snapshot on each panel). These
show dynamical configurations of the vortex lattice in mo-
tion. Note the appearance of local “rivers” of vortices mov-
ing along the channels between neighboring pinning sites.
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