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We show that a moving Josephson vortex in spatially modulated layered superconductors generates out-of-
plane THz radiation. Remarkably, the magnetic and in-plane electric fields radiated are of the same order,
which is very unusual for any good-conducting medium. Therefore, the out-of-plane radiation can be emitted
to the vacuum without the standard impedance mismatch problem. Thus, the proposed tunable THz emitter for
out-of-plane radiation can be more efficient than the standard one which radiates only along the ab-plane.
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I. INTRODUCTION

The recent growing interest in terahertz �THz� science and
technology is due to its many important applications in phys-
ics, astronomy, chemistry, biology, and medicine, including
THz imaging, spectroscopy, tomography, medical diagnosis,
health monitoring, environmental control, as well as chemi-
cal and biological identification.1 This range of the electro-
magnetic spectrum sits between 0.3 and 30 THz, which cor-
responds to 10–1000 �m �wavelength�, 1.25–125 meV
�energy� or 14–1400 K �temperature�. The THz gap, which
is still hardly reachable for both electronic and optical de-
vices, covers temperatures of biological processes and a sub-
stantial fraction of the luminosity remanent from the Big
Bang.1

High-temperature Bi2Sr2CaCu2O8+� superconductors have
a layered structure that allows the propagation of electromag-
netic waves �called Josephson plasma oscillations2–6� with
Josephson plasma frequency �J. This is drastically different
from the strong damping of electromagnetic waves in low-
temperature superconductors. The Josephson plasma fre-
quency lies in the THz range �see, e.g., Refs. 7–9�. Indeed,
tunable filters of THz radiation have been proposed using the
Josephson vortex lattice as a tunable photonic crystal.10

Moreover, detectors of THz radiation have been very re-
cently proposed using surface Josephson plasma waves.11 A
possible way to generate THz radiation in Bi2Sr2CaCu2O8+�

and related compounds is to apply an in-plane magnetic field
Hab and an external current J�c perpendicular to the super-
conducting layers �i.e., along the c axis�. Josephson vortices
�JVs� induced by Hab and driven fast by the c axis current
emit THz radiation �e.g., Refs. 7 and 9�. However, it was
shown12–14 that the radiation propagates only along the plane
of motion of the JVs and decays in the c direction. This THz
radiation is characterized by a huge impedance mismatch
resulting in a very small fraction of THz wave intensity emit-
ted from the sample.9 This impedance mismatch is a very
important problem restricting possible applications.15

To avoid this problem, we propose a new class of THz
emitters based on JVs moving through in-plane modulated

layered superconductors, including both the strongly aniso-
tropic high-Tc Bi2Sr2CaCu2O8+� single crystals and artificial
stacks of Josephson junctions �SJJ�, e.g., Nb-Al-AlOx-Nb.
In-plane spatial variations of the Josephson maximum c-axis
current Jc can be obtained by using either irradiation of a
standard Bi2Sr2CaCu2O8+� sample covered by a modulated
mask �see, e.g., Ref. 16� or pancake vortices controlled by an
out-of-plane magnetic field.17

In order to pass through the superconductor-vacuum inter-
face without a significant decrease of the amplitude, the elec-
tric and magnetic components of the propagating wave have
to be of the same order of magnitude. This feature is inherent
for the out-of-plane Josephson plasma waves �JPW�, propa-
gating both along and perpendicular to the layers with short
wavelength along the c axis. For such waves, the transmis-
sion coefficient is about unity.18 The out-of-plane JPW can
be emitted, for instance, by a fast-moving Josephson vortex
if its velocity V exceeds a certain threshold value Vmin. How-
ever, this out-of-plane Cherenkov-type radiation always
completely reflects from the sample boundary and thus can-
not be emitted into the vacuum. Indeed, the longitudinal
wave vector q for the Cherenkov radiation is related to the
wave frequency � by q=� /V and is much larger than the
maximum possible value � /c for waves in vacuum. This
problem can be solved if the out-of-plane Cherenkov radia-
tion propagates through a modulated layered superconductor.
The out-of-plane Cherenkov wave interacting with periodic
inhomogeneities generates new modes with wave vectors
qm=q−2�m /a, where a is the spatial period of the modula-
tions and m is an integer. Thus, the wave vector q1
=q−2� /a can meet the condition q1�� /c for vacuum
waves and this mode is emitted from a sample without an
impedance mismatch. It is important to stress that the Cher-
enkov radiation generated by any relativistic particle in any
medium undergoes a complete internal reflection �since
q�� /c� and, thus, we propose this general way of emitting
any Cherenkov-type radiation to vacuum. Here, we predict
this out-of-plane Cherenkov radiation, and derive the modes
propagating in a modulated superconductor and emitted into
the vacuum.
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Our proposal mainly concerns bulk layered superconduct-
ors, where it is important to have radiation propagating not
only along the ab planes, but also along the c axis. For the
case of thin films having a thickness much smaller than the
in-plane London penetration depth �about 200 nm�, the ra-
diation damped along the c axis can also give some contri-
bution to the waves emitted from the wide sample side,
which is parallel to the ab plane. This can even increase the
fraction of the out-of-plane radiation discussed in this paper.
In other words, we show that there are two contributions to
the out-of-plane radiation along the c axis: damped waves
and propagating waves. The latter one is the real out-of-plane
radiation. The former one �damped waves� can contribute to
the out-of-plane radiation only if the sample is sufficiently
thin. However, we will not consider this case in detail be-
cause the power of the emitted radiation decreases for de-
creasing thickness.

Brief summary of the results

For electromagnetic waves in any conducting media, the
electric field E is very weak with respect to the magnetic
field H: E�H. Also, for in-plane radiation: E�H. Thus,
only a small fraction ��E /H� of the radiation can leave the
sample. This is the so-called “impedance mismatch” problem
that has severely limited progress in this field for years. Now,
we are also considering out-of-plane radiation. This radiation
has a strong enough in-plane electric field E� to overcome the
superconducting-vacuum interface. Indeed, E� and the mag-
netic field both are of the same order of magnitude, similar to
the one for waves propagating in the vacuum. This solves the
impedance mismatch problem. Thus, we propose to use out-
of-plane radiation, propagating in a periodically modulated
Bi2Sr2CaCu2O8+� sample, to overcome the severe impedance
mismatch problem which limits the application of layered
superconductors for THz emitters.

The spatial modulations of the maximum Josephson cur-
rent allows the emitted waves to shift their wavenumbers
�within a wide range �J /V� towards the narrow spectral win-
dow ��J /c for waves propagating in the vacuum. Thus, the
emitted waves can pass the superconductor-vacuum interface
within a narrow frequency window ��JV /c. This offers the
possibility to select a narrow frequency window from the
initially broad THz radiation produced by the JVs. Also, this
should allow us to achieve superradiance via the stabilization
of the square Josephson lattice moving in a periodically
modulated Bi2Sr2CaCu2O8+� sample.19 Other recent ways to
control vortex motion are also attracting considerable
attention.20,21

II. MODEL

We consider an infinite layered superconductor as in Fig.
1�b�. Following Ref. 22, we assume that the superconducting
layers are extremely thin, so that the spatial variations of the
phase of the superconducting order parameter and the elec-
tromagnetic field inside the layers in the direction perpen-
dicular to the layers can be neglected. We choose the xy
plane to be parallel to the crystallographic ab plane and the c

axis along the z axis. Superconducting layers are numbered

by the subscript l. The electric E� and magnetic H� fields have

components, E� = �Ex ,0 ,Ez�, H� = �0,H ,0�.
The gauge-invariant phase difference 	l between �l+1�th

and lth superconducting layers is described by coupled sine-
Gordon equations,18,22,23

�1 −

ab

2

D2 �l�� �2	l

�t2 + �J
2	1 + ��x�
sin�	l��

−
c2

�

�2	l

�x2 = 0, � � 1. �1�

Here D is the spatial period of the layered structure, 
ab is
the London penetration depth along the c axis, the operator
�l is defined as

�l f l = f l+1 + f l−1 − 2f l,

and

FIG. 1. �Color online� Cherenkov radiation generated by a fast
Josephson vortex �located at x=Vt� moving in a weaker junction
with the critical current Jc

w�Jc and the junction thickness Dw. �a�
Magnetic field distribution H�x−Vt ,z� in units of 
0 /2�
c
ab

��Hc1
J =the first critical magnetic field for the Josephson vortices�

for Jc
w /Jc=0.2, Dw /D=1.2, V /Vmax=0.9 is calculated using Eq.

�17�. The “running” coordinate, x−Vt, is measured in units of
�D / ���v2�2−1�, while the out-of-plane coordinate y is normalized

by D / ���v2�2−1�, where �=JcDw /Jc
wD, and v=V /Vmin. The mov-

ing vortex emits radiation propagating forward. This radiation
forms a cone determined by the vortex velocity V. �b� Geometry of
the problem: in a weaker junction 	located between the two blue
superconducting planes in �b�
, a c axis current J�c drives a Joseph-
son vortex with velocity V, which is higher than the minimum ve-
locity Vmin of the propagating electromagnetic waves. Red strips in
�b� schematically show outside-the-cone Cherenkov radiation.
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�J =�8�eDJc

��
�2�

is the Josephson plasma frequency, � is the interlayer dielec-
tric constant, and the modulation factor ��x�=��x+a� is a
periodic function with spatial period a. For simplicity, we
neglect the relaxation term related to the quasiparticle cur-
rent, which is very small at low temperatures.

The coupled sine-Gordon equations �1� describe both the
Josephson vortices in layered superconductors and the emit-
ted Josephson plasma waves. In the latter case, Eq. �1�
should be linearized, i.e., sin�	l� replaced by 	l.

III. NONLOCAL SINE-GORDON EQUATION

In zero approximation with respect to the modulation �,
the traveling wave solution of Eq. �1�, 	l=�l��=x−Vt�, rep-
resents the JV moving with a constant velocity. The main
phase difference �=�0��� occurs at the central junction,
where nonlinearity plays a crucial role, while equations for
junctions with l�0 can be linearized. However, the magnetic
flux of a JV spreads over a large number of these junctions,
l�
ab /D�1. Thus, the equation for the central junction
cannot be decoupled from others. This determines a
complicated nonlocal structure of the JV in layered
superconductors.

Following the approach by Gurevich,24 the closed-form
nonlocal sine-Gordon equation for �0��� can be derived �see
the appendix�,

V2

�J
2

�2�

��2 + sin � =

J

2

�
c
�

−�

�

d�� K0� 
�� − �


c

� �2�

���2 , �3�

where K0�x� is the modified Bessel function,


J
2 =

c
0

16�2
abJc

is the Josephson length, 
c=c /�J
�� is the penetration depth

of the magnetic field along layers, and 
0 is the flux quan-
tum. Strictly speaking, Eq. �3� is derived for a JV moving in
a weaker junction with a critical current Jc

w�Jc, but de-
scribes qualitatively even the stack of identical junctions �see
the appendix�. Equation �3� is reduced to the usual local
sine-Gordon equation only for 
c�
J, i.e., if the kernel K0 in
the integral in Eq. �3� is a sharper function of �� than
�2� /���2. For Bi2Sr2CaCu2O8+� as well as for artificial lay-
ered superconductors, the opposite strongly nonlocal limit,

c�
J, is realized. In this case, a solitonlike solution,

� = � + 2 arctan�2x

L
� , �4�

of Eq. �3� was obtained in Ref. 24 for a fixed JV, V=0, with
the soliton size

L =
2
J

2


c
=


cD


ab
� 
J. �5�

It is important to stress that the soliton size L �rather than 
J�
coincides with the well-known estimate of the JV core

�L=�D, �=
c /
ab� in a layered superconductor. Analytical
and numerical analysis proves that the size L�V� of the mov-
ing JV remains of the same order at any allowed vortex
velocities,

V � Vc � �JL =
cD


ab
��

. �6�

Note that, due to nonlocality, the maximum vortex velocity
Vc in a layered superconductor is much smaller than the
maximum vortex velocity csw=
J�J �the so-called Swihart
velocity� in a single junction.25

IV. JOSEPHSON PLASMA WAVES

In homogeneous ��=0� layered superconductors, the lin-
earized coupled sine-Gordon equations admit wave solutions
of the form,

	l = 	0 exp�i	qx − �t + k�q,��lD
� , �7�

with the dispersion relation,

sin2� kD

2
� =

D2

4
ab
2 � c2q2

���2 − �J
2�

− 1� , �8�

for the transverse wave vector k�q ,��. This relation coin-
cides with the spectrum obtained in Ref. 18 in the particular
limit where the breaking of the charge neutrality effect �that
we can easily take into account� is neglected.

The electric and magnetic fields exhibit the same spa-
tiotemporal dependence as in Eq. �7� for the phase difference
	l, while their amplitudes, H0, Ex0, and Ez0, are related to 	0
via

�1 +
4
ab

2

D2 sin2� kD

2
��H0�q,�� =

iq
0

2�D
	0�q,�� , �9�

Ez0�q,�� = −
i�
0

2�cD
	0�q,�� , �10�

Ex0�q,�� =
i�
ab

2

cD
	1 − exp�− ikD�
H0�q,�� . �11�

According to Eq. �8�, the JPW can propagate if ���J.
For a homogeneous layered superconductor, JVs moving
with constant velocity V can excite waves with q=� /V
�Cherenkov radiation7,12–14�. Substituting �=qV in Eq. �8�
and noticing that the right-hand side of this equation is less
than unity, we obtain the limiting vortex velocity

Vmin =
cD

2
ab
��

. �12�

If the vortex velocity is larger than this threshold value,
V�Vmin, then Im�k�=0 and the out-of-plane waves can be
excited. The characteristic angle � of the propagating radia-
tion �Cherenkov cone�
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tan � = ���V2 − Vmin
2

D�J
� �13�

is determined by three standard conditions: �i� Eq. �8�, �ii�
�=qV, and �iii� the minimum wavelength k−1�D /�. For
V=Vmin the Cherenkov cone is obviously closed, �=0. At
lower vortex velocities, V�Vmin, the Cherenkov radiation
with Im�k��0 �decaying from the central junction�12 can
propagate only along the ab plane26 �see also Ref. 27 where
the Cherenkov radiation in two coupled junctions is studied�.

As was shown above, the maximum vortex velocity
Vc��JL, at which the moving soliton is stable, is of the
same order as Vmin. Below, the out-of-plane Cherenkov ra-
diation generated by a vortex moving in a junction weaker
than others is derived �while the question if such radiation
exists in a system of identical junctions remains open7�. A
subset of weaker intrinsic Josephson junctions in
Bi2Sr2CaCu2O8+�-based samples can be made using either �i�
the controllable intercalation technique,28 �ii� chemical vapor
deposition �CVD� �see, e.g., Ref. 29�, or �iii� via the admix-
ture of Bi2Sr2Cu2O6+� and Bi2Sr2Ca2Cu3O10+�.30 Also, such
a system can be easily created using artificial stacks of layers
of low-temperature superconductors.

V. OUT-OF-PLANE CHERENKOV RADIATION

In order to find the relation between the amplitudes of the
emitted waves inside a superconductor and the phase differ-
ence, �, in the central junction, we use the standard
equation,24,25

d�

d�
=

8�2
ab
2

c
0
�Jx

+��� − Jx
−���� , �14�

where Jx
± are the currents at the top and bottom edges of the

central contact. Equation �14� is valid if D�2
ab, that is,
if the magnetic flux through the central junction is small
compared to 
0. In other words, the gradient of the gauge-
invariant phase difference � along the central junction
occurs due to the gradient of the phase �± of the supercon-
ducting order parameter in the layers forming the central
junction rather than the trapped magnetic flux. Using Eq.
�14� and the Maxwell equation �H /�z=−4�Jx /c, we obtain

H0�q,� = qV� = −
i
0Dq

4�
ab
2 �1 − exp	− ik�q,qV�D
�

��q� ,

�15�

where ��q� is the Fourier transform of ����.
When ��q� is known, Eq. �15� determines the magnetic

field distribution of the emitted out-of-plane Cherenkov ra-
diation. For simplicity, we use the Fourier transform ��q�
=�0�q� of the solution for a fixed vortex,

��q� = − 2�
i exp�− 
q
L�

q
. �16�

Using this last equation and integrating H0�q ,qV�exp	iqx
− iqVt+ ik�q ,qV�z
 over qmin�q for the traveling out-of-
plane waves, we derive the expression for the magnetic field
HCher of the radiation,

HCher�x,z,t� =
i
0D

2�
ab
2 �

qmin

� dq

1 − exp	− ik�q�D


�exp�− qL�sin	q�x − Vt� + k�q,qV�
z

 ,

�17�

where

qmin =
�J

�V2 − Vmin
2

. �18�

The magnetic field distribution �17� in the emitted Cheren-
kov waves is shown in Fig. 1�a�.

Due to the rather unusual dispersion relation �8�, i.e., the
decrease of k�q ,�=qV� with increasing q, as well as due to
the spatial extension of a vortex, the generated electromag-
netic waves are located outside the Cherenkov cone 	Fig.
1�a�
, which is drastically different from the Cherenkov ra-
diation of a fast �pointlike� relativistic particle. The type of
radiation predicted here could be called outside-the-cone
Cherenkov radiation.

VI. IMPEDANCE MISMATCH

It is important to emphasize that a fast-moving vortex
emits mostly JPWs with short out-of-plane wavelengths, i.e.,
with k�q� about k�qmin�=� /D 	see Fig. 1�a�
. According to
Eq. �11�, the ratio Ex /H is about

� =
2�J
ab

2

cD
� 1.1 �19�

for these short waves. For this estimate we use commonly
accepted parameters for Bi2212 samples ��J /2��1 THz,
depending on doping and temperature, 
ab=2000 Å, and D
=15 Å�. This result, unusual for conducting media, suggests
that there is no impedance mismatch for the out-of-plane
radiation.

However, as was mentioned above, the Cherenkov radia-
tion can never pass through the sample boundary because it
has a large longitudinal wave vector q=� /V�� /c. In order
to decrease the longitudinal wave vector q, the spatial modu-
lations of the critical current can be used. To analyze
this analytically we use the perturbation expansion H
=H�0�+�H�1�+¯, with ��x�=� cos�2�x /a�, ��1, in
Eq. �1�.

In zeroth-order approximation, at the sample boundary,
the mode

H0
+�x,z,t� = H0,0

+ exp	iqx − iqVt + ik�q,qV�z
 , �20�

generated by a vortex, completely reflects back to the super-
conductor sample as

H0
−�x,z,t� = H0,0

− exp	iqx − iqVt − ik�q,qV�z
 , �21�

generating the decaying wave in vacuum

Hdamp�x,z,t� = Hvac
damp exp	iqx − iqVt − �vz
 �22�

with a damping coefficient
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�v = q�1 −
V2

c2 . �23�

The amplitudes H0,0
+ , H0,0

− , and Hvac
damp of the modes are deter-

mined by the continuity of the electric and magnetic fields at
the sample boundary.

To first approximation, using the linear relations between
�l and Hl, as well as Eq. �1�, we obtain the following equa-
tion:

�1 −

ab

2

D2 �l�� �2Hl
�1�

�t2 + �J
2Hl

�1�� −
c2

�

�2Hl
�1�

�x2

= − � cos�2�x

a
��1 −


ab
2

D2 �l��J
2�H0

+ + H0
−� . �24�

The solution of this equation consists of the sum of the fol-
lowing modes:

Hn,m
± �x,z,t� = Hn,m

± exp�i�q −
2�n

a
�x

− iqVt ± ik�q −
2�m

a
,qV�z� , �25�

where H1,0
± and H−1,0

± are forced waves and H1,1
± and H−1,−1

±

are eigensolutions. The modes H−1,0
± are also reflected from

the boundary, while the modes H1,0
± generate the wave

Hvac
prop exp�i�q −

2�

a
�x − iqVt + ikvz� , �26�

propagating in vacuum with wave vector

kv =�q2V2

c2 − �q −
2�

a
�2

. �27�

The continuity of Ex and H for the longitudinal wave vector
q−2� /a defines the amplitudes of the waves H1,0

± , H1,1
− , and

Hvac
prop, as well as the transition coefficient T for the emitted

waves from the sample,

T =
Ex vac

prop

H0,0
+ = − ��

v�v2 − 1�p2�p2 − 1

	1 + v2�p2 − 1�
2 �28�

for 
p−2� /aqmin
�V /c and T=0 otherwise. Here, p
=q /qmin and v=V /Vmin are the dimensionless longitudinal
wave vector and vortex velocity.

Because of ��1, the transmission coefficient T�1 for
out-of-plane radiation in a narrow frequency region

�� �
�JV

c
� �J. �29�

The quite narrow window of the transmitted waves occurs
due to the broad spectrum,

�� � �J, �qCherenkov � ��/V , �30�

of the Cherenkov radiation emitted by a Josephson vortex
with respect to the spectrum of waves propagating in the
vacuum,

�qvac � �J/c � �qCherenkov. �31�

A periodic spatial modulation can shift all the wave vectors
towards the spectral window of the vacuum waves, while it
cannot affect the width of the spectrum. Thus, the surface
cuts a narrow strip from the broad Cherenkov radiation, al-
lowing these waves to pass the interface. Note that changing
the period a �e.g., changing the distance between pancake
vortices via the c-axis magnetic field� allows one to tune the
frequency window for the emitted radiation. In order to make
the frequency window �� wider, one can employ, e.g., ap-
propriate aperiodic modulations ��x�=��1

�2 cos �x d� with �1

and �2 incommensurate. Also, ��x� could be modulated as a
one-dimensional �1D� quasicrystal.31

VII. CONCLUSIONS

We propose how to generate out-of-plane THz radiation in
a controllable frequency range. We show that the standard
severe mismatch problem can be overcome here for out-of-
plane radiation using spatially modulated samples. More-
over, recent studies32,33 of Josephson vortex arrangements in
small samples �there, the interaction of vortices with sample
boundaries acts similar to an additional potential� suggest a
way to obtain a square vortex lattice, which is important for
superradiance.34 Thus, spatial modulations of Jc can result in
a more ordered vortex flow or even a flowing square vortex
lattice generating superradiance. Of course, this problem re-
quires more detailed studies, which will be presented in the
future.
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APPENDIX: DERIVATION OF THE NONLOCAL
EQUATION FOR A JOSEPHSON VORTEX

We consider the distributions of the gauge-invariant phase
differences and the magnetic field of a single vortex located
in the central junction. We assume that the main phase dif-
ference is across this junction, whereas �l are small across
other junctions. Such an approximation is, strictly speaking,
correct for a weaker contact with Jc

w�Jc. This approach is
also applicable for qualitative analysis for the set of identical
junctions. In particular, it provides correct asymptotic behav-
ior for �l when l�1. Thus, we can use the linearized Eqs.
�1� for all junctions except the junction where a JV is local-
ized. It is important to stress that the magnetic field and the
corresponding phase difference distributions generated by
the vortex are extended over many junctions in the layered
medium. Therefore, we can use Eqs. �1� in the continuum
form, which reads

�1 − 
ab
2 �2

�z2���J
2 + V2 �2

��2����,z� −
c2

�

�2�

��2 = 0. �A1�
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Using the Fourier transform

��q,z� = �
−�

�

d� exp�− iq�����,z� , �A2�

we obtain the solution of Eq. �A1�,

��q,y� = ��q,0�exp	i sgn�q�k�q�
z

 , �A3�

where sgn�q�=1 if q�0 and −1 if q�0, the wave vector
k�q� is defined by Eq. �8� for kD�1, �=qV, and V�c /�

k�q� =
1


ab
��J

2 + c2q2/�

q2V2 − �J
2 �1/2

. �A4�

Using the Maxwell equation and considering the Joseph-
son and displacement currents, we derive relation between H
and �,

−
�H

��
=

4�

c
�Jc� +

��V2

8�es

�2�

��2 � . �A5�

The Fourier transform of Eq. �A5� results in

H�q,z� = −
8�i

cq
�Jc −

��V2q2

8�es
���q,z� . �A6�

Thus, the dependence of the magnetic field H�q ,z� on the
transverse coordinate z obeys the same law as the phase dif-
ference ��z�,

H�q,z� = H�q,0�exp	i sgn�q�k�q�
z

 . �A7�

Next, using Eq. �14� and the Maxwell equation �H /�z
=−4� /cJx, we obtain the relation between Fourier compo-
nents of the magnetic field and the phase difference �,

H�q,0� = −

0

4�
ab
2

q

k�q�
��q� . �A8�

In order to express the z component of the current in layered
media in terms of the phase difference � in the central junc-

tion, we use Eqs. �A4� and �A6�–�A8�. Performing the re-
verse Fourier transformation, we obtain

Jz��,z� =
c
0

16�2
ab
�

−�

� dq

2�
q2��q�

�� �J
2 − q2V2

�J
2 + q2c2/�

exp�iq� + i sgn�q�k�q�
z
� .

�A9�

Below we consider the case where the main contribution to
the integral in Eq. �A9� comes from the region

q2 �
�J

2

V2 , �A10�

which is valid if the vortex velocity is smaller than 
J
2�J /
c.

Substituting instead of ��q� its coordinate Fourier trans-
form �����, we find the expression for the current component
Jz at the edge of the central junction, z=0. Performing the
integration over q and taking into account the inequality Eq.
�A10�, one gets

Jz��,0� =
c
0

16�3
ab
c
�

−�

�

d��K0� 
�� − �


c

� �2�

���2 , �A11�

where K0�x� is the modified Bessel function of the zero or-
der. Equating the current Eq. �A11� to the sum of Josephson
and displacement currents in the central junction, we obtain
the nonlocal sine-Gordon equation for the fluxon presented
in the text. Note that the obtained equation for � is similar to
the nonlocal sine-Gordon equation obtained by Gurevich for
the fluxon in a single Josephson junction between isotropic
superconductors.24
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