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Quantum interference in superconducting wire networks and Josephson junction arrays:
An analytical approach based on multiple-loop Aharonov-Bohm Feynman path integrals
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We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of
two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse
magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome´ lattices. Our
approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference
between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we
compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of
different lengths. A very large number, e.g., up to 1081 for the square lattice, of exact lattice path integrals are
obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition tem-
perature as a continuous function of the field. In particular, we can analyze measurable effects on the super-
conducting transition temperatureTc(B) as a function of the magnetic fieldB, originating from the electron
trajectories over loops of various lengths. In addition to systematically deriving previously observed features
and understanding the physical origin of the dips inTc(B) as a result of multiple-loop quantum interference
effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of
square networks. Our approach allows us to analyze the complex structure present in the phase boundaries
from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices. The
physical origin of the structures in the phase diagrams is derived in terms of the size of regions of the lattice
explored by the electrons. Namely, the larger the region of the sample the electrons can explore~and thus the
larger the number of paths the electron can take!, the finer and sharper structure appears in the phase boundary.
Our results for kagome´ and honeycomb lattices compare very well with recent experimental measurements by
Xiao et al. @preceding paper, Phys. Rev. B65, 214503~2001!#.
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I. INTRODUCTION

When immersed in an externally applied magnetic fie
superconducting networks1 made of thin wires, proximity-
effect junctions, and tunnel junctions exhibit complex a
interesting forms of phase diagrams. These superconduc
networks have been studied in various kinds of geometr
including simple1 and complex2,3 periodic lattices, regular
fractals,4 bond-percolation networks,5 disordered arrays,6 and
quasiperiodic lattices.7–11 The rich structure present in th
resistive transition temperature as a function of the magn
field, namely, the superconducting-normal phase diagr
has a rich structure that has been the subject of various
perimental and theoretical investigations.9,12–16

A. Physics of the phase diagram

The rich structure in the phase diagram is essentiall
result of the quantum interference effect or frustration due
the magnetic field and the built-in multiconnectedness of
networks. The magnetic fluxes through the cells of vario
areas, measured in units of the superconducting flux quan
F0[hc/2e, are useful parameters to characterize the in
ference effect. At zero magnetic field, the quantum interf
ence effect is absent, and therefore the resistive trans
temperature should have a peak. Also, due to gauge inv
0163-1829/2002/65~21!/214504~21!/$20.00 65 2145
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ance, physical quantities should be periodic functions of
cell fluxes, with a period ofF0. These arguments qualita
tively explain the apparent periodic or quasiperiodic stru
tures observed in phase diagrams of networks of various
ometries.

To gain a quantitative description of the phase diagra
we employ the mean-field theory which is very effective
serving such a purpose. For wire networks, the mean-fi
expression is given by the Landau-Ginsburg equation
pressed in terms of the order parameters at the nodes.12 For a
junction array, one has a set of self-consistent equations13,14

for the thermally averaged pair wave functions of the grai
Such equations are linearized near the transition point,
the highest temperature at which a nontrivial solution fi
appears is identified as the transition temperature. There
one is left to find the top spectral edge of eigenvalue pr
lems. The equations for a junction array can be mapped o
a tight-binding Schro¨dinger problem for an electron hoppin
on a lattice immersed in a magnetic field. The equations
a wire network are in general more difficult to solve, becau
the eigenvalue appears in a nonlinear way.

Numerical results have been obtained for phase diagr
of networks of various geometries. All of them compare ve
well with the corresponding experimental data; the locatio
of the peaks of various sizes are correctly predicted and
relative heights of the peaks are also reproduced with oc
©2002 The American Physical Society04-1
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sional small deviations. The success of mean-field theory14,15

suggests that much of the frustration effect in a statist
problem can be accounted for in terms of quantum inter
ence effect of linear wave mechanics.

B. Many-loop generalization
of the standard Aharonov-Bohm effect

In this paper, we systematically investigate the fie
dependent superconducting-normal phase for a variety
two-dimensional superconducting networks. The basis of
approach is an analytic study of electron quantum inter
ence effects originating from sums over magnetic phase
tors on closed lattice paths. The sums of these phase fac
called lattice path integrals, are many-loop generalizati
of the standard one-loop Aharonov-Bohm-type argume
where the electron wave function picks up a phase fa
eiF each time it goes around a closed loop enclosing a
flux F.

We compute analytically the lattice path integrals up
very long lengths for various types of lattices. These latt
path integrals contain the quantum interference of enorm
numbers of closed paths. Through an iterative approa
these results then enable us to obtain the correspon
phase boundaries14,15 as continuous functions of the streng
of the applied field. This method provides a systematic
proximation scheme, through finite truncations, for the sp
tral edges of eigenvalue problems from which our mean-fi
phase diagrams can be computed. Thus, we can gain co
erable theoretical insight into the physical origin of the stru
ture in the phase diagrams. This approach also enables
analyze the structure of the phase boundaries from the v
point of the geometric features of the networks. We ap
this approach to study the phase boundaries of square,
eycomb, triangular, and kagome´ lattices. Our studies provide
a complete and detailed analysis of the relationship betw
the phase diagram structures and the corresponding net
geometries.

C. Organization of the paper

This paper is organized as follows. In Sec. II, we descr
the general formulation of our approach to the determina
of phase diagrams for a variety of periodic superconduc
networks. To illustrate our calculational scheme, we fi
compute the Little-Parks oscillatory phase boundary o
single superconducting loop in Sec. III. In Sec. IV, we app
this approach to the superconducting square network.
devote Sec. V to a discussion of a very important and in
esting feature observed in the phase boundary of the sq
network, namely, the self-similarity. The superconducti
honeycomb, triangular, and kagome´ networks are studied
based on the same approach, respectively, in Secs. VI,
and VIII. In Sec. IX, we discuss some general trends in
application of this approach to these types of networks s
ied above. Comparisons of the phase boundaries betwe
single superconducting loop and the corresponding su
conducting network are also made. Furthermore, we pre
a brief discussion on the relationship between our appro
21450
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and other related methods. In Sec. X, we compare the ph
boundaries of honeycomb and kagome´ lattices. The last sec
tion summarizes our results.

II. GENERAL FORMALISM

The physics ofTc(B), the superconducting-normal phas
boundary as a function of the fieldB, is determined by the
electronic kinetic energy because the applied field induce
diamagnetic current in the superconductor.1 This current
~proportional to the velocity! determines the kinetic energ
of the system. In other words, the kinetic energy can
written in terms of the temperature as

2
\2

2m*
,2;2

\2

2m* j~T!2
;Tc~B!2Tc~0!,

where, for any superconductor,m* is twice the electron mas
and

j~T!5
j~0!

A12Tc~B!/Tc~0!

is the temperature-dependent coherence length. The pro
of obtaining Tc(B) is then mapped to that of finding th
spectral edges of tight-binding electrons on the correspo
ing lattice. Thus, assuming a unit hopping integral betwe
adjacent sites, we consider the Hamiltonian

H5(̂
i j &

ci
†cj exp~ iAi j !, ~1!

which describes the kinetic energy of electrons hopping o
discrete lattice subject to a perpendicular magnetic fie
Here ^ i j & refers to nearest-neighbor sites and the magn
phase

Ai j 52pE
j

i

A•dl

is 2p times the line integral of the vector potential,A, along
the bond fromj to i in units of theF05hc/2e.

A. Sums over closed paths

The lattice path integralm l is defined as

m l[ (
all closed lattice pathsgof length l

eiFg. ~2!

By closed paths of lengthl we mean the paths starting an
ending at the same site after traversingl steps on the lattice
andFg is the sum over phases of the bonds on the pathg.
Let uC i& denote a localized electron state centered at sitei. It
is not difficult to notice thatm l corresponds precisely to th
quantum mechanical expectation value^C i uHl uC i&, which
summarizes the contribution to the electron kinetic energy
all closed paths ofl steps. The physical meaning of the la
tice path integral

m l5^C i uHl uC i&
4-2
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QUANTUM INTERFERENCE IN SUPERCONDUCTING . . . PHYSICAL REVIEW B65 214504
thus becomes clear. The HamiltonianH is appliedl times to
the initial stateuC i&, resulting in the new state

uC f&5Hl uC i&

located at the end of the path traversingl lattice bonds. Be-
cause of the presence of a magnetic field, a magnetic p
factoreiAi j is acquired by an electron when hopping fromj to
the adjacent sitei. The lattice path integralm l is nonzero
only when the path ends at the starting site. In other wo
m l is the sum of the contributions from allclosedpaths ofl
steps starting and ending at the same site, each one weig
by its corresponding phase factoreiFg where

Fg

2p
5net flux enclosed by the closed pathg.

B. Quantum interference

It is important to stress thatFg depends crucially on the
traveling route of the path.14,15For instance,Fg will be posi-
tive ~negative! by traversing a polygon loop countercloc
wise ~clockwise!. Therefore,quantum interferenceinforma-
tion contained inm l arises because the phase factors
different closed paths, including those from all kinds of d
tinct loops and separate contributions from the same lo
interfere with each other. Sometimes, the phases corresp
ing to subloops of a main path cancel.

To analytically compute14,15the lattice path integralsm l is
in general a difficult task sincem l involves an enormous
number of different paths~growing rapidly when l in-
creases!, each one determined by its corresponding net m
netic phase factor. We have developed systematic and
cient methods to calculate the lattice path integrals fo
number of distinct lattices. The techniques involve succ
sively iterating the constructed recursion relations and
ploiting the symmetries of the underlying lattices. The tec
nical details of the implementation will be present
elsewhere. Below we will only list the first few calculate
lattice path integrals in relevant places. Results for the lat
path integrals of largerl will not be presented due to the
lengthy expressions, but will be used in some of our cal
lations.

In summary, the lattice path integrals summarize the e
tron quantum interference effects originating from sums o
magnetic phase factors on closed lattice paths. The sum
these phase factors, the lattice path integrals, are many-
generalizations of the standard one-loop Aharonov-Boh
type argument, where the electron wave function picks u
phase factoreiF each time it goes around a closed loop e
closing a net fluxF.

C. Computation of the energy eigenvalues from lattice
path integrals

We now outline the scheme for obtaining the eigenval
from the calculated lattice path integrals. Let us apply
Hamiltonian to the starting state

uc1&[uC i&,
21450
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which is a localized state centered at an arbitrary sitei on the
lattice, and perform the following expansions:

Huc1&5a1uc1&1b2uc2&

and forn.1

Hucn&5bnucn21&1anucn&1bn11ucn11&.

The Hamiltonian matrix in the basisucn& is obviously in a
real tridiagonal form. Each new state in this method expa
outward by one more step from the site where the star
state is located. Note that thean’s and bn11’s are gauge-
invariant quantities. Through these parameters we can c
struct the truncated Hamiltonian matricesH (n), which are the
nth-order approximation toH. For instance,

H (2)5Fa1 b2

b2 a2
G ,

H (3)5F a1 b2 0

b2 a2 b3

0 b3 a3

G ,

H (4)5F a1 b2 0 0

b2 a2 b3 0

0 b3 a3 b4

0 0 b4 a4

G ,

and so on. The quantity we desire, i.e., the top spectral e
can then be obtained by solving the eigenvalues ofH (n) and
will be designated byTc

(n) , which is thenth-order approxi-
mant to the phase boundary. This scheme is useful bec
finite truncations give good approximations toTc(B).

The coefficientsan’s andbn11’s can be exactly expresse
in terms of the lattice path integrals in a systematic mann
which will be presented below, respectively, for the bipart
and nonbipartite lattices. In general, given the lattice p
integrals up to the orderm2L21, which contains information
on the quantum interference effects due to closed path
2L21 steps, we can obtain the coefficients up toaL andbL .
Thus, theLth-order truncation of the Hamiltonian matrix ca
be constructed, and subsequentlyTc

(L) can be obtained.

1. For bipartite lattices

We first discuss the case for bipartite lattices where
lattice path integrals of odd number steps are identica
zero, i.e.,

m2l 1150.

It is evident that

an50

for any n. To compute thebn11’s, we define an auxiliary
matrix B with the first row elements given by

B1,l[m2l .
4-3
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The other rows are evaluated by using only one immed
predecessor row. Namely, fork>2 andl>1

Bk,l5
Bk21,l 11

Bk21,1
2(

i 50

l 21

Bk,iBk21,l 2 i , ~3!

where

Bn,0[1

for n>1. Thebn11’s are obtained from the elements of fir
columns of the matrixB as

bn115ABn,1. ~4!

Below we explicitly express the first fewbn11’s in terms of
the lattice path integrals noting thatm2 is always equal toz,
the coordination number of the lattice:

b25Am25Az,

b35Am4

z
2z,

b45Am622m4z1z3

m42z2
2

m42z2

z
.

These expressions are applicable to any type of bipa
lattice.

It is worthwhile to point out that the number of elemen
on a specific row is always less than that on the immed
predecessor row by 1. For instance, for a specifick, if the
matrix elements run fromBk,1 to Bk,l , the elements in the
next row run fromBk11,1 to Bk11,l 21. Therefore, given the
lattice path integrals up tom2L , the matrixB consists ofL
rows. TheLth ~last! row has only one elementBL,1 from
which we can deducebL11. It is clear now that the highest
order approximationTc

(L11) to the phase boundary can b
obtained fromm2 ,m4 , . . . ,m2L .

2. For nonbipartite lattices

Turning to the nonbipartite lattice case, we now define
auxiliary matrixN with the first row elements given by

N1,l[m l .

The other rows are evaluated by using only one immed
predecessor row. Namely, fork>2 andl>1,

Nk,l5
Nk21,l 122Nk21,1Nk21,l 11

Nk21,22Nk21,1
2

2(
i 50

l 21

Nk,iNk21,l 2 i ,

~5!

whereNn,0[1 for n>1. Thean’s and bn11’s are obtained
from the elements of the first and second columns as

an5Nn,1 ~6!

and

bn115ANn,22Nn,1
2 . ~7!
21450
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Below we explicitly express the first fewan’s andbn11’s in
terms of the lattice path integrals:

a150,

a25
m3

z
,

a35
m5z222m4m3z1m3

3

m4z22m3
2z2z4

and

b25Az,

b35Am4

z
2

m3
2

z2
2z.

The above expressions are valid for any type of nonbipar
lattice.

It is worth stressing that the number of elements on
specific row is always less than that on the immediate p
decessor row by 2. For instance, for a specifick, if the matrix
elements run fromNk,1 to Nk,l , the elements in the next row
run fromNk11,1 to Nk11,l 22. Therefore, given the lattice pat
integrals up tom2L11, the matrixN consists ofL11 rows.
The Lth row has only three elementsNL,1 , NL,2 , andNL,3 ,
wherebL11 can be obtained fromNL,2 , and NL,3 . The (L
11)th ~last! row has only one elementNL11,1 from which
we can deduceaL11. It is clear now that the highest-orde
approximationTc

(L11) to the phase boundary can be obtain
from m1 ,m2 , . . . ,m2L11.

III. SIMPLE ILLUSTRATION:
A SINGLE SUPERCONDUCTING LOOP

Before we study the lattice cases, we apply the formali
described above to three simple single-cell cases. Nam
we calculate, respectively, the transition temperature o
single superconducting loop in the shape of a square, a h
gon, and a triangle. Exact solutions of the phase bounda
can be obtained for these simple cases. For all of theseF
5f/2p stands for the magnetic flux through these elem
tary cells, in units ofF0.

The lattice path integralsm l now correspond to the sum
over all closed paths ofl steps on a single cell. Closed-form
results for the lattice path integrals are derived. They a
respectively,

m2l
(s)5Cl

2l12(
k51

[ l /2]

Cl 22k
2l cos~kf!

on a square,

m2l
(h)5Cl

2l12(
k51

[ l /3]

Cl 23k
2l cos~kf!

on a hexagon, and
4-4
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m2l
(t)5Cl

2l12(
k51

[ l /3]

Cl 23k
2l cos~2kf!,

m2l 11
(t) 52 (

k50

[( l 21)/3]

Cl 23k21
2l 11 cos@~2k11!f#

on a triangle. Here

Cn
m5

m!

n! ~m2n!!

is the binomial coefficient, and the notation@x# means the
largest integer equal to or smaller thanx. Through these re-
sults for the lattice path integrals, it is straightforward
compute the parametersan’s and bn11’s. In fact, for these
small simple systems, the iterative process terminates
quickly. In other words, the parametersan’s andbn11’s be-
come identically zero after a few iterations. Hence, the c
responding exact tridiagonal Hamiltonian matrices can
readily constructed.

A. Square loop

Denoting the tridiagonal Hamiltonian matrix for th
square loop byHs , we find that
21450
ry

r-
e

Hs5A23
0 1 0 0

1 0 UcosS f

2 D U 0

0 UcosS f

2 D U 0 UsinS f

2 D U
0 0 UsinS f

2 D U 0
4 ,

which is obtained by using onlym2 , m4, andm6. A closed-
form expression for the top eigenvalue ofHs can be easily
obtained:

Tc~f!5A212 cosS f

2 D .

B. Hexagonal loop

Similarly, denoting the tridiagonal Hamiltonian matrix fo
the hexagon loop byHh , we find that
s

Hh53
0 A2 0 0 0 0

A2 0 1 0 0 0

0 1 0 A11cos~f! 0 0

0 0 A11cos~f! 0 A12cos~f! 0

0 0 0 A12cos~f! 0 1

0 0 0 0 1 0

4 ,

which is obtained by using onlym2 , m4 , m6 , m8, andm10. Let j be an integer; the top eigenvalue ofHh can be expressed a
follows:

Tc~f!5

¦

A212 cosS f

3
1

2p

3 D for 2
3

2
13 j <

f

2p
<2

1

2
13 j ,

2 cosS f

6 D for 2
1

2
16 j <

f

2p
<

1

2
16 j ,

A212 cosS f

3
2

2p

3 D for
1

2
13 j <

f

2p
<

3

2
13 j ,

22 cosS f

6 D for
5

2
16 j <

f

2p
<

7

2
16 j .

C. Triangular loop

Denoting the tridiagonal Hamiltonian matrix for the triangle loop byHt , we find that

Ht5F 0 A2 0

A2 cos~f! usin~f!u

0 usin~f!u 2cos~f!
G ,
4-5
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which is obtained by using onlym1–m5. The top eigenvalue ofHt can be expressed as follows:

Tc~f!55
2 cosS f

3
1

2p

3 D for 2
3

2
13 j <

f

2p
<2

1

2
13 j ,

2 cosS f

3 D for 2
1

2
13 j <

f

2p
<

1

2
13 j ,

2 cosS f

3
2

2p

3 D for
1

2
13 j <

f

2p
<

3

2
13 j .
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In Fig. 1, we plot the superconducting transition tempe
ture, DTc(F)[Tc(0)2Tc(F)522Tc(F), respectively, of
a square loop, a hexagon loop, and a triangle loop for22
<F<2. It is evident that these phase diagrams are qua
tively identical. Also, theDTc(F) shown are periodic func
tions of F and the period of the oscillation in the flux
equal toF0. As expected,DTc(F) have their minima atF
5 j F0 and their maxima atF5 j F0/2.

It is interesting to note thatDTc(F) has the largest mag
nitude for the triangular loop and the smallest for the h
agonal loop. It will be seen in Sec. X that this one-lo
general behavior carries over to the network cases, in spi
the distinctive differences in the fine structure of their pha
boundaries. These results are consistent with the ones
tained numerically in Ref. 2.

IV. SQUARE LATTICE

For the square lattice, we denote the lattice path integ
by s2l . In other words,s2l is the exact sum of the phas
factors of all 2l -step closed paths on the square lattice. B
low f/2p corresponds to the magnetic flux through an
ementary square plaquette, i.e.,

f

2p
5c2B.

FIG. 1. The oscillatory phase boundaryDTc(F) for a single
superconducting loop. The top curve corresponds to a trian
~dashed line! the middle a square~dotted line!, and the bottom a
hexagon~solid line!. F is the magnetic flux through these cells
units of F0.
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Throughout this paper,c denotes the lattice constant of a
the lattices considered in this work. The results f
s2 ,s4 , . . . ,s12 are

s254,

s452818 cosf,

s652321144 cosf124 cos 2f,

s85215612016 cosf1616 cos 2f196 cos 3f116 cos4f,

s10521944126320 cosf111080 cos 2f13120 cos 3f

1840 cos 4f1160 cos 5f140 cos 6f,

s1252402801337560 cosf1174384 cos 2f

167256 cos 3f123928 cos 4f17272 cos 5f

12400 cos 6f1528 cos 7f1144 cos 8f124 cos 9f.

We have computed the lattice path integrals for the squ
lattice up tos138, which are obtained byexactly summing up
;1081 closed paths. The first few lattice path integrals can
quickly obtained analytically by hand. We have usedMAPLE

symbolic manipulation software to obtain lattice path in
grals of longer lengths. For these, it is convenient to optim
the algorithm by exploiting the symmetries of the proble
These calculated lattice path integralss2l ’s have enabled us
to obtain the phase boundary up toTc

(70)(f).
It is instructive to explain how the first few lattice pat

integrals are obtained. This will also clarify their physic
meaning. Since there is no path of one step for returning
electron to its initial site,s1 is always equal to zero. Indeed
all lattice path integralss2l 11 involving an odd number of
steps are equal to zero. Now let us compute the next lat
path integral, with two steps. There are four closed paths
two steps each@retracing each other on one bond (•↔),
where the dot• indicates the initial site#, thus

s254•↔54ei0f545z,

wherez is the coordination number of the lattice.
There are 28 closed paths of four steps each: four ret

ing twice on one bond (
•↔
↔ ), 12 starting from a site connect

ing two adjacent bonds and retracing once on each b
(↔•↔), and 12 moving two bonds away and then tw

le
4-6



os
-

er
-
or
is

at
e to

QUANTUM INTERFERENCE IN SUPERCONDUCTING . . . PHYSICAL REVIEW B65 214504
bonds back to the original site (
•→
←

→
←). Since all of them

enclose no area~i.e., no flux!, then

s4
no flux54

↔
•↔112↔•↔112

←
•→

←
→528.

Among the four-step closed paths, eight of them encl
adjacent square cells~four counterclockwise and four clock
wise! contributing

4eif14e2 if58 cosf

to s4. Thus it follows thats4 5 2818 cosf. Higher-order
integralss2l can be similarly constructed.

It is straightforward to compute the nonzero paramet
bn from the obtained results fors2l . The corresponding trun
cated HamiltoniansH (n) can then be readily constructed. F
instance, the second-order truncation of the Hamiltonian

H (2)5F0 2

2 0G .
m

an
o
th
t
ic
at
te
th
rp
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Its corresponding top eigenvalue isTc
(2)(f)52, which does

not depend onf. This is understandable from the fact th
the shortest length for a closed path on the square lattic
enclose the magnetic flux is forl 54 while H (2) only con-
tains elements derived fromm2. The third-order truncation of
the Hamiltonian is

H (3)5F 0 2 0

2 0 A312 cosf

0 A312 cosf 0
G .

Its corresponding top eigenvalue is

Tc
(3)~f!5A712 cosf.

The fourth-order truncation of the Hamiltonian,H (4), is
3
0 2 0 0

2 0 A312 cosf 0

0 A312 cosf 0 A318 cosf18 cos2f

312 cosf

0 0 A318 cosf18 cos2f

312 cosf
0

4 .
also

nt
he
in

ght

of
Its corresponding top eigenvalue is

Tc
(4)~f!5A2A3 cos2f17 cosf161a

312 cosf
,

where

a5A9 cos4f126 cos3f145 cos2f154 cosf127.

In Fig. 2, we show the superconducting transition te
peratures

DTc
(n)~F!5Tc~0!2Tc

(n)~F!

as functions ofF[f/2p for various values ofn for the
square network obtained from the truncated Hamiltoni
H (n). HereTc(0) equals 4, which is the largest eigenvalue
tight-binding electrons confined on the square lattice in
absence of a magnetic field. It is important to stress tha
the order of approximation is increased, more geometr
information of the lattice is included in the interference tre
ment and more fine structures are resolved. At every s
i.e., for a given size of the network, we can observe
corresponding dips appearing and then becoming sha
We emphasize that our highest-order approximantTc

(70)(F)
-

s
f
e
as
al
-
p,
e
er.

has closely reached the infinite-system-size limitDTc(F).
The flux values where the cusps and dips occur have
been labeled.

V. SELF-SIMILARITY IN THE PHASE BOUNDARY
OF THE SUPERCONDUCTING SQUARE WIRE NETWORK

In this section, we explicitly demonstrate an importa
property: the self-similarity of the phase boundary of t
superconducting square wire network. This is exemplified
Fig. 3, where we useDTc

(70)(F) for DTc(F) and omit the
superscript. In~a!, we plot DTc(F) for F in the interval
between 0 and 1. In~b! and ~c!, we plot DTc(F) for F,
respectively, in the ranges@0.333.1/3,0.4765# and
@0.5235,0.667.2/3#. Figures 3~b! and 3~c! can be regarded
as the first generation of the original diagram~a!, in the sense
that ~b! is enlarged from the maximum in the left part of~a!
and~c! is enlarged from the maximum in the right part of~a!.

This enlargement process is continued as follows:~d! with
FP@0.37553/8,0.3978# and ~e! with FP@0.4025,0.4286
.3/7# are, respectively, the enlargements of the left and ri
maxima of ~b!. Similarly, ~f! with FP@0.5714
.4/7,0.5975# and ~g! with FP@0.6022,0.62555/8# are, re-
spectively, the enlargements of the left and right maxima
4-7
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~c!. Figures 3~d!, 3~e!, 3~f!, and 3~g! can be regarded as th
second generation of the original phase diagram~a!. In this
way, it is straightforward to deduce that the third generat
of ~a! will consist of eight phase diagrams: each of~d!, ~e!,
~f!, and~g! contributes two diagrams. It is evident that the
phase diagrams resemble one another except that the p
diagrams gradually become asymmetric.

As shown in these figures, we also label the values oF

FIG. 2. Superconducting transition temperature for the squ
network as a continuous function of the applied magnetic fie
DTc

(n)(F)5Tc(0)2Tc
(n)(F) vs F, the magnetic flux through an

elementary square cell. In~a! we show the superconducting-norm
phase boundaries computed from the truncated HamiltoniansH (n)

for F in the range between 0.2 and 0.8. We omit the parts
DTc

(n)(F) for FP@0, 0.2# and@0.8, 1# since there are no interestin
features in these portions ofDTc

(n)(F). From top to bottom, the
orders of truncation aren55 ~top curve!, 6, 7, 8, 10, 15, 23, 39, and
70. Note the development of fine structures and cusps. The con
gence is monotonic. Note also that the closeness between the c
for DTc

(39)(F) andDTc
(70)(F) implies thatDTc

(70)(F) has achieved
close convergence to the infinite system sizeDTc(F). The inset
schematically depicts a square lattice. In~b!, we plot DTc(F) for
FP@0.2, 0.8# and label the values of the magnetic flux where o
servable cusps and dips occur. They includeF51/4, 2/7, 3/10, 1/3,
3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 7/10, 5/7, and 3/4. H
DTc(F)[DTc

(70)(F)5Tc(0)2Tc
(70)(F), our calculated highest

order approximant.
21450
n

ase

indicating the cusps and dips inDTc(F). These nine flux
values are characteristic of each phase diagram. Indeed,
are general relations between these sets of flux value
different generations. Let$p0 /q0% represent the set of thes
flux values in~a!, i.e., p0 /q051/4, 2/7, 1/3, 2/5, 1/2, 3/5,
2/3, 5/7, and 3/4. Denoting the set of characteristic flux v
ues in any of the phase diagrams in the first generation
$p1 /q1%, we find that the corresponding flux values in~b! are
given by

p1

q1
5

q0

3q02p0
,

and those in~c! are given by

p1

q1
5

p01q0

p012q0
.

For instance, givenp0 /q051/2 in ~a!, we have the corre-
sponding

p1 /q152/~621!52/5

in ~b! and

p1 /q15~112!/~114!53/5

in ~c!. Furthermore, let$p2 /q2% stand for the sets of the
corresponding flux values in the second-generation diagra
In the second-generation diagrams@~d!–~g!# only five char-
acteristic cusps and dips out of nine are observable. There
find that thep2 /q2 in ~d! are related to thep1 /q1 in ~b! by

p2

q2
5

q1

3q12p1
,

p2 /q2 in ~e! are related to p1 /q1 in ~c! by p2 /q2
5q1 /(3q12p1), p2 /q2 in ~f! are related top1 /q1 in ~b! by

p2

q2
5

p11q1

p112q1
,

andp2 /q2 in ~g! are related top1 /q1 in ~c! by p2 /q25(p1
1q1)/(p112q1).

We now summarize our construction of the hierarchy
these phase diagrams. As discussed previously, every
gram can generate two diagrams to the next generation:
is enlarged from the left maximum and the other from t
right maximum of this diagram. Thus, starting from th
original phase diagram, i.e.,DTc(F) for FP@0,1#, we can
generate 2n diagrams to thenth generation forn>1. Fur-
thermore, each diagram covers a distinct range ofF from
Fmin to Fmax. Let us arrange these diagrams in the followi
way, as we did in Fig. 3. We put all the diagrams belongi
to the same generation in a row in such an order that fr
the left to the rightFmin ~or Fmax) increases from the small
est to the largest. It is evident that half of them (2n21 dia-
grams! haveFmax,1/2 and the other half haveFmin.1/2. It
is not difficult to see that this kind of arrangement will b
automatically satisfied in the following way. Following th
same order of the diagrams in the previous generation
using them one by one, we put two new generated diagr

re
:

f

er-
ves

-

e
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FIG. 3. Field-dependent transition temperatureDTc(F) of the superconducting square network for various different ranges oF
from ~a! to ~g!, respectively, FP@0,1#, @0.333.1/3, 0.4765#, @0.5235, 0.667.2/3#, @0.37553/8, 0.3978#, @0.4025, 0.4286.3/7#,
@0.5714.4/7, 0.5975#, and@0.6022, 0.62555/8#. It is clear that~b! is enlarged from the maximum in the left part of~a! and~c! is enlarged
from the maximum in the right part of~a!. Similarly, ~d! and~e! are, respectively, the enlargements of the left and right maxima of~b! while
~f! and~g! are, respectively, the enlargements of the left and right maxima of~c!. We also include the labeling of the values ofF where there
are cusps and dips inDTc(F). For the relations between these sets of flux values in different frames, see the text. The self-similarity
phase boundary can be concluded from the resemblance of these figures though an asymetry in the height develops in each
magnification.
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side by side with the one from the left maximum to the l
and the one from the right maximum to the right. It is inte
esting to notice that, for each generation, the diagrams
cated at the left part ofF51/2 are mirror images of thos
located at the right part. This symmetry originates from
property that the phase diagram ofDTc(F) with FP@0,1# is
symmetric aroundF51/2.

Indeed, there are one-to-one correspondences betwee
sets of the characteristic flux values, where cusps and dip
the phase boundaries occur, in different generations. Le
label the diagrams from left to right in thenth generation by
D i

(n) with i running from 1 to 2n. Similarly, the diagrams in
the (n11)th generation are labeled byD i

(n11) with i running
from 1 to 2n11. Now let $pn /qn% represent the sets of th
flux values characterizing the cusps and dips inDTc(F) in
any of the phase diagrams in thenth generation and
$pn11 /qn11% be the sets belonging to the diagrams in t
(n11)th generation. The relations between t
(pn11 /qn11)’s and the (pn /qn)’s are as follows. For 1< i
<2n, thepn11 /qn11 in the diagramD i

(n11) @one of the dia-
grams in the (n11)th generation that located on the le
hand side ofF51/2# is related to thepn /qn in D i

(n) by
21450
t

o-

e

the
in

us

pn11

qn11
5

qn

3qn2pn
,

and for 2n11< i<2n11, the pn11 /qn11 in the diagram
D i

(n11) @the second half of the diagrams in the (n11)th
generation that located on the right-hand side ofF51/2# is
related to thepn /qn in D i 22n

(n) by

pn11

qn11
5

pn1qn

pn12qn
.

Self-similarity in theDTc(F) curve is a consequence o
the fractal energy spectrum of Bloch electrons in a magn
field which was examined in detail by Hofstadter.17 How-
ever, as far as we are aware, the explicit derivation of
self-similarity of the measurable part, the lowest-ene
state, was not presented before.

Recently, the influence of classical chaos on this so-ca
‘‘Hofstadter’s butterfly’’ has been studied.18 Furthermore, a
semiclassical theory for the dynamics of electrons in a m
netic Bloch band has been developed and used to explain
clustering structure of the spectrum.19
4-9
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VI. HONEYCOMB LATTICE

For the honeycomb lattice, we denote the lattice path
tegrals byh2l . In other words,h2l is the exact sum of the
phase factors of all 2l -step closed paths on the honeycom
lattice. In this section,f/2p corresponds to the magnet
flux through an elementary honeycomb plaquette, i.e.,

f

2p
5

3A3c2B

2F0
.

The results forh2 ,h4 , . . . ,h20 are

h253,

h4515,

h658716 cosf,

h85543196 cosf,

h105354311080 cosf130 cos 2f,

h12523859110560 cosf1726 cos 2f124cos 3f,

h145164769196096 cosf111130 cos 2f1798 cos 3f

142 cos 4f,

h16511627191839040 cosf1138720 cos 2f

115648 cos 3f11536 cos 4f196 cos 5f,

h185836389517143210 cosf11537668 cos 2f

1237714cos 3f133246 cos 4f13834cos 5f

1252 cos 6f118 cos 7f,

h20561216275159862000 cosf115829200 cos 2f

13103320 cos 3f1555390 cos 4f189520 cos 5f

110920 cos 6f11320 cos 7f1120 cos 8f.

Notice thath2 andh4 involve paths that enclose zero n
flux. There are three closed paths of two-steps each. T
h253, the coordination number of the lattice.h6 is the first
lattice path integral with a net flux~in this case flux through
one hexagon!. There are three counterclockwise and thr
clockwise six-step paths going through a hexagon. Thus,
term 6 cosf in h6. It is possible to derive the first few pat
integrals analytically ‘‘by hand’’ by just counting paths an
keeping track of the enclosed flux. The longer-length o
can be computed via symbolic manipulation software.

We have computed the lattice path integrals for the h
eycomb lattice up toh206, which are obtained byexactly
21450
-

s,

e
e

s

-

summing up;1096 closed paths. These calculatedh2l ’s have
enabled us to obtain the phase boundary up toTc

(104)(f).
It is straightforward to compute the nonzero paramet

bn from the obtained results forh2l . The corresponding trun
cated HamiltoniansH (n) can then be readily constructed. F
instance, the second-order truncation of the Hamiltonian

H (2)5F 0 A3

A3 0 G .

Its corresponding top eigenvalue isTc
(2)5A3. The third-

order truncation of the Hamiltonian is

H (3)5F 0 A3 0

A3 0 A2

0 A2 0
G .

Its corresponding top eigenvalue isTc
(3)5A5. BothTc

(2) and
Tc

(3) are independent off. This is understandable from th
fact that the shortest length for a closed path on the hon
comb lattice to enclose the magnetic flux is forl 56 while
H (2) and H (3) only contain elements derived fromm2 and
m4. The fourth-order truncation of the Hamiltonian is

H (4)5F 0 A3 0 0

A3 0 A2 0

0 A2 0 A21cosf

0 0 A21cosf 0

G .

Its corresponding top eigenvalue is

Tc
(4)~f!5

1

2
A1412 cosf12A2512 cosf1cos2f.

In Fig. 4, we show the superconducting transition te
peraturesDTc

(n)(F)5Tc(0)2Tc
(n)(F) as functions ofF

[f/2p for variousn for the honeycomb network obtaine
from the truncated HamiltoniansH (n). HereTc(0) equals 3,
which is the largest eigenvalue of tight-binding electro
confined on the honeycomb lattice in the absence of a m
netic field.

We observe that as the order of approximation is
creased, more geometrical information of the lattice is
cluded in theinterference treatmentand more fine structure
are resolved. This explainsthe origin of the fine structure
observed: the more geometric information on the lattice
explored by the paths of the electrons, the sharper the
structures.

We emphasize that our highest-order approxim
Tc

(104)(F) has closely reached the infinite-system-size lim
DTc(F). The flux values where the cusps and dips occur
have also been labeled. In general, besides the cusp aF
51/2, there are cusps at

F5
m

2m11
4-10
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FIG. 4. Superconducting tran
sition temperature for the honey
comb network as a continuou
function of the applied magnetic
field: DTc

(n)(F)5Tc(0)
2Tc

(n)(F) vs F, the magnetic
flux through an elementary hex
agonal cell. In~a! we show the
superconducting-normal phas
boundaries computed from th
truncated HamiltoniansH (n) for
F in the range between 0.3 an
0.7. We omit the parts of
DTc

(n)(F) for FP@0, 0.3# and
@0.7, 1# since there are no inter
esting features in these portions o
DTc

(n)(F). From top to bottom,
the orders of truncation aren59
~top curve!, 10, 13, 16, 21, 31,
41, and 104. Note the develop
ment of fine structures and cusp
The convergence is monotonic
We believe thatDTc

(104)(F) has
achieved close convergence to th
infinite system sizeDTc(F). The
inset schematically depicts a hon
eycomb lattice. In ~b!, we
plot DTc(F) for FP@0.3, 0.7#
and label the values of the mag
netic flux where observable cusp
and dips occur. They include
F51/3, 2/5, 3/7, 4/9, 5/11, 6/13
7/15, 8/17, 1/2, 9/17, 8/15, 7/13
6/11, 5/9, 4/7, 3/5, and 2/3. Her
DTc(F)[DTc

(104)(F)5Tc(0)
2Tc

(104)(F), our calculated
highest-order approximant.
e

te
e

In
h

and

F5
m11

2m11

with m>1. Our computed phase boundary compares w
with the observed cusps present in experiments.20,21

VII. TRIANGULAR LATTICE

For the triangular lattice, we denote the lattice path in
grals byt l . In other words,t l is the exact sum of the phas
21450
ll

-

factors of all l-step closed paths on the triangular lattice.
this section,f/2p corresponds to the magnetic flux throug
an elementary triangular plaquette, i.e.,

f

2p
5

A3c2B

4F0
.

The results fort2 throught10 are

t256,

t3512 cosf,
4-11
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FIG. 5. Superconducting tran
sition temperature for the triangu
lar network as a continuous func
tion of the applied magnetic field
DTc

(n)(F)5Tc(0)2Tc
(n)(F) vs

F, the magnetic flux through an
elementary triangular cell. In~a!
we show the superconducting
normal phase boundaries com
puted from the truncated Hamilto
nians H (n) for F in the range
between 0.15 and 0.85. We om
the parts of DTc

(n)(F) for F
P@0, 0.15# and @0.85, 1# since
there are no interesting features
these portions ofDTc

(n)(F). From
top to bottom, the orders of trun
cation aren55 ~top curve!, 6, 7,
10, 15, 29, and 60. Note the deve
opment of fine structures an
cusps. The convergence is mon
tonic and rapid. Note also that th
closeness between the curves f
DTc

(29)(F) andDTc
(60)(F) implies

thatDTc
(60)(F) has achieved close

convergence to the infinite system
sizeDTc(F). The inset schemati-
cally depicts a triangular lattice. In
~b!, we plot DTc(F) for F
P@0.15, 0.85#, our calculated
highest-order approximation to
DTc(F), and label the values o
the magnetic flux where observ
able cusps and dips occur. The
include F51/5, 1/4, 5/16, 1/3,
3/8, 2/5, 5/12, 3/7, 7/16, 4/9, 9/20
1/2, 11/20, 5/9, 9/16, 4/7, 7/12
3/5, 5/8, 2/3, 11/16, 3/4, and 4/5
Here DTc(F)[DTc

(60)(F)
5Tc(0)2Tc

(60)(F), our calcu-
lated highest-order approximant.
re
t4566124 cos 2f,

t55300 cosf160 cos 3f,

t6510201840 cos 2f1168 cos 4f112 cos 6f,

t756888 cosf12604 cos 3f1504 cos 5f184 cos 7f,

t8519890123904 cos 2f18568 cos 4f11968 cos 6f

1432 cos 8f148 cos 10f,
21450
t95164124 cosf185944 cos 3f129628 cos 5f

18496 cos 7f11980 cos 9f1432 cos 11f

136 cos 13f,

t1054499761654840 cos 2f1317940 cos 4f

1114360 cos 6f137560 cos 8f110380 cos 10f

12700 cos 12f1540 cos 14f160 cos 16f.

Here we explain how the first few lattice path integrals a
4-12
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obtained. Since there is no path of one step for returning
electron to its initial site,t1 is always equal to zero. There a
six closed paths of two steps each@retracing each other on
one bond (•↔), where the dot• indicates the initial site#,
thus

t256•↔56ei0f565z,

wherez is the coordination number of the lattice.
There are 12 three-step closed paths enclosing a triang

cell @three counterclockwise (•,ª ), and three clockwise
(•,¢ )#. Thus

t356•,ª 16•,¢ 56eif16e2 if512 cosf.

There are 66 closed paths of four steps each enclo
zero flux each: six retracing twice on one bond (

•↔
↔ ), 30

starting from a site connecting two adjacent bonds and
tracing once on each bond (↔•↔), and 30 moving two
bonds away and then two bonds back to the original
(
•→
←

→
←). Since all of them enclose no area~i.e., no flux!, then

t4
no flux56

↔
•↔130↔•↔130

←
•→

←
→566.

Among the four-step closed paths, 24 of them encl
adjacent cells enclosing two triangles (12 counterclockw
and 12 clockwise! and contribute

t4
two cells only512e2if112e22if524 cos 2f

to t4 . Thus, it follows thatt4566124 cos 2f.
Note thatt2l (t2l 11) consist of only even~odd! harmonics

of the flux. We have computed the lattice path integrals
the triangular lattice up tot119, which are obtained by ex
actly summing up;1090 closed paths. These calculatedt l ’s
have enabled us to obtain the phase boundary up toTc

(60)(f).
By using the calculated results fort l , the parametersan

and bn , and subsequently the corresponding trunca
Hamiltonians H (n), can be obtained. For instance, th
second-order truncation of the Hamiltonian is

H (2)5F 0 A6

A6 2 cosfG .

Its corresponding top eigenvalue is

Tc
(2)~f!5cosf1A61cos2f.

The third-order truncation of the Hamiltonian is

H (3)5F 0 A6 0

A6 2 cosf A114 cos2f

0 A114 cos2f
28 cosf116 cos3f

114 cos2f

G .

Its corresponding top eigenvalueTc
(3)(f) can also be ob-

tained analytically.
In Fig. 5, we show the superconducting transition te

peratures,DTc
(n)(F)5Tc(0)2Tc

(n)(F), as functions ofF
21450
n

lar

ng

e-

e

e
e

r

d
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[f/2p for various n for the triangular network obtained
from the truncated HamiltoniansH (n). HereTc(0) equals 6,
which is the largest eigenvalue of tight-binding electro
confined on the triangular lattice in the absence of a m
netic field. The following physical picture is clear from thos
plots: as the order of approximation is increased, more g
metrical information of the lattice is included in the interfe
ence treatment and more fine structures are resolved.

FIG. 6. Superconducting transition temperature for the kago´
network as a function of the applied magnetic field:DTc

(n)(F)
5Tc(0)2Tc

(n)(F) vs F, the magnetic flux through an elementa
triangular cell. In~a! we show the superconducting-normal pha
boundaries computed from the truncated HamiltoniansH (n) for
F in the range between 0 and 1. From top to bottom, the order
truncation aren54 ~top curve!, 5, 6, 8, 10, 19, and 50. Note th
development of fine structures and cusps. The convergenc
monotonic. Note also that the closeness between the curves
DTc

(19)(F) and DTc
(50)(F) implies that DTc

(50)(F) has achieved
close convergence to the infinite system sizeDTc(F). The inset
schematically depicts a kagome´ lattice. In ~b!, we plotDTc(F) for
FP@0, 1# and label the values of the magnetic flux where obse
able cusps and dips occur. They includeF51/12, 1/8, 4/25, 1/4,
1/3, 3/8, 5/8, 2/3, 3/4, 19/24, 7/8 and 11/12. HereDTc(F)
[DTc

(50)(F)5Tc(0)2Tc
(50)(F), our calculated highest-order ap

proximant. Note the absence of the cusp atF51/2. This distinct
feature is in sharp contrast to the cases for square, honeycomb
triangular networks.
4-13
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Our highest-order approximant,Tc
(60)(F) has closely

reached the infinite- system- size limitDTc(F). The flux
values where the cusps occurred have also been labele
general, besides the cusps atF51/2, 1/5, 4/5, 5/16, 11/16
there are cusps and dips at

F5
m

2m12

and

F5
m12

2m12
,

with m>1.

VIII. KAGOME´ LATTICE

Our computed phase boundary compares well with
observed cusps present in a series of interes
experiments.20,21

For the kagome´ lattice,15,20–24we denote the lattice pat
integrals bykl . In other words,kl is the exact sum of the
phase factors of alll-step closed paths on the kagome´ lattice.
Heref/2p corresponds to the magnetic flux through an
ementary triangular plaquette, i.e.,

f

2p
5

A3c2B

4F0
.

The results fork2 throughk11 are

k254,

k354 cosf,

k4528,

k5560 cosf,

k65244116 cos 2f14 cos 6f,

k75756 cosf128 cos 7f,

k8524121416 cos 2f196 cos 6f180 cos 8f,

k959216 cosf176 cos 3f136 cos 5f1756 cos 7f

1120 cos 9f,

k1052580417560 cos 2f11860 cos 6f12480 cos 8f

1100 cos 10f120 cos 14f,

k115112420 cosf12816 cos 3f11276 cos 5f

114608 cos 7f14400 cos 9f144 cos 11f

144 cos 13f1176 cos 15f.

Note thatk2l (k2l 11) comprise only even~odd! harmonics of
the flux. We have computed the lattice path integrals for
kagomélattice up tot99, which are obtained by exactly sum
21450
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FIG. 7. DTc(F)’s as functions ofF between 0 and 1 for the
superconducting square, honeycomb, triangular, and kagome´ net-
works, respectively, from~a! to ~d!. Notice the difference in the
vertical scales.
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ming up;1058 closed paths. These calculatedkl ’s have en-
abled us to obtain the phase boundary up toTc

(50)(f).
By using the calculated results forkl , the parametersan

and bn , and subsequently the corresponding trunca
Hamiltonians H (n), can be obtained. For instance, th
second-order truncation of the Hamiltonian is

H (2)5F0 2

2 cosfG .
Its corresponding top eigenvalue is

Tc
(2)~f!5

1

2
~cosf1A161cos2f!.

The third-order truncation of the Hamiltonian is

H (3)5F 0 2 0

2 cosf A32cos2f

0 A32cos2f
cosf1cos3f

32cos2f

G .

Its corresponding top eigenvalueTc
(3)(f) can also be ob-

tained analytically.
In Fig. 6, we show the superconducting transition te

peraturesDTc
(n)(F)5Tc(0)2Tc

(n)(F) as functions ofF
[f/2p for variousn for the kagome´ network obtained from
the truncated HamiltoniansH (n). HereTc(0) equals 4 which
is the largest eigenvalue of tight-binding electrons confin
on the kagom e lattice in the absence of the magnetic fiel
is seen that as the order of the approximation is increa
more geometrical information of the lattice is included in t
interference treatment and more fine structures are reso
We emphasize that our highest-order approximantTc

(50)(F)
has closely reached the infinite-system-size limitDTc(F).
The flux values where the cusps and dips occurred have
been labeled. Our computed phase boundary compares
with the observed cusps present in a series of interes
experiments.20,21 See also the systematic calculations
Ref. 22.

IX. DISCUSSION

In the following, we discuss the general trends in the
proximants for these phase diagrams presented in the a
sections.

A. Comparison of the structure in the phase boundaries

In the lower-order approximants, the first noticeable d
velopment in the phase boundaries of square, honeyco
and triangular lattices is the formation of dips when the fl
per elementary plaquette is equal tomF0/2, wherem is an
integer. When the order of approximation is increased,
dips atF51/2 become sharper and at the same time m
fine structures~other local minima! begin to emerge. Even
tually, the dips at various different flux values become cus

It is interesting to notice that, among these three lattic
the development of the cusps is most rapid for the triang
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case while the honeycomb is the slowest. This differen
originates from the fact that for identical lengths, lattice pa
integrals for the triangular lattice contain the richestquantum
interferenceeffects because the number of paths and the
eas they enclose are both the largest. For the kagome´ net-
work, the rapid development of cusps at

Fkagome´5
1

8
,
1

4
,
3

8
,
5

8
,
3

4
,
7

8

can be seen from lower-order approximants. For an ad
tional discussion of the kagome´ case, see Ref. 15. For exten
sions of these techniques to other problems, see Ref. 25

In general, the resulting phase diagrams—with the occ
rence of cusps and dips at different sets of flux values—a
direct consequence of the geometries of the lattices, whic
explicitly reflected in the corresponding expressions of
lattice path integrals. We stress that our evaluation of
lattice path integrals to extremely long lengths has enab
our calculatedTc(B) to achieve close convergence to th
infinite system size. Indeed, forn.10, important features in
the phase boundaries of square, triangular, and kagom e
works are well developed.

Finally, in order to facilitate a comparison between t
different phase boundaries, in Fig. 7 we plotDTc(F) as a
function of F for the square, honeycomb, triangular, a
kagomésuperconducting networks. Here theDTc(F)’s are
taken from their respective highest-order approximants
F is the flux through their respective elementary cells
discussed in the previous sections. Here we omit the s
scripts indicating the order of approximation. The values
the magnetic flux corresponding to a number of promin
cusps and dips are also labeled.

B. Comparison of the phase boundaries of the single-loop
and lattice cases

From Figs. 1 and 7~a!–7~c!, we can readily see the differ
ences between the phase boundaries of a single supe
ducting cell and its corresponding superconducting netwo
For both cases,DTc varies periodically with the magneti
flux through a single elementary cell and has the same pe
F0 of oscillation. We now focus onDTc(F) for F in the
interval between 0 and 1.DTc(F) is symmetric aroundF
51/2. However, there are many distinct features betw
DTc of a single cell and that of a network. These differenc
are due to long-range correlations of the many-loop eff
present in the lattice. For a single superconducting c
DTc(F) increases monotonically fromF50 to F51/2 and
decreases monotonically fromF51/2 to F51. The maxi-
mum at F51/2 exhibits a sharp peak. Indeed, the over
shape ofDTc(F) resembles the combination of two identic
half parabolas, both reaching their maximum atF51/2. On
the contrary, the overall shape ofDTc(F) for the corre-
sponding superconducting networks looks like downwa
parabolas with many local cusps betweenF50 andF51.
The most prominent cusps are located atF51/2. The posi-
tions of other cusps and dips depend on the underlying lat
types of the networks.
4-15
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C. Differences between our approach and the traditional
moments and Lanczos methods

In electronic structure calculations there is a method
compute the density of states called the moments met
This is similar to our approach in the sense thatm l can be
interpreted as the moments^C i uHl uC i&. However, there are
several important differences between the standard ‘‘m
ments method’’ and our problem. The typical use of the m
ments method~i! focuses on computation of the electron
density of states~instead of superconductingTc’s!, ~ii ! is
totally numerical~instead of mostly analytical!, ~iii ! is done
at zero magnetic field~instead of obtaining expressions wi
an explicit field dependence!, ~iv! does not focus on the ex
plicit computation of lattice path integrals, and~v! does not
study the physical effects of quantum interference~which is
at the heart of our calculation and physical interpretation!. In
conclusion, the traditional use of the moments method
solid-state physics is significantly different from the a
proach and problem studied here.

Another way to diagonalize Hamiltonians is called t
Lanczos method. This method directly obtains the tridiago
form, without computing the moments, and thus differs in
significant way from the approach used here~where the ex-
plicit computation of the moments is one of our goals, sin
they can be used for other electronic property calculatio!.
Furthermore, it is not convenient to use the standard Lanc
method in our particular problem because it is extrem
difficult to directly derive the parameters and the states of
iterative tridiagonalization procedure. This is so because
the presence of the magnetic field. On the other hand,
moments method provides standard procedures to diago
ize a matrix after the moments are computed.

D. Commensurability and other matching effects

An essential physics issue in this problem iscommensu-
rability. Another one isquantum interference—due to the
motion of electrons in multiconnected geometries. This s
tion briefly overviews related systems where commensu
bility and matching effects~due to externally applied mag
netic fields! play an important role. The first example will b
flux pinning.

Flux pinning in type-II superconductors is of both techn
logical and scientific interest. While most experiments foc
on the effects of random pinning distributions, some inve
gations have been carried out on periodic arrays of pinn
sites.1,26 These find striking peaks in the magnetization27 and
critical currentJc . These peaks are believed to arise from
greatly enhanced pinning that occurs when parts of the
tex lattice~VL ! become commensurate with~i.e., match! the
underlying periodic array of pinning sites. Under such co
ditions, high-stability vortex configurations are produc
which persist under an increasing current or external fiel

Other important vortex matching effects have also
cently been observed in a variety of different supercondu
ing systems,28–30 including long Josephson junctions wit
periodically spaced grooves,29 superconducting networks,26

and the matching of the VL to the crystal structure
YBa2Cu3O7 due to intrinsic pinning.30
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Matching effects between a vortex lattice and perio
pinning arrays produce a rich variety of effects.31 The dy-
namics observed in these systems is quite different from
one found for random arrays of pinning sites~see, e.g., Ref.
32 and references therein!.

Nonsuperconducting systems also exhibit magnetic-fie
tuned matching effects, notably in relation to electron mot
in periodic structures where unusual behaviors arise du
the incommensurability of the magnetic length with the l
tice spacing. A recent example of these is provided by
anomalous Hall plateaus of ‘‘electron pinball’’33 orbits scat-
tering from a regular array of antidots.

Commensurate effects also play central roles in ma
other areas of physics, including plasmas, nonlin
dynamics,34 the growth of crystal surfaces, domain walls
incommensurate solids, quasicrystals, and Wigner crys
as well as spin and charge density waves. The next sec
discusses in some detail an example in nonlinear dynam
~which is virtually unknown in the solid-state literature! that
produces a fractal phase boundary which is strikingly sim
to the one measured for square superconducting networ
because both are determined by commensurability effec

E. Kagomé-pinned vortices: ‘‘Correlated melting’’
and cooperative ring excitations for doubly degenerate

ground states

Notice that the fluxoid configurations forf 51/2 for the
superconducting networks~e.g., Fig. 3 of Xiaoet al., in the
companion article20! has two ground states that correspond
the two degenerate ground states of the second matc
field of vortices in type-II superconductors with a kagom´
periodic array of pinning sites. The latter has been syste
atically studied in Ref. 24.

The kagome´ pinning potential at the second matchin
field shows novel and interesting dynamics as a function
temperature,24 including a phase with rotating vortex tri
angles caged by kagome´ hexagons~‘‘cooperative ring el-
ementary excitations’’!, and there is geometric frustration fo
T→0 with a doubly degenerate ground state. At finite te
peratures, the three vortices inside the kagom e hexagon
move and rotate by 60°. This is done cooperatively by
three vortices. They motion is similar to the ‘‘cooperativ
ring exchange’’ motion proposed by Feynman for element
excitations in helium 4.

In other words, for the second matching field for th
kagomépinning lattice, the elementary excitation of the thr
interstitial vortices is a 60° rotation, rotating as a cooperat
ring. These types of collective or correlated cooperative r
exchanges have also been studied in the context of the q
tum Hall effect.

For increasing temperatures, a novel type of melting24 ap-
pears, which is not treated here using our path-integral
proach, but can be studied using other techniques.24 This can
be described as ‘‘correlated melting’’ in the sense that
‘‘triangle’’ or ‘‘loop’’ first melts in the angular coordinate,
while the radial coordinate does not melt until much high
temperatures are reached. The elementary excitations ar
thermal analog of certain types ofsqueezed states~where
4-16
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fluctuations strongly affect a coordinate and less the o
coordinate!. They are also analogs of therotational isomers
or ‘‘comformations’’ that are often found in molecule
where three atoms and molecules can cooperatively osci
back and forth between two degenerate ground states.

This type of ‘‘controlled melting’’ or ‘‘correlated
melting’’24 of the particles inside a potential energy tr
could also be visualized with a colloidal suspension s
rounded by six pinned~e.g., by laser tweezers! charged par-
ticles. This type of ‘‘vortex-analog’’ experiment is easier
visualize ~e.g., via optical microscope! than using vortices.
Still, Lorentz microscopy techniques35 could directly image
such motions in the vortex case.

F. Fractal phase boundaries and fractal boundaries of basins
of attraction

There is a striking similarity between two apparently u
related problems: the superconducting-normal phase bo
ary of a square superconducting network~our Fig. 2! and the
fractal phase boundary~see, for instance, Fig. 6.26 of Re
34! of basins of attraction of a dynamical systems map st
ied last century by Weierstrass and generalized much late
Hardy in 1916.

The reason for this very interesting similarity among the
two apparently unrelated problems is because the comm
surability condition dominates both problems and produce
large dip at 1/2 and smaller dips at 1/4, 1/3, 2/5, etc.,
discussed previously in this work.

It is interesting to summarize how to obtain the Weie
strass fractal boundary of two basins of attraction.34 Consider
the dynamical mapM,

~xk11 ,uk11!5M ~xk ,uk!,

defined by

xk115lxk1cosuk

and

uk1152uk~mod 2p!.

When 1,l,2, the mapM has two attractors, atx5
6`. Indeed, since the eigenvalues of the Jacobian matrix
2 andl.1, there are no finite attractors. Therefore,

MN~x0 ,u0!5„xN ,uNmod~2p!…,

andxN tends to either1` or 2` asN→`, except for the
unstable boundary set

x5 f ~u!,

for which xN remains finite.
To locate thisx5 f (u) boundary set, first note that

uk52ku0~mod 2p!.

The map is noninvertible since it is two to one. However, a
xN can be selected and then find one orbit that ends
(xN ,uN), by using the aboveuk and taking

xk215l21@xk2cos~2k21u0!#.
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For a given (xN ,uN), this orbit starts at

x05l21xN2 (
l 50

N21

l2 l 21cos~2lu0!.

Those (x0 ,u0) such thatxN is finite asN→`, define the
boundaryx5 f (u) between the two basins. Therefore the
lation between thesex andu is given by

x52(
l 50

`

l2 l 21cos~2lu0![ f ~u!. ~8!

This sum obviously converges, sincel.1. However, its
derivative

d f~u!

du
5

1

2 (
l 50

` S 2

l D l 11

sin~2lu!

diverges, sincel,2. Thus, f (u) is nondifferentiable. Like
our superconducting-normal phase boundary, it has a l
cusp at 1/2 and smaller cusps at 1/3, 1/4, 2/5, etc. Moreo
it is also symmetric around 1/2, and it strongly resembles
DTc(F) @obtained nearR(T)50# for a square lattice. In-
deed,DTc(F) corresponds tox, F to u, andl corresponds
to how close the measurement is done to the critical poi

Whenl approaches 2 from below, the fractal dimensi
dc approaches 1~mean-field limit, when the measurement
not done close to the critical point!. Whenl approaches 1
from above, the fractal dimensiondc approaches 2, from
below.

The fractal dimension ofx5 f (u), Eq. ~8! above, is

dc522
ln l

ln 2
.

The precise value ofdc depends on the value ofl. Recall
that 1,l,2. For l sligthly less than 2, the fractal dimen
sion dc approaches 1, and the dips are not pronounced.
is similar to the superconducting-normal phase bounda
measured not too close toTc @e.g., at midpoint drop for the
R(T) plot#. When the phase boundary is measured very n
Tc @whenR(T) is very near zero#, the number of discernible
dips grows and they become very sharp~see, e.g., Figs. 10
and 11 of Ref. 14!. This would corespond tol slightly above
1; thus, the fractal dimensiondc of the Weierstrass function
would be closer to 2~i.e., a ‘‘rougher’’ or ‘‘spikier’’ curve!.

Indeed, Ref. 14 solved forDTc(F) beyond the mean-field
theory approximation, obtaining a phase boundary simila
the Weierstrass function forl slightly above 1, anddc near
2. That superconducting-normal phase boundary in Ref
has very sharp cusps and dips, and~like the Weierstrass func
tion! it is a phase boundary between attractors. The map for
the superconducting networks is obtained from a real-sp
renormalization-group technique. The mean-field limit p
vides a smoother phase boundary withl closer to 1. The
real-space bond decimation scheme of Ref. 14 also fa
fluxes of the formF52lF0. This is clear from the way the
real-space renormalization-group scheme is construc
where four elementary cells are ‘‘blocked away’’ into a larg
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cell with new renormalized effective couplings. Four of the
supercells are then blocked away into another, larger c
enclosing 16 elementary cells~or 4 supercells!. This process
is iterated, until the renormalization-group~RG! procedure
coverges~at the phase boundary! or diverges to fixed points
located away from the fixed point~e.g.,1`). This ~beyond-
mean-field! RG iteration14 and the Weierstrass iteration in
volve very similar types of maps and this generates the st
ingly similar curves.

In summary, the Weierstrass function and our real-sp
renormalization-group approach14 both produce phase
boundaries which are strikingly similar. In particular, bo
are nondifferetiable, symmetric around 1/2, and have a v
similar hierarchy of cusps.

X. COMPARISON OF THE PHASE BOUNDARIES
OF SUPERCONDUCTING HONEYCOMB

AND KAGOMÉ NETWORKS

Here we discuss an interesting relation between the ph
boundaries of superconducting honeycomb and kagome´ net-
works which is due to thegeometricalarrangements of thes
two types of lattices. Indeed, and as kindly pointed out to
by Xiao and Chaikin~e.g., see Ref. 20!, it is very useful to
focus on the region 0<F<1 for the honeycomb network
and the region 0<F<1/8 for the kagome´ network.

As shown in Figs. 8~a!–8~d!, though the overall shapes o
the phase diagrams are different, there is a one-to-one co
spondence between the dips in the honeycombDTc(F) for
F, the flux through an elementary hexagon, in the ran
@0,1# and those in the kagome´ DTc(F) for F, the flux
through an elementary triangle, in the ranges@0,1/8#,
@1/8,1/4#, and@1/4,3/8#. To state this relationship more pre
cisely, let $p/q% be the set of flux values characterizing
number of dips in theDTc(F) curve for the honeycomb
network. For instance, as labeled in~a!,

$p/q%51/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3.

It is observed that the corresponding set of flux values for
dips to occur in the kagome´ DTc(F) curve would be$p/8q%
whenF lies in the range@0,1/8#. Similarly, the correspond-
ing sets read, respectively,

F5H 1

8
1

p

8q
5

p1q

8q J
for FP@1/8, 1/4# and

F5H 1

4
1

p

8q
5

p12q

8q J
for FP@1/4, 3/8#. Note that forF in the range@1/4, 3/8#,
the dips in theDTc(F) curve become less evident: only fiv
flux values are observed and labeled. The location and m
nitude of the dips found here are consistent with recent v
interesting experiments by the NEC and Princet
groups.20,21

Recall that kagome´ magnets are known to have degene
ate ground states~see, e.g., Ref. 23 and references there!.
Likewise, for superconducting kagome´ networks at half fill-
4-18
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ing, there are several possible ways to arrange fluxes,
ducing a large degeneracy in theT50 ground state.15 This
issue of degeneracy between two states has been syste
cally studied as a function of temperature via computer sim
lations on superconducting samples with a kagome´-arranged
periodic array of pinning sites.24 The second matching field
in this system has two fluxons per pinning site. This cor
sponds to thef 51/2 state in the kagom e superconducti
network. For this value of the externally applied magne
field, every hexagon has two states~with entropykB ln 2). N
hexagons would have 2N states and a very large entropy

S(N hexagons);NkB ln 2.

Thus, at the second matching field, superconductors w
either a kagome´ or an hexagonal array of pinning sites bo
have ‘‘low-energy states’’ with a very large degeneracy an
huge ~low-T) entropy. Thus, when cooling from high tem
peratures, it is difficult to find a uniqueT50 ground state.
Transport measurements and mean-field theory perh
might not be sufficient to fully elucidate the role of bistab
ity and degeneracy in this system. In order to explore t
scenario in a more systematic manner, different tools~e.g.,
flux imaging techniques35 and computer simulations24 of vor-
tex dynamics on kagome´ lattices! might be needed.

After this work was completed, we became aware o
very interesting relevant work by Park and Huse in Ref.
Using Ginzburg-Landau theory, they study superconduc
kagoméwire networks in a transverse magnetic field wh
the magnetic flux through an elementary triangle is a half
a flux quantum. They calculate the helicity moduli of ea
phase to estimate the Kosterlitz-Thouless~KT! transition
temperatures. At the KT temperatures, they estimate the
riers to move vortices and the effects that lift the large d
generacy in the possible flux patterns.

XI. SUMMARY

In conclusion, we present a detailed study of the me
field superconducting-normal phase boundaries of super
ducting square, honeycomb, triangular, and kagome´ net-
s:
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works. Our investigations are based on studying the quan
interference effects arising from the summation of all t
closed paths the electron can take on the underlying latti
Other problems25 have also been studied in terms of t
quantum interference of electron paths. We then adopt a
tematic approximation scheme to obtain the spectral edge
the corresponding eigenvalue problems, and relate the
tures in the phase boundaries with the geometry of the
derlying lattice being explored by the moving electron
When the electrons are allowed to explore a sizable regio
the network, our calculations have quickly reached v
close convergence to the infinite-system size-results. Th
are two particular advantageous aspects of this appro
First, it enables us to evaluate the superconducting trans
temperature as acontinuousfunction of the applied magneti
field. Second, it enables us to achieve a step-by-step de
tion of thephysical originof the many structures in the phas
diagrams—in terms of the regions of the lattice explored
the electrons. In particular, the larger the region of the n
work the electrons can explore~and thus more paths ar
available for the electron!, the finer structure appears in th
phase boundary and the sharper the cusps become. We
many new interesting features in these phase diagra
which compare well with experiments.
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