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We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of
two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse
magnetic field. The geometries we consider include square, honeycomb, triangular, and kattjoese Our
approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference
between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we
compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of
different lengths. A very large number, e.g., up t&4@r the square lattice, of exact lattice path integrals are
obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition tem-
perature as a continuous function of the field. In particular, we can analyze measurable effects on the super-
conducting transition temperatuiig(B) as a function of the magnetic fieB, originating from the electron
trajectories over loops of various lengths. In addition to systematically deriving previously observed features
and understanding the physical origin of the dipsTiiB) as a result of multiple-loop quantum interference
effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of
square networks. Our approach allows us to analyze the complex structure present in the phase boundaries
from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices. The
physical origin of the structures in the phase diagrams is derived in terms of the size of regions of the lattice
explored by the electrons. Namely, the larger the region of the sample the electrons can @xuldiais the
larger the number of paths the electron can Yattee finer and sharper structure appears in the phase boundary.
Our results for kagomand honeycomb lattices compare very well with recent experimental measurements by
Xiao et al. [preceding paper, Phys. Rev.a@5, 214503(2001)].
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[. INTRODUCTION ance, physical quantities should be periodic functions of the
cell fluxes, with a period ofb,. These arguments qualita-
When immersed in an externally applied magnetic field tively explain the apparent periodic or quasiperiodic struc-
superconducting networksnade of thin wires, proximity- tures observed in phase diagrams of networks of various ge-
effect junctions, and tunnel junctions exhibit complex andometries.
interesting forms of phase diagrams. These superconducting To gain a quantitative description of the phase diagrams,
networks have been studied in various kinds of geometriesye employ the mean-field theory which is very effective in
including simplé and complek® periodic lattices, regular serving such a purpose. For wire networks, the mean-field
fractals? bond-percolation networl&disordered arraydand ~ expression is given by the Landau-Ginsburg equation ex-
quasiperiodic lattice§:* The rich structure present in the pressed in terms of the order parameters at the ntdes:. a
resistive transition temperature as a function of the magnetifinction array, one has a set of self-consistent equdtidfis
field, namely, the superconducting-normal phase diagranfpr the thermally averaged pair wave functions of the grains.
has a rich structure that has been the subject of various esuch equations are linearized near the transition point, and
perimental and theoretical investigatiohs° the highest temperature at which a nontrivial solution first
appears is identified as the transition temperature. Therefore,
one is left to find the top spectral edge of eigenvalue prob-
lems. The equations for a junction array can be mapped onto
The rich structure in the phase diagram is essentially @ tight-binding Schrdinger problem for an electron hopping
result of the quantum interference effect or frustration due twn a lattice immersed in a magnetic field. The equations for
the magnetic field and the built-in multiconnectedness of thea wire network are in general more difficult to solve, because
networks. The magnetic fluxes through the cells of varioushe eigenvalue appears in a nonlinear way.
areas, measured in units of the superconducting flux quantum Numerical results have been obtained for phase diagrams
Py=hc/2e, are useful parameters to characterize the interef networks of various geometries. All of them compare very
ference effect. At zero magnetic field, the quantum interferwell with the corresponding experimental data; the locations
ence effect is absent, and therefore the resistive transitioof the peaks of various sizes are correctly predicted and the
temperature should have a peak. Also, due to gauge invarielative heights of the peaks are also reproduced with occa-

A. Physics of the phase diagram
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sional small deviations. The success of mean-field tHédry and other related methods. In Sec. X, we compare the phase
suggests that much of the frustration effect in a statisticaboundaries of honeycomb and kagotattices. The last sec-
problem can be accounted for in terms of quantum interfertion summarizes our results.

ence effect of linear wave mechanics.

IIl. GENERAL FORMALISM

B. Many-loop generalization The physics ofT(B), the superconducting-normal phase
of the standard Aharonov-Bohm effect boundary as a function of the fiel, is determined by the

In this paper, we systematically investigate the ﬁe|d_electronic kinetic energy because the applied field induces a

dependent superconducting-normal phase for a variety iamagnetic current in the superponduétoThis _current

two-dimensional superconducting networks. The basis of oufProportional to the velocitydetermines the kinetic energy

approach is an analytic study of electron quantum interferpf_the system. Inf (;]ther words, the kinetic energy can be

ence effects originating from sums over magnetic phase facVMtten in terms of the temperature as

tors on closed lattice paths. The sums of these phase factors, 52 52

called lattice path integrals, are many-loop generalizations _ V2~——2~TC(B)—TC(0),

of the standard one-loop Aharonov-Bohm-type argument, 2m* 2m* &(T)

where the electron wave function picks up a phase factor . .

e® each time it goes around a closed loop enclosing a ne\1elhere, for any superconducton; is twice the electron mass

flux . and
We compute analytically the lattice path integrals up to £0)

very long lengths for various types of lattices. These lattice &M=

path integrals contain the quantum interference of enormous V1=T(B)/T.(0)

numbers of closed paths. Through an iterative approac

these results then enable us to obtain the correspondin(% obtainina T ; L

1415 . . gT(B) is then mapped to that of finding the
p?ztihse boulr.]d;rf'.é%ld aTShf:ontmtl;OLéS funqgons of thte stret_ngth spectral edges of tight-binding electrons on the correspond-
of the applied field. 1his method provides a systematic aping lattice. Thus, assuming a unit hopping integral between
proximation sc_heme, through finite truncations, for the Spe(:adjacent sites, we consider the Hamiltonian
tral edges of eigenvalue problems from which our mean-fiel
phase diagrams can be computed. Thus, we can gain consid-
erable theoretical insight into the physical origin of the struc- H= 2 CiTCj expliA;j), (1)
ture in the phase diagrams. This approach also enables us to )
analyze the structure of the phase boundaries from the viewwhich describes the kinetic energy of electrons hopping on a
point of the geometric features of the networks. We applydiscrete lattice subject to a perpendicular magnetic field.
this approach to study the phase boundaries of square, hohtere (ij) refers to nearest-neighbor sites and the magnetic
eycomb, triangular, and kagontadtices. Our studies provide phase
a complete and detailed analysis of the relationship between
the phase diagram structures and the corresponding network A —2m f
geometries. 1

Ws the temperature-dependent coherence length. The problem

[
A-dl

I

is 27r times the line integral of the vector potentiél, along
C. Organization of the paper the bond fromj to i in units of the®,=hc/2e.

This paper is organized as follows. In Sec. Il, we describe
the general formulation of our approach to the determination A. Sums over closed paths
of phase diagrams for a variety of periodic superconducting The |attice path integrak, is defined as
networks. To illustrate our calculational scheme, we first
compute the Little-Parks oscillatory phase boundary of a B > ® 5
smgle superconducting loop in Sec. lll. In Sec. IV, we apply HI= 1 closed latticS < athsyof Iengthle 7 @)
this approach to the superconducting square network. We
devote Sec. V to a discussion of a very important and interBy closed paths of lengthwe mean the paths starting and
esting feature observed in the phase boundary of the squag#ding at the same site after traversingieps on the lattice
network, namely, the self-similarity. The superconductingand® , is the sum over phases of the bonds on the path
honeycomb, triangular, and kagormetworks are studied Let|W¥;) denote a localized electron state centered aii site
based on the same approach, respectively, in Secs. VI, VIIs not difficult to notice thaj, corresponds precisely to the
and VIII. In Sec. IX, we discuss some general trends in theguantum mechanical expectation val(d;|H'|W;), which
application of this approach to these types of networks studsummarizes the contribution to the electron kinetic energy of
ied above. Comparisons of the phase boundaries betweenall closed paths of steps. The physical meaning of the lat-
single superconducting loop and the corresponding supetice path integral
conducting network are also made. Furthermore, we present
a brief discussion on the relationship between our approach m=(¥iH|¥)
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thus becomes clear. The Hamiltonillnis appliedl times to  which is a localized state centered at an arbitraryisite the
the initial state|¥;), resulting in the new state lattice, and perform the following expansions:

|We)=H'|¥;) Hlp1) =aq| ) + byl i)

located at the end of the path traversinigttice bonds. Be- and forn>1

cause of the presence of a magnetic field, a magnetic phase

factore'ii is acquired by an electron when hopping frpto H¢n) = bl hn— 1)+ an[ ) + Do o 0)-

the adjacent site. The lattice path integral is nonzero  The Hamiltonian matrix in the basis/,) is obviously in a

only when the path ends at the starting site. In other words,eq) trigiagonal form. Each new state in this method expands

w is the sum of the contributions from allosedpaths ofl o tward by one more step from the site where the starting
steps starting and ending at the same site, each one weightgd,ie is |ocated. Note that the's and b, . ,'s are gauge-
. n

by its corresponding phase factf’s where invariant quantities. Through these parameters we can con-
struct the truncated Hamiltonian matridg§?, which are the

%: netflux enclosed by the closed path nth-order approximation tél. For instance,
os a; by
B. Quantum interference b, a,|’
It is important to stress thab,, depends crucially on the
traveling route of the path.**For instance@., will be posi- a, b, 0
tive (negative by traversing a polygon loop counterclock- HB®)=|b, a, bs]|,
wise (clockwise. Therefore,quantum interferencenforma- 0 by as
tion contained inw, arises because the phase factors of
different closed paths, including those from all kinds of dis- a, b, 0
tinct loops and separate contributions from the same loop,
interfere with each other. Sometimes, the phases correspond- L@ b, a, bz O
ing to subloops of a main path cancel. 0 by ag by’
To analytically comput¥é1°the lattice path integralg, is 0 0 b a
4 4

in general a difficult task sincg, involves an enormous
number of different pathggrowing rapidly whenl in-  and so on. The quantity we desire, i.e., the top spectral edge,
creasep each one determined by its corresponding net magean then be obtained by solving the eigenvaluesl 6t and

netic phase factor. We have developed systematic and effiyi|| pe designated b)ﬂ'g”), which is thenth-order approxi-
cient methods to calculate the lattice path integrals for gnant to the phase boundary. This scheme is useful because
number of distinct lattices. The techniques involve succestinite truncations give good approximationsTg(B).

sively iterating the constructed recursion relations and ex- The coefficients,,'s andb,, ;'s can be exactly expressed
ploiting the symmetries of the underlying lattices. The tech-in terms of the lattice path integrals in a systematic manner,
nical details of the implementation will be presentedyhich will be presented below, respectively, for the bipartite
elsewhere. Below we will only list the first few calculated ang nonbipartite lattices. In general, given the lattice path
lattice path integrals in relevant places. Results for the Ia’tticqamegra|S up to the ordet,, _;, which contains information
path integrals of larger will not be presented due to their on the guantum interference effects due to closed paths of
lengthy expressions, but will be used in some of our calcup| — 1 steps, we can obtain the coefficients ugtcandb, .

lations. Thus, thel th-order truncation of the Hamiltonian matrix can

In summary, the lattice path integrals summarize the elecye constructed. and Subsequeﬂt&) can be obtained.
tron quantum interference effects originating from sums over ’

magnetic phase factors on closed lattice paths. The sums of
these phase factors, the lattice path integrals, are many-loop . ) o .
generalizations of the standard one-loop Aharonov-Bohm- We first discuss the case for bipartite lattices where the
type argument, where the electron wave function picks up gatnce_ path integrals of odd number steps are identically
phase factoe'® each time it goes around a closed loop en-Z€f0. I.€.,

closing a net fluxd.

1. For bipartite lattices

M21+1=0.

C. Computation of the energy eigenvalues from lattice It is evident that
path integrals

. - . a,=0
We now outline the scheme for obtaining the eigenvalues n

from_the.calculated Iatt_ice path integrals. Let us apply thefor any n. To compute theb,.;’s, we define an auxiliary
Hamiltonian to the starting state matrix B with the first row elements given by
[p)=[T)), Bi=ua .
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The other rows are evaluated by using only one immediat®elow we explicitly express the first fea,’s andb,, ;s in

predecessor row. Namely, fege=2 andl=1

. B B — —iy 3
Bk 11 IEO k,iPk—1]—i ( )
where

Bn,OE]—

forn=1. Theb, . ,’s are obtained from the elements of first

columns of the matriB as

bni1=vBn1 (4)

Below we explicitly express the first fety,, 4’s in terms of
the lattice path integrals noting that, is always equal ta,
the coordination number of the lattice:

bzz\/ﬂ—:\/i

b3: \I%_Z,

b \/Me_ 2uz+z®  py—7
4= - :
pa—2° z

terms of the lattice path integrals:

a.l:O,
a, =23
2 Z ’

3
WwsZ®— 2 a3z + p3

3=

a2’ — usz—7"

and

The above expressions are valid for any type of nonbipartite
lattice.

It is worth stressing that the number of elements on a
specific row is always less than that on the immediate pre-
decessor row by 2. For instance, for a spedifid the matrix
elements run fronN, ; to Ny |, the elements in the next row
run fromN, ; 1 t0 Ny 4. Therefore, given the lattice path

These expressions are applicable to any type of bipartittegrals up tow,, . ;, the matrixN consists ofL +1 rows.

lattice.

The Lth row has only three elemenit$_;, N ,, andN|_ 3,

It is worthwhile to point out that the number of elements whereb, , ; can be obtained fronN, ,, andN, ;. The (L
on a specific row is always less than that on the immediater 1)th (last row has only one elemem, . ; from which

predecessor row by 1. For instance, for a spedifid the

we can deduce, . 4. It is clear now that the highest-order

matrix elements run frony ; to By, the elements in the approximationT{-**) to the phase boundary can be obtained

next row run fromBy, ; ; to By, 1,_;. Therefore, given the fom w1

lattice path integrals up t@,, , the matrixB consists ofl
rows. ThelLth (lash row has only one elemer, ; from

which we can deducb,_, ;. It is clear now that the highest-
order approximationt-*%) to the phase boundary can be

obtained fromu,, g, - . . oL -

2. For nonbipartite lattices

Turning to the nonbipartite lattice case, we now define al

auxiliary matrix N with the first row elements given by

Nyj=p.

M2 a2l +1-
Ill. SIMPLE ILLUSTRATION:
A SINGLE SUPERCONDUCTING LOOP

Before we study the lattice cases, we apply the formalism
described above to three simple single-cell cases. Namely,
we calculate, respectively, the transition temperature of a

nsingle superconducting loop in the shape of a square, a hexa-

gon, and a triangle. Exact solutions of the phase boundaries
can be obtained for these simple cases. For all of thése,

= ¢/27 stands for the magnetic flux through these elemen-
tary cells, in units ofd,,.

The other rows are evaluated by using only one immediate The |attice path integralg, now correspond to the sums

predecessor row. Namely, fae=2 andl=1,

-1
Ni—1)+2= Ng—11Nk—1)+1
— > NNy

Ny, =
, 2 .
Ng—12—Nig_11 =0

©)

whereN, =1 for n=1. Thea,’s andb,,’s are obtained
from the elements of the first and second columns as

an= Nn,l (6)

and

bri1=+VNyo— Nﬁ,l- (7)

over all closed paths dfsteps on a single cell. Closed-form
results for the lattice path integrals are derived. They are,
respectively,

[1/2]
us)=ct'+ 2k21 CP! , cogke)
on a square,
[1/3]

ps=Cc?+ 221 C?! 5 cogke)

on a hexagon, and
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(73] 0 1 0 0
phl=Cl'+22, Cllycod2ke), .
B 1 0 COS(E) 0
[(1-1)/3] \/_
(t) — 21+1 H.= 2 ,
Myi+1=2 go CiZ3i-1c04(2k+1) ] s 0 cos(g)’ 0 Sin(?)
on a triangle. Here ¢
0 0 sin(—)‘ 0
m! L 2 ]
Chl=————
n'(m—n)!

is the binomial coefficient, and the notatigx] means the Which is obtained by using only,, x4, andue. A closed-
largest integer equal to or smaller thanThrough these re- form expression for the top eigenvalue lef can be easily
sults for the lattice path integrals, it is straightforward toobtained:

compute the parametees,’s and b, {’s. In fact, for these

small simple systems, the iterative process terminates very

quickly. In other words, the parametaag's andb,,,;'s be- )

come identically zero after a few iterations. Hence, the cor- T(p)=1\/2+2 COf{ E)'

responding exact tridiagonal Hamiltonian matrices can be

readily constructed.

B. Hexagonal loop
A. Square loop

Denoting the tridiagonal Hamiltonian matrix for the  Similarly, denoting the tridiagonal Hamiltonian matrix for

square loop byH, we find that the hexagon loop by, we find that
[0 2 0 0 0 0]
V2 0 1 0 0 0
H 0 1 0 V1+cog ¢) 0 0
"1 0o 0 \itcodg) 0 Ji—cog¢) O]
0 O 0 V1—coq ¢) 0 1
L0 © 0 0 1 0
which is obtained by using only,, w4, ue, g, @anduqg. Letj be an integer; the top eigenvaluekldf can be expressed as
follows:
\/2 2c0d L1 27) for —2uzj=l <ty
t2cogz+ 5| for —gHdjsso=—5+3],
% 1 . ¢ 1
2005<€> for —§+61sgs§+61,
T =
o \/ 2T for Ligj= 22y
2+2co g—? OI’E J\E\E ),
¢ 5 ¢ T
—2cos<g for §+6]szs§+6j.

C. Triangular loop

Denoting the tridiagonal Hamiltonian matrix for the triangle loopHby, we find that

0 V2 0
H=| V2 cog¢) [sin(¢) |,
0 [sin(¢)| —coge)
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which is obtained by using only,—us. The top eigenvalue dfl; can be expressed as follows:

( 2
200i(§+—

¢ 3 ¢ 1 3
- = ===
or +3J o + 3],

3 2 2
¢ 1 ¢ 1
Te(@)= 2005( ) for _§+3J$E$§+3J,

3
¢ 27 1 ¢4 3 _
\2005(5—? for§+3]<ﬁsz+3].

In Fig. 1, we plot the superconducting transition tempera-Throughout this papei;c denotes the lattice constant of all
ture, AT (P)=T,(0)—T(P)=2—-T,(P), respectively, of the lattices considered in this work. The
a square loop, a hexagon loop, and a triangle loopf@&  S,,S4, ...,S1p are
=®=<2. It is evident that these phase diagrams are qualita-

tively identical. Also, theAT.(®) shown are periodic func-

results for

3224,
tions of ® and the period of the oscillation in the flux is
equal tod,. As expectedAT,(P) have their minima atb S4=28+8 cosg,
=j®d, and their maxima a = ®y/2.

It is interesting to note thak T,(®) has the largest mag-
nitude for the triangular loop and the smallest for the hex-

agonal loop. It will be seen in Sec. X that this one-loopSs=2156+2016 cosp+ 616 cos 2h+ 96 cos 35+ 16 cos4p,
general behavior carries over to the network cases, in spite of

the distinctive differences in the fine structure of their phase S;o=21944+ 26320 cosp+ 11080 cos 2+ 3120 cos P
boundaries. These results are consistent with the ones ob-

tained numerically in Ref. 2.

Sg= 232+ 144 cosp + 24 cos 2p,

+ 840 cos 4+ 160 cos %+ 40 cos ap,

S1,= 240280+ 337560 cogh+ 174384 cos B
IV. SQUARE LATTICE

. ) . + 67256 cos @+ 23928 cos 4+ 7272 cos B

For the square lattice, we denote the lattice path integrals
by s, . In other words,s,, is the exact sum of the phase + 2400 cos @+ 528 cos @+ 144 cos 8 + 24 cos 3.
factors of all 2-step closed paths on the square lattice. Be-

low ¢/27 corresponds to the magnetic flux through an eI-We, have computed_ the lattice .path integrals for the square
ementary square plaquette, i.e., lattice up tos;sg, which are obtained bgxactly summing up

~ 10 closed paths. The first few lattice path integrals can be
b quickly obtained analytically by hand. We have usexbLE
— =¢2B. symbolic manipulation software to obtain lattice path inte-
2m grals of longer lengths. For these, it is convenient to optimize
the algorithm by exploiting the symmetries of the problem.
Ty These calculated lattice path integrals's have enabled us
- to obtain the phase boundary up'[go)(qb).

It is instructive to explain how the first few lattice path
integrals are obtained. This will also clarify their physical
meaning. Since there is no path of one step for returning an
‘x‘ ] electron to its initial sites; is always equal to zero. Indeed,
‘,“.‘ i all lattice path integrals, .41 involving an odd number of

\ | \t steps are equal to zero. Now let us compute the next lattice
i N Hi \\\. \ path integral, with two steps. There are four closed paths of

. i 4 H A\ i \ 1 A H
il \ /.i \ / A/ ' two steps eacliretracing each other on one bond«{),

[ 3 / & g w \ where the dot indicates the initial sitg thus

0 L 1 1 1 1

S,=4.-—=4e0%=4=7

FIG. 1. The oscillatory phase boundatyT (®) for a single wherez is the coordination number of the lattice.
superconducting loop. The top curve corresponds to a triangle Thgre are 28 closed paths of fo.ur steps eagh: four retrac-
(dashed ling the middle a squarédotted ling, and the bottom a  ing twice on one bond’(.), 12 starting from a site connect-

hexagon(solid line). @ is the magnetic flux through these cells in ing two adjacent bonds and retracing once on each bond
units of ®. («»-+), and 12 moving two bonds away and then two
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bonds back to the original site (7). Since all of them Its corresponding top eigenvalueTéz)(da):Z, which does

enclose no areé.e., no fluy, then not depend onp. This is understandable from the fact that
the shortest length for a closed path on the square lattice to
i i i (2) -
Szoflux:4.:+12<_)_(_)_'_12.:(_:28. enclose the magnetic flux is fée=4 while H'“) only con

tains elements derived fropa,. The third-order truncation of

. the Hamiltonian is
Among the four-step closed paths, eight of them enclose

adjacent square cell$our counterclockwise and four clock-

wise) contributing 0 2 0
4ei¢+4e*i¢:8005¢ H(3): 2 0 \/3+2COS¢ .
to s,. Thus it follows thats, = 28+ 8 cos¢. Higher-order 0 V3+2cos¢ 0

integralss,, can be similarly constructed.

It is straightforward to compute the nonzero parameter
b, from the obtained results fa, . The corresponding trun-
cated Hamiltonian$i(" can then be readily constructed. For

Tts corresponding top eigenvalue is

instance, the second-order truncation of the Hamiltonian is TE)($)= 7+2 cose.
0 2
H(®) = . . I .
2 0 The fourth-order truncation of the Hamiltoniad(®), is
|
- 0 0 -
V3+2 cosd 0
3+8 cos¢p+8 coge
0 VJ3+2cos 0 \/ .
¢ 3+2cose
+ +
0 0 \/3 8 cos¢+8 cog ¢ 0
i 3+ 2 cosg |
|
Its corresponding top eigenvalue is has closely reached the infinite-system-size lihi[ (D).
The flux values where the cusps and dips occur have also
3coSp+7 cosp+6+a been labeled.
#)(p)= \/
Te(é) V2 3+2 cos¢ '

where V. SELF-SIMILARITY IN THE PHASE BOUNDARY

OF THE SUPERCONDUCTING SQUARE WIRE NETWORK

= +2 +4 +54 +27. . . . :
a=9 oS $+26coS$+ 45054+ 54 cosp In this section, we explicitly demonstrate an important

property: the self-similarity of the phase boundary of the
superconducting square wire network. This is exemplified in
Fig. 3, where we usaT{9(®) for AT,(®) and omit the
ATO(@)=T,(0)—-TM(D) superscript. In(a), we plot AT ,(®) for ® in the interval
between 0 and 1. Irib) and (c), we plot AT (P) for D,
as functions of®= /27 for various values of for the  respectively, in the ranges[0.333=1/3,0.476% and
square network obtained from the truncated Hamiltonian$0.5235,0.66% 2/3]. Figures 8b) and 3c) can be regarded
H(™. HereT,(0) equals 4, which is the largest eigenvalue ofas the first generation of the original diagréan in the sense
tight-binding electrons confined on the square lattice in thehat (b) is enlarged from the maximum in the left part @j
absence of a magnetic field. It is important to stress that aand(c) is enlarged from the maximum in the right part(af.
the order of approximation is increased, more geometrical This enlargement process is continued as follo\dswith
information of the lattice is included in the interference treat-® <[ 0.375=3/8,0.3978 and (e) with ® [0.4025,0.4286
ment and more fine structures are resolved. At every stepsx3/7] are, respectively, the enlargements of the left and right
i.e., for a given size of the network, we can observe themaxima of (b). Similarly, (f) with ®e[0.5714
corresponding dips appearing and then becoming sharpe«4/7,0.597% and (g) with ® [0.6022,0.625-5/8] are, re-
We emphasize that our highest-order approxim'é@%?)(db) spectively, the enlargements of the left and right maxima of

In Fig. 2, we show the superconducting transition tem-
peratures
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indicating the cusps and dips iaT.(®P). These nine flux

(a) 5 values are characteristic of each phase diagram. Indeed, there
are general relations between these sets of flux values in
different generations. Ldip,y/qo} represent the set of these
flux values in(a), i.e., po/qo=1/4, 2/7, 1/3, 2/5, 1/2, 3/5,

- 7 2/3, 5/7, and 3/4. Denoting the set of characteristic flux val-
(=] 8 ues in any of the phase diagrams in the first generation by
g\: I 19 ] {p1/q}, we find that the corresponding flux valuegim are

2 15 given by

23
2 P1 do

d; 30— Po’
11 and those inc) are given by

1 ’ ' ' ‘ x P1_ Potdo
(b) d1 Pot20o

For instance, givermpy/qe=1/2 in (a), we have the corre-
sponding

01—
aUND—>
~Niw—
~NlB—
[2 X p—
©lo—>

in (b) and

WBIN—b>
N————
N —

AT (@)

-
(=]
-
o

in (c). Furthermore, lefp,/q,} stand for the sets of the
1l 4 corresponding flux values in the second-generation diagrams.
In the second-generation diagraifitd)—(g)] only five char-

. . ) . . acteristic cusps and dips out of nine are observable. There we
0.2 0.4 0.6 0.8 find that thep,/q, in (d) are related to the,/q; in (b) by

o
. . P2 a1
FIG. 2. Superconducting transition temperature for the square —

network as a continuous function of the applied magnetic field: 92 301= Py
ATO(®)=T(0)~ T (d) vs @, the magnetic flux through an p,/q, in (e) are related top,/q, in (c) by p,/ds,
elementary square cell. i@ we show the superconducting-normal =q,/(3q,—p,), p,/q, in (f) are related t@,/q; in (b) by
phase boundaries computed from the truncated Hamiltonigfs
for & in the range between 0.2 and 0.8. We omit the parts of p, pit+a;
AT () for d [0, 0.2 and[ 0.8, 1] since there are no interesting @ bp120.
features in these portions @fT{"(®). From top to bottom, the G2 P1¥ e
orders of truncation ane=5 (top curve, 6, 7, 8, 10, 15, 23,39, and andp,/q, in (g) are related t@;/q, in (c) by p,/q,=(p;
70. Note the development of fine structures and cusps. The converq,)/(p;+2Qq4).
gence is monotonic. Note also that the closeness between the curves\\e now summarize our construction of the hierarchy of
for ATE(®) andATIO(®) implies thatATY?(d) has achieved  these phase diagrams. As discussed previously, every dia-
close convergence to the infinite system siv€(P). The inset  gram can generate two diagrams to the next generation: one
schematically depicts a square lattice.(), we plotAT,(®) for i enlarged from the left maximum and the other from the
® [0.2,0.8 and label the values of the magnetic flux where ob- right maximum of this diagram. Thus, starting from the
servable cusps and dips occur. They incldde 1/4, 2/7, 3/10, 1/3, original phase diagram, i.eAT.(®) for ® €[0,1], we can
o 2 9T, Y2 T, 35, ol 5, 140, S and it Hetegenerate 2 dagrams 0 thent generaton on 1. Fur.
ordcer approxicmant ¢ ¢ ' thermore, each diagram covers a distinct rangebofrom
' D into @ ax- Let us arrange these diagrams in the following
way, as we did in Fig. 3. We put all the diagrams belonging
(c). Figures &d), 3(e), 3(f), and 3g) can be regarded as the to the same generation in a row in such an order that from
second generation of the original phase diagfamIn this  the left to the right® ., (or ®,,,) increases from the small-
way, it is straightforward to deduce that the third generatiorest to the largest. It is evident that half of then'(2 dia-
of (&) will consist of eight phase diagrams: each(df, (e),  grams have®.,<1/2 and the other half hav@ ,;,>1/2. It
(f), and(g) contributes two diagrams. It is evident that theseis not difficult to see that this kind of arrangement will be
phase diagrams resemble one another except that the phaagomatically satisfied in the following way. Following the
diagrams gradually become asymmetric. same order of the diagrams in the previous generation and
As shown in these figures, we also label the valuedof using them one by one, we put two new generated diagrams

Bla—p
N | =k ey
Bl—>

-
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FIG. 3. Field-dependent transition temperatt&.(®) of the superconducting square network for various different range$ of
from (a) to (g), respectively, ® e[0,1], [0.333=1/3,0.4769, [0.5235,0.66%2/3], [0.375=3/8,0.3978, [0.4025,0.4286 3/7],
[0.5714=4/7,0.597%, and[0.6022, 0.625 5/8]. It is clear that(b) is enlarged from the maximum in the left part@j and(c) is enlarged
from the maximum in the right part ¢f). Similarly, (d) and(e) are, respectively, the enlargements of the left and right maxingl) afhile
(f) and(g) are, respectively, the enlargements of the left and right maxinfe) dfVe also include the labeling of the valuesdfwhere there
are cusps and dips ihT.(P). For the relations between these sets of flux values in different frames, see the text. The self-similarity in the
phase boundary can be concluded from the resemblance of these figures though an asymetry in the height develops in each successive
magnification.

side by side with the one from the left maximum to the left Pri1 an

and the one from the right maximum to the right. It is inter- “30.-p'

esting to notice that, for each generation, the diagrams lo- An-1 A Pn

cated at the left part oo =1/2 are mirror images of those and for 2'+1<i<2""1, the p,;1/dn,+, in the diagram
located at the right part. This symmetry originates from theDi(““) [the second half of the diagrams in tha+1)th
property that the phase diagram®T (®) with ® €[0,1]is  generation that located on the right-hand sidabof 1/2] is

symmetric aroundb =1/2. related to thep, /g, in Di@zn by
Indeed, there are one-to-one correspondences between the
sets of the characteristic flux values, where cusps and dips in Pni1 Pntdn

the phase boundaries occur, in different generations. Let us = orog.
label the diagrams from left to right in theth generation by Gn+1 Pn 2l

D" with i running from 1 to 2. Similarly, the diagrams in Self-similarity in theAT,(®) curve is a consequence of
the (n+1)th generation are labeled B{"* ) with i running  the fractal energy spectrum of Bloch electrons in a magnetic
from 1 to 2'**. Now let {p,/q,} represent the sets of the field which was examined in detail by HofstadtérHow-

flux values characterizing the cusps and dip\ific(®) in  ever, as far as we are aware, the explicit derivation of the
any of the phase diagrams in theth generation and self-similarity of the measurable part, the lowest-energy
{Pn+1/0n+1} be the sets belonging to the diagrams in thestate, was not presented before.

(n+1)th generation. The relations between the Recently, the influence of classical chaos on this so-called
(Pn+1/dn+1)'s and the p,/q,)’s are as follows. For £i  “Hofstadter’s butterfly” has been studied.Furthermore, a
<2", thepp1/0n+1 in the diagramD("*1) [one of the dia-  semiclassical theory for the dynamics of electrons in a mag-
grams in the i+ 1)th generation that located on the left- netic Bloch band has been developed and used to explain the
hand side ofb=1/2] is related to the,/q, in D" by clustering structure of the spectrurh.
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VI. HONEYCOMB LATTICE summing up~ 10 closed paths. These calculateg's have
enabled us to obtain the phase boundary up48¥( ).

It is straightforward to compute the nonzero parameters
b, from the obtained results fdr,, . The corresponding trun-
cated Hamiltoniansi(™ can then be readily constructed. For
instance, the second-order truncation of the Hamiltonian is

For the honeycomb lattice, we denote the lattice path in
tegrals byh,, . In other wordsh,, is the exact sum of the
phase factors of all I2step closed paths on the honeycomb
lattice. In this sectiong/27 corresponds to the magnetic
flux through an elementary honeycomb plaquette, i.e.,

¢ 3y3c’B H@= 3 .
27 2d, V3 0
. . 2)_ . _
The results foh,,hy, . . . hy are Its corresporydmg top e|genvalge iE‘t =/3. The third
order truncation of the Hamiltonian is
h2:3, 0 \/§ O
h,=15, HE=] V3 0 2],
0 V2 o0
he=87+6 cose, Its corresponding top eigenvalue$®= /5. BothT{?) and
T are independent af. This is understandable from the
hg=543+ 96 cosg, fact that the shortest length for a closed path on the honey-
comb lattice to enclose the magnetic flux is fer6 while
hyo= 3543+ 1080 cosp + 30 Cos 2, H® and H® only contain elements derived from, and
4. The fourth-order truncation of the Hamiltonian is
h,,=2385% 10560 cosh+ 726 cos 2h + 24cos 3p, 0 \/5 0 0
hy.= 164769 96096 cosh+ 11130 cos 2+ 798 cos 3 @ V30 V2 0
0 2 0 V2+
+42 cos 4p, \/— cosé
0 0 2+cos¢ 0
hie=1162719- 839040 cogh+ 138720 cos & Its corresponding top eigenvalue is

+ 15648 cos @+ 1536 cos 4p+ 96 cos 59,

1
TW(g)= E‘/14+ 2 COSp+ 225+ 2 cosg+ oL .
h,g=8363895- 7143210 cog)+ 1537668 cos &
In Fig. 4, we show the superconducting transition tem-
+237714c0s 3+ 33246 cos 4+ 3834cos P peraturesAT"V(®)=T,(0)-T"(®) as functions ofd
+ 252 cos G+ 18 cos %, = /27 for variousn for the honeycomb network obtained
from the truncated Hamiltoniaris(™. HereT(0) equals 3,
B which is the largest eigenvalue of tight-binding electrons
hz= 61216275 59862000 cog + 15829200 cos & confined on the honeycomb lattice in the absence of a mag-
+3103320 cos 3+ 555390 cos 4+ 89520 cos B netic field. S
We observe that as the order of approximation is in-
+10920 cos @+ 1320 cos %+ 120 cos 8p. creased, more geometrical information of the lattice is in-
cluded in theinterference treatmerdnd more fine structures

Notice thath, andh, involve paths that enclose zero net are resolved. This explainte origin of the fine structure
flux. There are three closed paths of two-steps each. Thu§bserved the more geometric information on the lattice is
h,=3, the coordination number of the lattide, is the first ~ explored by the paths of the electrons, the sharper the fine
lattice path integral with a net fluin this case flux through Structures. . _ _
one hexagon There are three counterclockwise and three We emphasize that our highest-order approximant
clockwise six-step paths going through a hexagon. Thus, th&s (@) has closely reached the infinite-system-size limit
term 6 cosp in hg. It is possible to derive the first few path ATc(®). The flux values where the cusps and dips occurred
integrals analytically “by hand” by just counting paths and have also been labeled. In general, besides the cudp at
keeping track of the enclosed flux. The longer-length ones=1/2, there are cusps at
can be computed via symbolic manipulation software.

We have computed the lattice path integrals for the hon- b= m
eycomb lattice up td,ge, Which are obtained bgexactly 2m+1

214504-10



QUANTUM INTERFERENCE IN SUPERCONDUCTING . .. PHYSICAL REVIEW B5 214504

0.59

FIG. 4. Superconducting tran-
sition temperature for the honey-
comb network as a continuous
function of the applied magnetic
field: ATI(D)=T,(0)
—T(®) vs @, the magnetic

3 o flux through an elementary hex-
— agonal cell. In(a) we show the
Q superconducting-normal phase

boundaries computed from the
truncated HamiltonianH™ for

@ in the range between 0.3 and
0.7. We omit the parts of
ATO(®) for ®e[0,0.3 and

[0.7,1] since there are no inter-
0471 - esting features in these portions of
. | . | . | . AT (®). From top to bottom,
0.56 ) ! ) ! ' ! ’ i the orders of truncation ane=9

‘“ (top curve, 10, 13, 16, 21, 31,

41, and 104. Note the develop-
ment of fine structures and cusps.
The convergence is monotonic.
We believe thatAT(!%(®) has
achieved close convergence to the
infinite system sizeAT.(®). The
inset schematically depicts a hon-
eycomb lattice. In (b), we

- plot AT (®) for ®<[0.3,0.7
and label the values of the mag-
netic flux where observable cusps
and dips occur. They include
d=1/3, 2/5, 3/7, 4/9, 5/11, 6/13,
7/15, 8/17, 1/2, 9/17, 8/15, 7/13,
6/11, 5/9, 4/7, 3/5, and 2/3. Here
AT(P)=AT (D) =T(0)
~TU(®), our calculated
highest-order approximant.
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and factors of alll-step closed paths on the triangular lattice. In
this section,¢/27 corresponds to the magnetic flux through
m+1 an elementary triangular plaquette, i.e.,

2m+1

¢ 3c?B
with m=1. Our computed phase boundary compares well om 4D, -
with the observed cusps present in experimé&hts.

The results fort, throught, are
VII. TRIANGULAR LATTICE

For the triangular lattice, we denote the lattice path inte-
grals byt,. In other words}, is the exact sum of the phase t3=12 cose,

214504-11
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FIG. 5. Superconducting tran-
sition temperature for the triangu-
lar network as a continuous func-
tion of the applied magnetic field:
ATO(@)=T(0)-T(®) vs
@, the magnetic flux through an
elementary triangular cell. Irta)
we show the superconducting-
normal phase boundaries com-
puted from the truncated Hamilto-
nians H™ for ® in the range
between 0.15 and 0.85. We omit
the parts of AT™(d) for @
€[0,0.15 and [0.85,1] since
there are no interesting features in
these portions oA T (d). From
top to bottom, the orders of trun-
cation aren=5 (top curve, 6, 7,
10, 15, 29, and 60. Note the devel-
opment of fine structures and
cusps. The convergence is mono-
tonic and rapid. Note also that the
closeness between the curves for
AT (@) andATEO(P) implies
that AT89(®) has achieved close
convergence to the infinite system
size AT,(®). The inset schemati-
cally depicts a triangular lattice. In
(b), we plot AT (D) for @
€[0.15,0.89, our calculated
highest-order approximation to
AT (®), and label the values of
the magnetic flux where observ-
able cusps and dips occur. They
include ®=1/5, 1/4, 5/16, 1/3,
3/8, 2/5, 5/12, 3/7, 7/16, 4/9, 9/20,
1/2, 11/20, 5/9, 9/16, 4/7, 7/12,
3/5, 5/8, 2/3, 11/16, 3/4, and 4/5.
Here AT(D)=ATE) (D)
=T, (0)-TE(®), our calcu-
lated highest-order approximant.

t,=66+ 24 cos 2p, to=164124 cosp+ 85944 cos @+ 29628 cos
ts =300 cosp + 60 cos 35, +8496 cos %+1980 cos ¥ +432cos 1
+36 cos 13,

tg=1020+ 840 cos 2p+ 168 cos 4p+ 12 cos Gp,
t10=449976t 654840 cos p+ 317940 cos &
t,=6888 cosp+ 2604 cos 3+ 504 cos %+ 84 cos 7, 1114360 cos 6+ 37560 cos &+ 10380 cos 16
tg=19890+ 23904 cos 2+ 8568 cos 4p+ 1968 cos @ +2700cos 13+ 540 cos 14+ 60 cos 16.

+432cos & +48 cos 1@, Here we explain how the first few lattice path integrals are
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obtained. Since there is no path of one step for returning ar 2.0
electron to its initial sitet, is always equal to zero. There are

six closed paths of two steps eafgktracing each other on

one bond («), where the dot indicates the initial sitg

thus

t,=6-—=6e%=6=z2,

wherez is the coordination number of the lattice.

There are 12 three-step closed paths enclosing a triangule
cell [three counterclockwise-ﬁ), and three clockwise
(-V)]. Thus

(@)

AT

t3=6-V+6-V=6€*+6e =12 cosp.

There are 66 closed paths of four steps each enclosing 0-0
zero flux each: six retracing twice on one bond,), 30 18 b
starting from a site connecting two adjacent bonds and re-
tracing once on each bond—(- <), and 30 moving two
bonds away and then two bonds back to the original site
(7_.2). Since all of them enclose no ar@a., no fluy, then

no flux - A
t"*=6 _ +30--<+30 =66

AT (@)

Among the four-step closed paths, 24 of them enclose
adjacent cells enclosing two triangles (12 counterclockwise

and 12 clockwiseand contribute

o cells onb 1 56216+ 12021 =24 cos 2p

to t,. Thus, it follows thatt,= 66+ 24 cos 25.
Note thatt, (t, 1) consist of only everfodd harmonics

of the flux. We have computed the lattice path integrals for

0.0

FIG. 6. Superconducting transition temperature for the kagome

the triangular lattice up td;19, which are obtained by ex- network as a function of the applied magnetic fielT(" ()

actly summing up~10% closed paths. These calculatgs
have enabled us to obtain the phase boundary T ¢).
By using the calculated results for, the parametera,

=T,(0)-T{"(®) vs @, the magnetic flux through an elementary
triangular cell. In(a) we show the superconducting-normal phase
boundaries computed from the truncated Hamiltoniatg for

and b,, and subsequently the corresponding truncated in thg range between 0 and 1. From top to bottom, the orders of
Hamiltonians H(™, can be obtained. For instance, the truncation aren=4 (top curve, 5, 6, 8, 10, 19, and 50. Note the

second-order truncation of the Hamiltonian is

V6
J6 2 cosp
Its corresponding top eigenvalue is
T@(¢)=cos¢+ 6+ code.

The third-order truncation of the Hamiltonian is

H(®) =

0 J6 0
- J6  2cosp J1+4 code
H® =
0 [Tiioods —8 cosp+16 cos ¢
1+4 cog¢

Its corresponding top eigenvalu‘lé,‘f)((b) can also be ob-
tained analytically.

development of fine structures and cusps. The convergence is
monotonic. Note also that the closeness between the curves for
ATE(D) and ATEY(®) implies that ATCO(d) has achieved
close convergence to the infinite system si¥€.(®P). The inset
schematically depicts a kagortatice. In(b), we plot AT (®) for

® [0, 1] and label the values of the magnetic flux where observ-
able cusps and dips occur. They includle=1/12, 1/8, 4/25, 1/4,

1/3, 3/8, 5/8, 2/3, 3/4, 19/24, 7/8 and 11/12. Hekd ()
=ATON(D)=T,(0)—TEY®), our calculated highest-order ap-
proximant. Note the absence of the cuspdat 1/2. This distinct
feature is in sharp contrast to the cases for square, honeycomb, and
triangular networks.

=¢/27 for various n for the triangular network obtained
from the truncated Hamiltoniaris(™. HereT(0) equals 6,
which is the largest eigenvalue of tight-binding electrons
confined on the triangular lattice in the absence of a mag-
netic field. The following physical picture is clear from those
plots: as the order of approximation is increased, more geo-

In Fig. 5, we show the superconducting transition tem-metrical information of the lattice is included in the interfer-

peratures ATV () =T,(0)—T{V(®), as functions ofd

ence treatment and more fine structures are resolved.
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Our highest-order approximanff(®%(®) has closely 1.4
reached the infinite- system- size limiT.(®). The flux
values where the cusps occurred have also been labeled. In
general, besides the cuspsdat1/2, 1/5, 4/5, 5/16, 11/16,
there are cusps and dips at

m )
= omi2 z
and
m+2 latlice
S 2m+2’
with m=1. 0.0 b)
0.5 - II ITI -
, 4 1 5
VIll. KAGOME LATTICE I 2l 2 9|3 I
53 45
Our computed phase boundary compares well with the % 7 7 g
observed cusps present in a series of interesting @
experimentg%2t ~
For the kagomédattice1>2°-?*we denote the lattice path Z - '
integrals byk;. In other wordsk, is the exact sum of the
phase factors of altstep closed paths on the kagotattice. Honeycomb
Here ¢/27r corresponds to the magnetic flux through an el- lattice
ementary triangular plaquette, i.e.,
¢ B \/§CZB 0.0
27 4D, 3.0 |

The results fok, throughk,; are

k2:4,

S
ks=4 cosg, =
<
k4 = 28,
Triangular
ks=60 cosep, lattice

keg=244+ 16 cos 26+ 4 cos 6p, 0.0

k;=756 cosp+ 28 cos wp, 18

kg=2412+416 cos 2+ 96 cos G+ 80 cos 8p,

kg=9216 cosp+ 76 cos 3p+ 36 cos 5p+ 756 cos &
+120 cos 9,

AT (@)

k1o=25804+ 7560 cos 2h+ 1860 cos @+ 2480 cos &

Kagome

+100cos 1@+ 20 cos 14, latlice

k11=112420 coghp+ 2816 cos I+ 1276 cos B
+14608 cos %+ 4400 cos %+ 44 cos 11 0 0.2 04 @ 06 0.8 1

S
=

+44cos1Pp+176cosldp.
FIG. 7. AT (®)’s as functions of®d between 0 and 1 for the
Note thatky (K +1) comprise only evefiodd) harmonics of  superconducting square, honeycomb, triangular, and kaguete
the flux. We have computed the lattice path integrals for thavorks, respectively, fron{a) to (d). Notice the difference in the
kagomelattice up totgg, Which are obtained by exactly sum- vertical scales.
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ming up ~10°® closed paths. These calculateés have en- case while the honeycomb is the slowest. This difference
abled us to obtain the phase boundary uFf’(¢). originates from the fact that for identical lengths, lattice path
By using the calculated results f&y, the parametera, integrals for the triangular lattice contain the richgsantum
and b,, and subsequently the corresponding truncatednterferenceeffects because the number of paths and the ar-
Hamiltonians H(™, can be obtained. For instance, the€as they enclose are both the largest. For the kaguehe

second-order truncation of the Hamiltonian is work, the rapid development of cusps at
0 2 113537
H@) = ragome— — ~ — — _
2 cos¢ 8'4’'8'8'4’'8

Its corresponding top eigenvalue is can be seen from lower-order approximants. For an addi-

1 tional discussion of the kagonuase, see Ref. 15. For exten-
TO(p)==(cosp+ 16+ co ). sions of these techniques to other problems, see Ref. 25.

2 In general, the resulting phase diagrams—uwith the occur-
rence of cusps and dips at different sets of flux values—are a

The third-order truncation of the Hamiltonian is X . . A
direct consequence of the geometries of the lattices, which is

0 2 0 explicitly reflected in the corresponding expressions of the
lattice path integrals. We stress that our evaluation of the
HE)— 2 cosé V3—cos'¢ lattice path integrals to extremely long lengths has enabled
B cosp+cose | our calculatedT.(B) to achieve close convergence to the
0 3-cose infinite system size. Indeed, for= 10, important features in
3—cos¢ the phase boundaries of square, triangular, and kagom e net-

Its corresponding top eigenvaliB®(4) can also be ob- WOrks are well developed.

tained analytically. Finally, in order to facilitate a comparison between the

In Fig. 6, we show the superconducting transition tem-d'ffer_ent phase boundaries, in Fig. 7 we pM—_C(q)) as a
peraturesATg“)(CD)=Tc(0)—Tg”)(Q>) as functions of® functlo'n of & for the_square, honeycomb, tnangl,JIar, and
= ¢/27 for variousn for the kagomenetwork obtained from kagomesuperc'onductmg' netvyorks. Here td C(q).) S are
the truncated Hamiltoniarid™. HereT(0) equals 4 which taken from their respective highest-order approximants and

is the largest eigenvalue of tight-binding electrons confinecfp. is the ﬂgx through_the|r respectlve eIementary cells as
on the kagom e lattice in the absence of the magnetic field. ﬁilspuss'ed.m Fhe previous sections. Here we omit the sub-
is seen that as the order of the approximation is increase cripts |nd|c_at|ng the order of_apprOX|mat|on. The Va'“e.s of
more geometrical information of the lattice is included in the" ' Magnetic flux corresponding to a number of prominent
interference treatment and more fine structures are resolve@->P> and dips are also labeled.

We emphasize that our highest-order approximgnt)(d)

has closely reached the infinite-system-size liif (®). B. Comparison of the phase boundaries of the single-loop

The flux values where the cusps and dips occurred have also and lattice cases

been labeled. Our computed phase boundary compares well grom Figs. 1 and @-7(c), we can readily see the differ-
with the observed cusps present in a series of interestingnces between the phase boundaries of a single supercon-
experiments™*! See also the systematic calculations inqycting cell and its corresponding superconducting network.
Ref. 22. For both casesAT. varies periodically with the magnetic
flux through a single elementary cell and has the same period
IX. DISCUSSION ®, of oscillation. We now focus oA T.(®) for & in the
In the following, we discuss the general trends in the ap_lﬂtle/rg/aleetween Oh and 1AT,(®) |sd_sy_mm(?tr|c arourl;db
proximants for these phase diagrams presented in the abO\A_el' 'f owever, there are many distinct features between
sections. - of a single cell and that of a network. These differences
are due to long-range correlations of the many-loop effect
) _ _ present in the lattice. For a single superconducting cell,
A. Comparison of the structure in the phase boundaries AT.(®) increases monotonically frod=0 to d=1/2 and
In the lower-order approximants, the first noticeable de-decreases monotonically frodr=1/2 to ®=1. The maxi-
velopment in the phase boundaries of square, honeycombum at®=1/2 exhibits a sharp peak. Indeed, the overall
and triangular lattices is the formation of dips when the fluxshape oA T (®) resembles the combination of two identical
per elementary plaguette is equalnab,/2, wherem is an  half parabolas, both reaching their maximumiat 1/2. On
integer. When the order of approximation is increased, théhe contrary, the overall shape &T. (P) for the corre-
dips at®=1/2 become sharper and at the same time morsponding superconducting networks looks like downward
fine structuregother local minima begin to emerge. Even- parabolas with many local cusps betwebr0 and®=1.
tually, the dips at various different flux values become cuspsThe most prominent cusps are locatedbat 1/2. The posi-
It is interesting to notice that, among these three latticestions of other cusps and dips depend on the underlying lattice
the development of the cusps is most rapid for the triangulatypes of the networks.
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C. Differences between our approach and the traditional Matching effects between a vortex lattice and periodic
moments and Lanczos methods pinning arrays produce a rich variety of effeétsThe dy-

damics observed in these systems is quite different from the

gne found for random arrays of pinning siteee, e.g., Ref.

32 and references thergin

In electronic structure calculations there is a method t
compute the density of states called the moments metho

This is similar to our approach in the sense tpatcan be . . .
interpreted as the moment®;|H'|¥;). However, there are Nonsuper_conductlng systems also .eXh'b't magnetlc-flgld-
several important differences between the standard “moguned matching effects, notably in relation to electron motion

ments method” and our problem. The typical use of the mo N periodic structures where unusual behaviors arise due to

ments methodji) focuses on computation of the electronic tN€ incommensurability of the magnetic length with the lat-
density of stateginstead of superconducting,’s), (ii) is tice spacing. A recent example of these is provided by the

totally numerical(instead of mostly analytical (iii ) is done anqmalous Hall plateaus of “elec_tron pmbzﬂ?"orbns scat-

at zero magnetic fiel@instead of obtaining expressions with tering from a regular array of antidots. :

an explicit field dependenge(iv) does not focus on the ex- Commensurate effec_:ts al_so pla}y central roles in many
plicit computation of lattice path integrals, afd does not other 'arefs of physics, including plasmas,' nonIm(_ear
study the physical effects of quantum interfereaich is Qynam|c§; the grOWt_h of crys?al surfaces, dO”?a'” walls in
at the heart of our calculation and physical interpretatiom incommensurate solids, quasicrystals, and Wigner crystals,

conclusion, the traditional use of the moments method ir‘i;’}.S well as spin anddcha_zge density |W"’.‘VGS- 'I}he negt sectl_on
solid-state physics is significantly different from the ap- Iscusses In some detail an example in nonfinear dynamics
proach and problem studied here. (which is virtually unknown in the solid-state literatiirhat

Another way to diagonalize Hamiltonians is called theproduces a fractal phase boundary which is strikingly similar

Lanczos method. This method directly obtains the tridiagon 0 the one measured for square superconductln_g_ networks—
form, without computing the moments, and thus differs in a ecause both are determined by commensurability effects.
significant way from the approach used hénere the ex-
plicit computation of the moments is one of our goals, since
they can be used for other electronic property calculajions
Furthermore, it is not convenient to use the standard Lanczos
method in our particular problem because it is extremely
difficult to directly derive the parameters and the states of the Notice that the fluxoid configurations fdr=1/2 for the
iterative tridiagonalization procedure. This is so because osuperconducting networke.g., Fig. 3 of Xiacet al, in the
the presence of the magnetic field. On the other hand, theompanion artic&) has two ground states that correspond to
moments method provides standard procedures to diagondhe two degenerate ground states of the second matching
ize a matrix after the moments are computed. field of vortices in type-ll superconductors with a kagome
periodic array of pinning sites. The latter has been system-
atically studied in Ref. 24.
The kagomepinning potential at the second matching
An essential physics issue in this problemc@mmensu- field shows novel and interesting dynamics as a function of
rability. Another one isquantum interference-due to the temperaturé? including a phase with rotating vortex tri-
motion of electrons in multiconnected geometries. This secangles caged by kagomteexagons(“cooperative ring el-
tion briefly overviews related systems where commensuraementary excitations; and there is geometric frustration for
bility and matching effect¢due to externally applied mag- T—O0 with a doubly degenerate ground state. At finite tem-
netic fields play an important role. The first example will be peratures, the three vortices inside the kagom e hexagon can
flux pinning. move and rotate by 60°. This is done cooperatively by the
Flux pinning in type-Il superconductors is of both techno-three vortices. They motion is similar to the “cooperative
logical and scientific interest. While most experiments focuging exchange” motion proposed by Feynman for elementary
on the effects of random pinning distributions, some investi-excitations in helium 4.
gations have been carried out on periodic arrays of pinning In other words, for the second matching field for the
sites1?® These find striking peaks in the magnetizaffoand ~ kagomepinning lattice, the elementary excitation of the three
critical current].. These peaks are believed to arise from theinterstitial vortices is a 60° rotation, rotating as a cooperative
greatly enhanced pinning that occurs when parts of the vorring. These types of collective or correlated cooperative ring
tex lattice(VL) become commensurate withe., match the  exchanges have also been studied in the context of the quan-
underlying periodic array of pinning sites. Under such con-tum Hall effect.
ditions, high-stability vortex configurations are produced For increasing temperatures, a novel type of meffiragp-
which persist under an increasing current or external field. pears, which is not treated here using our path-integral ap-
Other important vortex matching effects have also reproach, but can be studied using other technidfi@is can
cently been observed in a variety of different superconductbe described as “correlated melting” in the sense that the
ing system£2~3% including long Josephson junctions with “triangle” or “loop” first melts in the angular coordinate,
periodically spaced groovés superconducting network&,  while the radial coordinate does not melt until much higher
and the matching of the VL to the crystal structure oftemperatures are reached. The elementary excitations are the
YBa,Cu;0; due to intrinsic pinning® thermal analog of certain types sfjueezed statesvhere

E. Kagomepinned vortices: “Correlated melting”
and cooperative ring excitations for doubly degenerate
ground states

D. Commensurability and other matching effects
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fluctuations strongly affect a coordinate and less the other — 1 1 1T T T

coordinate. They are also analogs of thetational isomers (a) g‘t’gg’c"mb

or “comformations” that are often found in molecules,
where three atoms and molecules can cooperatively oscillate
back and forth between two degenerate ground states.

This type of “controlled melting” or “correlated
melting”?* of the particles inside a potential energy trap
could also be visualized with a colloidal suspension sur-
rounded by six pinnede.g., by laser tweezersharged par-
ticles. This type of “vortex-analog” experiment is easier to
visualize (e.g., via optical microscopehan using vortices.
Still, Lorentz microscopy techniqué&scould directly image
such motions in the vortex case.

0 0.2 04 @ 06 0.8 1
] ) ) 06 E—T — — — —]
F. Fractal phase boundaries and_fractal boundaries of basins (b) Kagome
of attraction Iattice I
3

There is a striking similarity between two apparently un-
related problems: the superconducting-normal phase bound-
ary of a square superconducting netwokir Fig. 2 and the
fractal phase boundarisee, for instance, Fig. 6.26 of Ref.
34) of basins of attraction of a dynamical systems map stud-
ied last century by Weierstrass and generalized much later by
Hardy in 1916.

The reason for this very interesting similarity among these
two apparently unrelated problems is because the commen-
surability condition dominates both problems and produces a T T T T
large dip at 1/2 and smaller dips at 1/4, 1/3, 2/5, etc., as ¢ 0.025 0.05 D 0.075 0.1 0.125
discussed previously in this work. — T 't T T 1 | —

AT (@)

It is interesting to summarize how to obtain the Weier- 0.8 [-(C) "73"'"3 I I 7]
strass fractal boundary of two basins of attracftb@onsider aee I 13
the dynamical ma/, T 3 |5 x
6
(Xt1, k1) =M (X, 0), ) I 4'70 ;713
. < L
defined by ) 8 1
[ 28
<
Xk+1= AX+ COSO,
1 1
and g < D g 3
0k+1:20k(m0d 27T) 0.2 -1
N | . 1 N 1 . 1 s
When 1<A<2, the mapM has two attractors, at= 0125 015 0175 © 0.2 0225 025
+ o, Indeed, since the eigenvalues of the Jacobian matrix are (d)l Kegome
2 andA>1, there are no finite attractors. Therefore, ,a“‘?ce I
12 |
M™(xo, o) = (X , 6ymod 2)), I 13 ;‘—;
0
andxy tends to either- o or —« asN—o, except for the —_ I 15-;.
unstable boundary set e I 3
= | ] [ ]
x=1(0), < 5
for which xy remains finite. 1 o3
To locate thisx=f(0) boundary set, first note that 4= 7 =8
6= 2X6(mod 21). 0.6 I 7

1 | 1 1 X 1 N 1 1
The map is noninvertible since it is two to one. However, any 025 0275 03 @ 0325 035 0375
Xy can be selected and then find one orbit that ends at FIG. 8. AT(®) vs ®. (a) is for the superconducting honey-

(Xn,0n), by using the above, and taking comb network for® in }he rangd 0,1]. (b), (c), and(d) are for the
superconducting kagomeetwork for®, respectively, in the ranges
Xk 1=\ " x—cog 25 16,)]. [0, 1/8], [1/8, 1/4), and[1/4, 3/§].
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For a given &y, 0y), this orbit starts at cell with new renormalized effective couplings. Four of these
supercells are then blocked away into another, larger cell,
L -1 | enclosing 16 elementary cellsr 4 supercells This process

Xo=N XN~ Zo A Tcog 2 6p). is iterated until the renormalization-groupRG) procedure

covergedat the phase boundargr diverges to fixed points

Those §g,6p) such thatxy is finite asN—o, define the |ocated away from the fixed poifié.g., + ). This (beyond-
boundaryx=f () between the two basins. Therefore the re-mean-field RG iteratiot* and the Weierstrass iteration in-
lation between thesg and 6 is given by volve very similar types of maps and this generates the strik-
ingly similar curves.

In summary, the Weierstrass function and our real-space
renormalization-group approaéh both produce phase
boundaries which are strikingly similar. In particular, both
This sum obviously converges, sinke>1. However, its  are nondifferetiable, symmetric around 1/2, and have a very

N—-1

xz—IZO A '"lcog2'69)=1(0). (8)

derivative similar hierarchy of cusps.
df(e) 1 g 2\!*t N X. COMPARISON OF THE PHASE BOUNDARIES
do 2755\ Sin(2'6) OF SUPERCONDUCTING HONEYCOMB

AND KAGOME NETWORKS

diverges, sincen<2. Thus,f(6) is nondifferentiable. Like ) ) ) )
our superconducting-normal phase boundary, it has a large Here we discuss an interesting relation between the phase
cusp at 1/2 and smaller cusps at 1/3, 1/4, 2/5, etc. Moreovepoundaries of superconducting honeycomb and kagoete
it is also symmetric around 1/2, and it strongly resembles th&/0rks which is due to thgeometricalarrangements of these
AT(®) [obtained neaR(T)=0] for a square lattice. In- two types of Iattlc'e's. Indeed, and as kllnc'jly pointed out to us
deed, AT (®) corresponds ta, ® to ¢, and\ corresponds by Xiao and Chal_kln(e.g., see Ref. 20it is very useful to
to how close the measurement is done to the critical point.focus on the region &®<1 for the honeycomb network

When\ approaches 2 from below, the fractal dimension@nd the region & ®<1/8 for the kagomeetwork.

d. approaches {mean-field limit, when the measurement is AS Shown in Figs. &)—8(d), though the overall shapes of
not done close to the critical pointWhen\ approaches 1 the phase diagrams are different, there is a one-to-one corre-

from above, the fractal dimensiod, approaches 2, from SPondence between the dips in the honeycaiilp(d) for
below. @, the flux through an elempntary hexagon, in the range
The fractal dimension ot=f(#6), EQ(S) above, is [O,l] and those in the kagomATc((I)) for @, the flux
through an elementary triangle, in the rangg3,1/g],
In\ [1/8,1/4), and[1/4,3/8. To state this relationship more pre-
dc=2- n2 cisely, let{p/q} be the set of flux values characterizing a
number of dips in theAT.(®) curve for the honeycomb

The precise value al, depends on the value af Recall ~ hetwork. For instance, as labeled (&,
that 1<\ <2. For A sligthly less than 2, the fractal dimen- _
siond,; approaches 1, and the dips are not pronounced. This {p/a}=1/3,2/5, 3/7, 112, 417, 315, 2/3.
is similar to the superconducting-normal phase boundariek is observed that the corresponding set of flux values for the
measured not too close @, [e.g., at midpoint drop for the dips to occur in the kagom&T.(®) curve would begp/8q}
R(T) plot]. When the phase boundary is measured very neavhen® lies in the rangg 0,1/8]. Similarly, the correspond-
T. [whenR(T) is very near zerp the number of discernible ing sets read, respectively,
dips grows and they become very shaspe, e.g., Figs. 10
and 11 of Ref. 1} This would corespond th slightly above b [} P _PpPtq
1; thus, the fractal dimensioth, of the Weierstrass function 8 8¢g 8q
would be closer to 2i.e., a “rougher” or “spikier” curve).

Indeed, Ref. 14 solved fa&T.(P) beyond the mean-field for @ [1/8, 1/4] and
theory approximation, obtaining a phase boundary similar to 1 p p+2q
the Weierstrass function fox slightly above 1, andl, near (I)Z‘Z-i- 31 8
2. That superconducting-normal phase boundary in Ref. 14 q q
has very sharp cusps and dips, dlike the Weierstrass func- for ® e[1/4, 3/§. Note that for® in the rangeg 1/4, 3/§,
tion) it is a phase boundary between attractofhe map for  the dips in theAT.(®) curve become less evident: only five
the superconducting networks is obtained from a real-spaciux values are observed and labeled. The location and mag-
renormalization-group technique. The mean-field limit pro-nitude of the dips found here are consistent with recent very
vides a smoother phase boundary withcloser to 1. The interesting experiments by the NEC and Princeton
real-space bond decimation scheme of Ref. 14 also favorgroups??
fluxes of the form®=2'd,. This is clear from the way the Recall that kagomenagnets are known to have degener-
real-space renormalization-group scheme is constructedte ground statetsee, e.g., Ref. 23 and references therein
where four elementary cells are “blocked away” into a larger Likewise, for superconducting kagonmetworks at half fill-
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ing, there are several possible ways to arrange fluxes, pravorks. Our investigations are based on studying the quantum
ducing a large degeneracy in tiie=0 ground staté® This interference effects arising from the summation of all the
issue of degeneracy between two states has been systemaiissed paths the electron can take on the underlying lattices.
cally studied as a function of temperature via computer simuOther problem® have also been studied in terms of the
lations on superconducting samples with a kag@manged quantum interference of electron paths. We then adopt a sys-
periodic array of pinning site¥. The second matching field tematic approximation scheme to obtain the spectral edges of
in this system has two fluxons per pinning site. This correthe corresponding eigenvalue problems, and relate the fea-
sponds to thef =1/2 state in the kagom e superconductingtures in the phase boundaries with the geometry of the un-
network. For this value of the externally applied magneticderlying lattice being explored by the moving electrons.
field, every hexagon has two stategith entropykgIn2). N When the electrons are allowed to explore a sizable region of
hexagons would have2states and a very large entropy ~ the network, our calculations have quickly reached very
close convergence to the infinite-system size-results. There
are two particular advantageous aspects of this approach.
First, it enables us to evaluate the superconducting transition
mperature as eontinuoudunction of the applied magnetic
leld. Second, it enables us to achieve a step-by-step deriva-
dion of thephysical originof the many structures in the phase
diagrams—in terms of the regions of the lattice explored by
the electrons. In particular, the larger the region of the net-
ork the electrons can explor@nd thus more paths are

S(N hexagons)_ | kgin2.

Thus, at the second matching field, superconductors wit
either a kagomer an hexagonal array of pinning sites both
have “low-energy states” with a very large degeneracy and
huge (low-T) entropy. Thus, when cooling from high tem-
peratures, it is difficult to find a uniqué=0 ground state.

Transport measurements and mean-field theory perha . . ;
might not be sufficient to fully elucidate the role of bistabil- available for the electronthe finer structure appears in the

ity and degeneracy in this system. In order to explore thi§)hase boun(_jary an(_j the sharper_the cusps become_. We find
scenario in a more systematic manner, different tgelg., Many New interesting features in these phase diagrams,

flux imaging technique and computer simulatiofsof vor-  Which compare well with experiments.
tex dynamics on kagomiattices might be needed.

After this work was completed, we became aware of a
very interesting relevant work by Park and Huse in Ref. 22. n -
Using Ginzburg-Landau theory, they study superconducting We thank Paul M. Chaikin and Yi Xiao for helpful con-
kagomewire networks in a transverse magnetic field whenVersations and for sending us their e_xp.erl|menpal re;ults. Y.-
the magnetic flux through an elementary triangle is a half of--L- @cknowledges support at West Virginia University from
a flux quantum. They calculate the helicity moduli of eachthe National Science FoundatidiNSF under Grant No.
phase to estimate the Kosterlitz-Thoule@€T) transiion ~DMR-91-20333. F.N. acknowledges support from NSF
temperatures. At the KT temperatures, they estimate the baferant No. EIA-0130383 and from the Frontier Research Sys-

riers to move vortices and the effects that lift the large defe€M. The Institute of Physical and Chemical Research

for his hospitality during a visit at the Materials Science
Division of Argonne National Laboratory, partially supported
by DOE Grant No. W-31-109-ENG-38. Partial support has
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