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Vortex structure and dynamics in kagomeand triangular pinning potentials
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We study the dynamics of thermally driven superconducting vortices in two types of periodic pinning
potentials: kagomand triangular. For the first, second, and third matching fields, we obtain the corresponding
ground-state vortex configurations and their phase diagrams. We analyze the system properties by looking at
the vortex trajectories and the structure factor, as well as the linear and angular diffusion. The temperature
versus pinning force phase diagram is analyzed in detail for each matching field. When the temperature is
varied, we observe several stages of lattice pinning and melting. In most of the cases we find, for decreasing
temperature, first a pinning of vortices and afterwards a freezing transition of the interstitial vortices. The
intermediate regime corresponds to interstitial vortices in a confined liquidlike state and pinned vortices. The
kagomepinning potential shows interesting behavior at low temperatures: there is a phase with rotating vortex
triangles caged by kagomieexagons(“cooperative ring elementary excitations’and there is geometric
frustration forT— 0 with a nearly degenerate ground state.
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. INTRODUCTION this type”®3*and kagomearrays of pinning sites can be pro-
duced in a very controlled manner, and allow the possibility
Kagomestructures have been extensively used to studyo study some of the unique features present in kagome
several physical phenomena. One refers to a central questiGiuctures, like frustration, degeneracy, and metastability. Re-
in magnetism: thef=0 order of the two-dimension&RD) cent applllcauor)s of art|f|£:|al kagqn’latﬂces even mcl_ude
nearest-neighbor-coupled Heisenberg antiferromagnet. THE€ two-dimensional kagonghotonic bandgap waveguidg.

kagomielattice seems to be the first 2D spin-1/2 model with AN important role of the behavior of the vortex system is
vanishing further-neighbor interactions, which appears tgarried out by the interstitial vortices, which produce a re-

have a disordered ground statéagomestructures have also markable variety of stabilized vortex lattices that can be ob-
; ; ; ‘147,18
been used to study quite different systems. For instanc&€rved both in experimertfsand simulations!~* Commen-

measurements of the heat capacity Hfle absorbed on surability in the ground-state vortex configuration enhances
Y 1,12,17,1 o _
graphite at millikelvin temperatures have been recently inter:[he pinning effect .sTherefqre, Itis very useful to d.e
preted using a kagomattice structuré. In addition, mea- termine what the matching configurations are for the differ-
surements on the layered oxide SyCiGa,. O, with €Nt PINNIng geometries and, more importantly, how tempera-

kagomelike layers, have attracted considerable atten“’tion.tur%.aze.dsdthe.rlnb Sevgrilhgegweltrllgzi of arra;l/s of p_ms were
The connection between theeal kagomenetwork and the stu 1ed in etail by Re|p aret al, l.Jt mosty atT—.O.
real structures mentioned above.g., 3He absorbed on For instance, they obtained vortex lattice configurations for

graphite and SrGr ,Gay.,Oy) is somewhat unclear, be- several values of the magnetic field, and they calculate the
X +X 1 . . . .

cause of the very important effects of disorder, impurities,r.natChIng fields at which commensurate vortex configura-

three-dimensionality, etc., present in those materials. tions may occur. The central emphasis here will be on the

It would be useful to address these and related physicaefffeCtS of temperature on the vortex dynamics on two types

questions linked to kagorrgpe structures using more con- of geometries: kagomand triangular.

trollable experimental systems. One candidate for this would As a function of temperature, this pap@j S.tUd'eS the
vortex ground states obtained for a kagopeeiodic array of

be to use periodic pinning arrays interacting with a vortex' . ™ ; . ) .
b P g y 9 pinning sites,(2) studies the types of multistage melting of
ﬁl&ese ground states when the temperature is slowly varied,

repulsive vortex-vortex interaction and the atractive vortex—and (3) compares these results with the simpler case of a

pinning force®4~1° This field is of great interest both tnalngula:_pwlmln? p(:rt]entlal. d matching field in & kad
theoretically®~* and experimentally~:5 n particular, for the second matching field in a kagome

Superconducting networks and arrays of pinning gites lattice we find at low temperatures bistable collective states
alizable, for instance, via Bitter pinning or irradiation, or of three interstitial vortices with ¢ooperative ring elemen-

made with electron-beam lithographyffer the possibility of tary exci_tationé an_d, atT=0, degenerate ground states with
experimentally studying nearly perfect kagorauctures. 9€OMetric frustration.
When immersed in an externally applied magnetic field, su-

perconducting network$? made of thin wires, proximity-

effect junctions, and tunnel junctions exhibit complex and We perform numerical simulations with Langevin dynam-
interesting forms of phase diagrams. Kagostrictures of ics for a two-dimensional system of vortices interacting with

1. MODEL
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a periodic pinning potential. These model the dynamics of . e . . . . . ...
parallel 3D rigid vortices. The dynamical equationstare
’Y]Vi:fi:fil)v"‘fil)p"'fi-r, (1) . . . . . . . . . . . .

wherev;=dr; /dt is the vortex velocity,y is the Bardeen- R . y *
Stephen friction, and L I I I

f;w va_z _(1_rﬁ/r§)i:” (2) . . . . . . . . . . . .

Fij

describes the vortex-vortex interactinwhich has a cutoff (@) (b)

at a distance .. HereF, is the maximum force between
vortices. The sum in Eq(2) computes the interaction be-
tween theith vortex and all the vortices at a distance
rij<fe.

The pinning is modeled as a triangular or a kagamnay
of attractive Gaussian wells with

FIG. 1. (a) Triangular lattice(b) Kagomelattice. Note that this
lattice can be constructed with hexagonal cagiagomehexagons
and triangles pointing up and dowkagometriangles.

WhereNk is the number of pinning sites of the kagora¢-
tice (see Fig. 1L Then, for thenth MF N, /Nk 4n/3. The
Np R number of interstitial vortices in the kagorpmnlng case is
foP=—VUUP=— 2 r—" exp( 15, I3, ()

! NF=N,—NK=(4n/3—1)Ns=(n—-3/4N},. (9
Wherer is the maximum pinning force,, is the radius of
the pinning site, and;;, is the distance between the vortex |t is important to notice that the fraction of interstitial vorti-
and the pinning sitg¢’. The sum in Eq(3) is over theN,  gg Nk/N =1-3/(4n) and NY/N,=1—1/n varies signifi-

plnﬁ]ng S#es . dded o cantly for the different MF's. For the first MAK/N, = 1/4
e effect of temperature is added as a stochastic terrQndN‘/N =0 (there are no interstitial vortices present in the

with properties tnangular casg for the second MFNK/N,=5/8 andN!/N,
(fT(1))=0 (4)  =1/2; and for third MFN{/N,=3/4 andN}/N, =2/3.
The vortex density corresponds to 2.5 vortices per unit
and length and it is a constant for all the MF studied here. Con-
sequently the pinning density varies with the different MF.
(IOt =2nkeTo(t-1') 8. ) Fo? the fi);st Mlg’s it isgthe sarze as the vortex density, and is
lower for higher MF's. We have examined the vortex lattice

vortex-vortex interaction, and all the forces in unitskf. ordering up o the fourth Mfalthough we will describe here

Here, the pinning radius, was varied from 0.05 to 0.1, and only the first three MFs
the pinning sites can trap only one vortex. We consider pin-
ning forcesF, varying from 0 to 5, but in some cases, we Ill. CALCULATED QUANTITIES
increase the pinning intensity up to very large values, like
F,=50. The number of vortices varies from 16 to 4096. We
use periodic boundary conditions in all cases shown here. To find the vortex ground state, we gradually cool down a
Depending on the particular simulation, the time sddpvas  fixed number of randomly moving vortices from a high tem-
chosen in the interval0.01,0.000], with the number of perature toT=0. A useful picture of the way in which the
simulations steps varying in the intenjdlo*,16°]. vortices go from the liquid to the solid phase is provided by
We define thenth matching field(MF) as the magnetic the vortex trajectories for a fixed temperature. When the sys-
field that generates a number of vorticls which is an tem is at high enough temperatures, the vortices move
integer multiple of the number of pinning sites of a triangularquickly and their trajectories occupy all the space. Some of
lattice, N}J: them occasionally go inside a pinning site, spend some time
there, and then get out of the local potential trap. This gen-
N, /Nt =n. (6) eral trend was observed for all of the MF’s studied when the
temperaturel>T,, with T, the pinning temperature.
At T<T,, a subset o, vortices are trapped in the,
pinning sites. These vortices move inside the potential well,
N{=N, — Nt = (n—1)NL @) but they do not have enough energy to go out of their pinning
i=N,—Np b . - i " i
site. The remainingN; interstitial vortices, however, are free
There is a relationship between the number of sites of théo move, and they describe trajectories which depend on the

We measure all lengths in units of, the range of the

A. Ground states and trajectories

Thus, for the triangular pinning case the number of intersti-
tial vortices is

triangular and kagomkattices, MF studied. The behavior of the vortex system in the cooling
. down process as well as the characteristic final state will be
=(3/4N,, (8)  explained in detail for each MF.
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B. Diffusion D. Structure factor

To quantify the motion of the vortices, we calculate their In order to analyze the structural order of the vortex array
linear diffusionD as the coefficient of the mean-squared dis-in the different phases, we calculate the structure factor of
placementgAr?) at long times: the vortex system at each temperature as

N 1 _ 2
<Ar2>=$<21|ri<t>—ri<o>|2>ocm, (t—2). (10 S<k>:m<‘2 e > 13

In the liquid phaseS(k)=1/N?, whereas in the solid phase

The diffusion can be seen more clearly if we plot directly S(k)=1. We studied the behavior of two peaks of the struc-
the (Ar?) at different time scales as a function of tempera-ture factor, one corresponding to a wave vector
ture. For high temperatures, when the vortices have esser-(24/a,0) of the triangular lattice of vortices and the other
tially unbounded motion, théAr?) is linear with time. For  with k:(377/2a,\/§77/23) which belongs to the kagoniat-
low temperatures, the displacements are time independegite of the pinning sites. We analyze the behavior of the
and smaller thara, the average distance between vortices.height of those peaks as a function of temperature for the
We find that this change of behavior occurs at a temperaturgifferent MF’s. They have a maximum in the regions in
Ti, the freezing temperature of interstitial vortices. In otherwhich the vortex structure has the geometry of the lattice that
words,T; is a signature of “bounded vortex motion” and can they represent.
be directly measured from the\r?).

In order to study the vortex motion, we can follow the IV. PHASE DIAGRAMS
individual squared displacement of each vortex,

We start by presenting an overview of the phase diagrams
Ar2(i)=|r, () —r;(0)|2, (12) of tempera}ture/_ersuspinning ;trengtffor both the t_riangular
and kagomeattices. These diagrams where obtained by ana-
which allows us to distinguish the behavior of pinned andlyzing the temperature dependence for the quantities de-
interstitial vortices. Thus, it is useful to define the following Scribed in the previous sections. The details of how the phase
quantities:Tp as the temperature below which tmz of a boundaries where obtained are described in the fO”OWing
pinned vortex is lower than,zj, the squared pinning radius, Sections.

andT; as the temperature below which the interstitial vorti- 1€ phase diagram for the first MF is shown in Fig. 2 and
ces haveAr2<aZ2, is qualitatively the same for the triangulfFig. 2(a)] and

Another way to study the vortex diffusion is by monitor- kagome{Fig. 2(b)] pinning geometries. For the range of pin-
ing a combination of (Ar?) and Ar%(i), defined as ning strenghts studied here, we find one characteristic tem-
(Ar?(v)), wherev=p,i, depending on the kind of vortex peratureT,, above which the vortex system is inliguid

studied(pinned or interstitial Thus, for instance, phasewith all the vortices moving through the sample. For
temperatures lower thah, all vortices are localized around

N, their equilibrium positions and the system is isaid phase
(Ar?(p))= i E (1) —ri(0)[2), . The temperaturél'p.grows With'the strength of _the pin?
Np\i=1 ning potential, which is characterized by the maximum pin-
_ ning forceF,. We find thatT,(F ) is slightly higher for the
where the sum is over the vortices that are pinned for temtriangular pinning potential than for the kagomee. This is

peratures lower thaifi, . because, for the first MF, in the triangular lattice every vortex
can be trapped at a pinning site, whereas in the kagtase
C. Pinned fraction about 1/4 of the vortices are not core pinned—namely, 25%

) ) ) ) of the total numbemN, of vortices have their equilibrium
We define the pinned fractiop as the fraction of the total positions inside the hexagonal kagoregeskagomehexa-
number of vorticesN, , with displacements lower than,:  gong. The N interstitial vortices vibrate more than the
pinned ones, lowering the freezing temperature.
X(T)=N(T)/N,, (12) For the kagomeinning case, we have checked the behav-
ior of the vortex system up to extremely large values of the
whereN(T) is the number of vortices witbrz(i)<r§ atthe  pinning force, up td-,=50 (10 times the higheF , showed
temperatureTl. In the solid vortex phasg=1, and in the in the phase diagramWe find only one freezing temperature
liquid phasex~0. In the intermediate region, where the in- T until reaching some pinning intensity, above which the
terstitial vortices move while the others are pinned, vortex motion is dominated by the pinning force. In that
= N‘p/NU=1/n for the triangular lattice, Wherea@=NE/Nv limit, the vortex system has a different evolution with tem-
=3/4n for the kagomdattice. If the solid-liquid phase tran- perature which is not studied in the present work. In other
sition is direct,y will change discontinuously from 0 to 1 in words, in the parameter range studied in this paper, we find
the thermodynamic limit, without any indication of an inter- only one freezing temperaturg,. When the pinning force
mediate region. As we show below, the behavior of thisbecomes very large compared with the vortex-vortex repul-
quantity is a very good indicator df, andT; . sion force, the problem becomes different and beyond the
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FIG. 2. Phase diagrarfi-F, of temperature vs pinning force
strength for the first MF. The pinning potentials form triangu@&r
and kagomeb) lattices. In all the figures, including this one, the
temperature scale is multiplied by a factor of10

9(d)]. For high pinning forcesK,>1) the phase diagram
shows two relevant temperaturég and T; [Fig. 3(@)]. The
first one is the pinning temperature, below whktbvortices

scope of this paper. Here we are interested in the interplay dire trapped by thal}, pinning sites. Thé\} remaining vorti-
attractive (pinning) forces, repulsivevortex-vortey forces, —ces move freely. At a lower temperatufe they freeze and
and disorderindtherma) forces. the system is in theolid phase The intermediate region of
For the first MF, we could not find a temperature range intemperatures, in which some vortices are pinned and others
which two separated characteristic temperatures appear. It &€ moving, is the “melted interstitial vortex phase” or-
possible that the short distance between the pinned vorticderstitial phase for short. T, grows with F, because the
in the first MF (due to the high pinning densitynakes im-  transition between these two phases depends on the vortex-
possible the crossing of the interstitial vortices between twaginning interaction. On the other hantl, mostly depends on
pinning sites. If that is the case, the only allowed movementshe vortex-vortex interaction; consequently, it is almbgt
are the oscillation inside a kagorhexagon and the creeplike independent. For a finite pinning intensify,~=1, the two
motion of all the vortices among the pinning sites. As wetransitions merge in a single on&;&Tj,) and the interstitial
will see below,T; (the interstitial freezing temperature Nf  phase disappears. FBj,<1 the system has a single solid-
vortice9 appears for MF’s higher than 1, where we can ac-iquid transition and the ground state changes from the hon-
cess an intermediate phase in which some vortices are pinn€&ycomb to the triangular lattice, which is the ground state of
and other are in a liquidlike state. the vortex system without pinning potential. These results
The second MF has the most interesting behavior as will be presented elsewhere.
function of temperature. The vortex dynamics in this case is The kagomepinning geometry[Fig. 3(b)] generates a
different for the two pinning geometries studied, as we carkagomephase an intermediate phase which is neither a solid
observe in Fig. 3. This is the only MF studied that does nothase nor the interstitial phase that appears at a higher tem-
have a triangular ground state for the two pinning geometrieperature. This case has three characteristic temperakyres
used. Indeed, Figs.(8) and 11d) show this. The triangular T;, andT,. The pinning temperaturg, has the same fea-
pinning case has been studied in some détaihd at low tures as in the previous case, and its behavior as a function of
temperatures vortices form a honeycomb structlffeg.  F, is similar to the triangular pinning case. At the tempera-

104505-4



VORTEX STRUCTURE AND DYNAMICS IN KAGOMEAND . . . PHYSICAL REVIEW B 64 104505

54 —o—1 B

T.~| INTERSTITIAL
4 < ——o—— PHASE

a&éoiwao
é#na@éwa
r‘G‘OOQO&

PHASE OJONIONCICINONO OO0 00600

(OONCIONMCIONON( (OO ONONOMONON(
P ® @ ® OO ® JEONONONONONONO]
(ONONONCONMNON( (ONONONONONONON(
P ®@® O O®®® O RONONONONONONO)
1.05 PPOPOP®YIHOOOOOOOJq

P

(a)

FIG. 5. Vortex trajectories for the first MF of vortices in a tri-
- angular pinning lattice(a) T>T,, liquid phase(b) T=T,. (©) T
<T,, solid phase(d) T=0, ground state.
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for the triangular pinning lattice. Although this MF has a
LI triangular ground stat@s the first MF, the interstitial phase
QUID . S . .
is present at every pinning intensity higher tHagp=1.

P

PHASE In what follows, we will analyze in some detail the physi-
| cal quantities that are used to characterize the different
i T phases and phase boundaries.
(b) 1
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0.00 055 00 105 V. FIRST MATCHING FIELD

In this section we describe the results for a vortex system
FIG. 4. Phase diagrafi-F,, of temperature vs pinning force with N, /Nt 1. We first show the results for the triangular
strenght for thethird MF. The pinning potentials form triangulé®  pinning Iattlce which are simpler to understand. Then, we
and kagomeb) lattices. compare these results with the corresponding ones obtained

for the kagomepinning lattice.
tureT;, a fraction of interstitial vorticegwhich are localized

inside the kagomériangles freeze, but the vortices trapped
in the kagoménexagons are still moving. The behavior of the
three vortices trapped in each hexagon is very particular. In Figs. 58)—5(d) we show the vortex trajectories for dif-
They form triangles which can rotate over a bistable configuferent temperatures in the cooling down process for the first
ration. Indeed, in this temperature regime the ground state iIF. In this case, every vortex has a pinning site where it can
highly degenerate, because each vortex triangle can have tvb@ trapped. In Fig. ®) the system is at a high temperature
possible orientations. Certainly, these vortex triangles movd>T,, and the vortex system behaves as a liquid only
until very low temperatures are reached, and onlif &T,  slightly perturbed by the pinning structure. AT, [Fig.
do they freeze and the vortex system enter the solid phas8(b)] all vortices become trapped in the pinning sites.TAt
These triangles form a frustrated triangular lattice. The<T, the system is in a solid phase. The pinned vortices are
kagomephase has an approximately constant width in thenbratlng but they do not go out of their pinning sites. This
range K F,<5. This phase and the interstitial phase bothsituation can be observed in Fig(ch
disappear fonsl (indeed,T;=T, for F,=1). In the low- Finally, by cooling the vortex system uniil=0 we find a
pinning regionF,<1, the vortex system goes directly from triangular ground sta
the liquid high-temperature phase to the solid phase, and the The behavior of the fractiory of pinned vortices is a
ground state changes from the disordered glassy state to tigeod indicator of a single solid-liquid transition in the first
triangular lattice(at F,=0) passing through several struc- MF. At high temperaturesy=0, indicating that all vortices
tures, which are combinations of triangular, squared, andre depinned. At low temperatureg= 1, characteristic of a
kagomestructures. The case of weak pinning,< 1) will solid phase with no interstitial vortices. There is a character-
be studied in a future work. istic temperaturd , around whichy rapidly changes from 0
Finally, the third MF has the phase diagram shown in Figto 1, as can be seen in Figiah As we show below, this way
4. The behavior of the vortex system for the two pinningof defining the pinning temperatufig, coincides with theT,
geometries is very similar, with two relevant temperatirgs  obtained by analyzing other quantities like diffusion con-
andT; defined as in the previous cases. The phase diagrastants or structure factor. Thus, we have verified the consis-
has a behavior which is similar to the case of the second MRency of the criteria used to define phase boundaries.

A. Triangular pinning potential
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FIG. 7. Vortex trajectories of vortices, for the first MF, on a
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B. Kagome pinning potential

1E-4 4 —a— 145,000 kagomepinning geometry(a) T>T,, liquid phase(b) T=T,. (c)
3 —=—=70,000 | (c) T<T,, solid phase(d) T=0, ground state.

10 1 1 v 1 v
s | 1 Following this procedure for each pinning force we were

051 . able to define with good precision the transition temperature

] T, and build the phase diagram of Figap
T T T | T T T T $-e (d)
%90 0.3 0.6\ r 0.9 12 15
r

T
The behavior of the vortex system for the first MF with a

FIG. 6. First MF of 1024 vortices ani,=1. All the panels  kagomielattice pinning is very similar to the previous case.
herg corresp_o_nd to the triangular lattice of pinning traps. The fol- By following the vortex trajectories it is clear that at high
lowing quantities were calculated vs temperatyge:Pinned frac- temperatures the system is in a liquid state, as seen in Fig.

tion. (b) Ar2(i) of two pinned vortexthere are no interstitial vor- 7 : .

SR ) ) . a). As the temperature is lowered, a numb%rof vortices

tices in this case (c) (Ar?) at different time scalegd) Height of bégome tra g in tha® pinni it b .
k pped in p Pinning sites, as can be seen in

the peak of the structure factor corresponding to the triangular lat=" K ;
Fig. 7(b). As we show below, when thél; vortices are

tice of vortices.
_ S _ _ trapped in the pinning centers, thie- N,‘; interstitial vortices

The squared displacement of individual vortic®s°(i)  are trapped in the kagonmeexagons, and there is a single
versusT at a fixed time {=100000) for a system of 1024 transition from the liquid to the solid phase. The solid phase
vortices andF,=1 is shown in Fig. &) for two different s shown in Figs. @) and 7d).
vortices. For all .vorticegsrzzhas a jump at the same tzem- Finally, atT=0, we find the ground state for the first MF
perature Ty, with Ar®>ry for T>T, and Ar°<r,  [Fig. 7(d)]. The vortex lattice is triangular, highly ordered,
for T<Ty. _ 5 and the same as for the case for a triangular pinning latice.
_ The mean-squared displacemeAt©) (an average of the - g yortices occupy every pinning site, no matter how weak
individual squared displacements a function of tempera- o \ortex-pinning interaction is. For the first MBnd also

ture at different time scales is shown in Figcfsfor the same for the fourth MF the triangular vortex lattice is nonrotated

parameters than Fég'@' At different time scales, the gen- - v, o chect to the pinning array and it is stable under small
eral behavior of Ar<) is the same, showing a rapid variation perturbations

. 2 2 - _
aroundTp. For_T>Tp we fmd(Ar_ )=>Th and_ its value de_ The pinned fractiony has the same behavior as in the
pends on the time scale. A detailed analysis shows a Ime%r. - ) )
riangular pinning case. For all the, studied we find the

dependence ofAr?) with time, characteristic of a diffusive . I
process(note the logarithmic scale in the figyreFor T same kind .Of curve as we S.hOW in F_lg{a}_a Thus, the gen-
eral trend is robust. There is no indication of two relevant

<T, we find (Ar?)<r2 for all time scales.
P (Ar%) P temperatures, as we see clearly for the other ME&e be-

Finally, we studied the intensity of the triangular pdak | Th T is defined h
— (27/a,0) of the structure factor. The behavior of that peak!W)- The temperaturd, is defined as the temperature at

height as a function of temperature is showed in Fig),6 Which X=0.5,2a_nd itincreases with,.
and has its maximum height a@=0, when the triangular We plot Ar“(i) versusT att=100000 in Fig. &). By

vortex lattice is perfectly ordered. As the temperature in-following two vortices, one that is pinned and the other that
creases, the triangular peak decreases and at high tempei&-0ccupying an interstitial position at=0, we find that
tures is proportional to N2 . Note that although the structure both have a jump im\r? at the same temperatufl, . The
factor is consistent with the behavior of the other quantitiesinterstitial vortex hasAr®(i)<a® for T<T,, whereas the

it is not a good indicator of the phase transition since it hagpinned vortex has&rz(p)<rr2J for T<T,, in agreement with
important finite size effects. what we saw in the trajectories of Fig. 7.
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1.0

(a)

(b)

FIG. 9. Vortex trajectories for the second MF with a triangular
pinning potential(a) T>T,, liquid phase(b) T;<T<T,, intersti-
(© tial phase(c) T<T;, solid phase(d) T=0, final state.
2x10°

all vortices diffuse, to a low-temperature solid phase in
which all vortices are pinned, despite the fact that only 75%

2057 — wm0° of the vortices are trapped in pinning sites. The pinning tem-
= : peratureT , increases with the pinning intensify, and it is
: o(d) slightly lower than the transition temperature for a vortex
0000 ~ ds5 *1',0 s 7 0 | 25 system in a triangular pinning lattice.
T T
? VI. SECOND MATCHING FIELD
FIG. 8. First MF of 1024 vortices arfd,=3. The plots here are In this section we describe the results for a vortex system

for the kagomepinning lattice. The following quantities were cal-
culated vs temperaturéa) Pinned fraction(b) Ar?(i) of a pinned
vortex (open symbolsand a interstitial vortexsolid symbol$. In-
set: Linear diffusion coefficierd vs temperature(c) (Ar?) at dif-
ferent time scalesd) Height of two peaks of the structure factor.
One corresponding to the triangular lattice of vorti¢epen sym- A. Triangular pinning potential
bols) and the other to the kagonpénning lattice(solid symbols.

with N, /N}Jzz. The behaviors of the system with triangular
and kagomepinning lattices are very different and they will
be described in the next two subsections.

The trajectories followed by the vortices from high to low

In Fig. 8(c) we show the(Arz) as a function of tempera- temperatures are shown in Fig. 9. The regibr T, is a
ture at different time scales for the same parameters as Fifjauid [Fig. 9@)]. At T<T, there areN, vortices pinned. In
8(b). We observe that fof >T, the (Ar?) are linear with the interstitial regiorfsee Fig. )] T;<T<T, theN,—Nj,
time, while forT<T, the displacements are independent ofinterstitial vortices move freely and finally they freezeTat
time and lower than the square of the characteristic lermths [Fig. 9(c)]. The ground state is shown in Fig(d. The vor-
andr,. We also obtained the linear diffusion coefficidnt tex structure af =0 is a honeycomb lattice, with some de-
versusT and found that folf <T, the diffusion coefficient is fects, and it has two possible ground states, which were stud-
D~0, and atT=T), it starts to grow{see the inset of Fig. ied in Ref. 17. In that work the authors show that this
8(b)]. structure disappears for weak pinning because the ordering is

Finally, we show in Fig. &) the intensity of two peaks of not met by commensurability effects but by the dominance
the structure factor, one for the triangular vortex latige  Of the pinning force. Also, these authors looked at the mag-
=(2m/a,0)] and the other belonging to the kagotattice of ~ Netization and critical current versus field.
pinning sites k= (3w/2a,/37/2a)], both as a function of We did the same kind of analysis as for the first k&ee
temperature. We observe that the triangular peak has ifsig. 10, and we find two characteristic temperaturés;,
maximum height aT =0, with a similar behavior as the peak the pinning temperature, which i, dependent, and;, the
of the triangular pinning case. However, the kagopeak freezing temperature of the interstitial vortices, below which
has a small maximum at a temperatiie T, at which vor- the system behaves as a solid. This last temperature is almost
tices are not pinned but they spend a long time at the pinnin§idependent of, for F,>1.
centers, forming a kagomattice. The fast movement of  In Fig. 10a we plot the pinned fractiory, which shows
vortices in the interstitial space disguises the triangular structhat in a finite region of temperatur¢setweenT; and T)
ture. there are exactlwtp vortices withAr2<r§. We find that for

All these results summarized in Figlt? indicate a single lower F, the width of that region is smaller, and fép,=1 it
transition between a high-temperature liquid phase, in whicldisappearsT, becomes equal td;).
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1.0

1 (a)

1 ®)

(d)

A (o)

FIG. 11. Vortex trajectories for the second MF. Kagopiening
potential. (&) T>T,, liquid phase.(b) T;<T<T,, interstitial
phase(c) T,<T<T,, kagomephase(d) T=0, ground state.

P e 2100000 3
: 1 ©

il
il

1E-5 3 — —

050 : : 1 freely. At a lower temperaturg, <T<T; we find an inter-

esting behavior in the vortex trajectorigSig. 11(c)]. Some
: : of the interstitial vortices are now trapped inside the kagome
025 § ] triangles (interstitial “confined freezing), but others are
1 ’ ; moving in a circle inside the kagontexagons. We will see
] : 1@ that in this regime of temperature the vortex system has an-
0.00 — — . gular diffusion but does not have linear diffusion. The vorti-
00 T/ 05 T/ T s ces which are moving in circlgghe kagomevortices form a
triangle which is only slightly deformed during the rotation.
FIG. 10. Second MF of 2048 vortices aRg=>5 with triangular At 3 finite temperaturd@, the kagomevortices freeze and the
pinning potential (a) Order parametexb) Ar?(i) of a pinned vor- system is in a solid phag€ig. 11(d)]. The second MF has a
tex gsolid symbol$ and an interstitial vortexopen symbols (c) ground state which is different than the one obtained in a
(Ar<) att=100 000.(d) Triangular peak of the structure factor. triangular pinning arra§7? For the kagormease, the ground

. o . state is nearly degenerate because the kagdd les have
In Fig. 1ab) we can see the individual squared displace-, y ced goary

. . two equivalent orientationfin Fig. 11(d) kagometriangles
ments that show a jump at two very different temperatures d b g. 11d) kag g

. . 2 i ; can point up or dowhand the perfect order is frustrated.
The jump in theAr< of the pinned vortex is at a temperature To find the relevant temperatures as a functiorFgfwe

Tp, and forT<T, itis Ar’<r{. The jump inAr? for the g the same analysis as the previous cases.

interstitial vortex is at a lower temperatuig and for T In Fig. 12a) we show the pinned fraction versus tempera-

<T;itis Ar®<a®. The mean-squared 'dlsplacem(emlz) at  ture forF,=5. We defineT,, as the temperature below which

t=100000, shown in Fig. 16), has a jump af; butis not 5 finite fraction of vortices havar2<r2. For F,=5 this

sensitive toT . . __happens at a higher temperature thanFge=1 (not shown
Finally, the triangular peak of the structure factor iSparg and we observe a finite region of temperatures for

shown in Fig. 10d). We find that this last quantity is not which x=x, (XpZNE/NU is the fraction of pinning sites

sensitive toT , for this MF. . . .
p : The temperaturd; is the temperature at which the inter-
The results ofy andAr? [Figs. 10a) and 10b)] clearly stitial vortex of Fig. I12b) hasAr?=a? TheT, observed in

show the existence of two characteristic temperatures thqgig 12a) is the same as the one observed in FigbL2in
merge to a single one ds, approaches 1. The other quan- which the pinned vortex ha&rzzrf,.

tities (Ar?), structure factor, and specific heftot shown . .

here ghova a changéthe first two orpa maxinfgtm(the last ”; Fig. 1.ZC) we PlOt the mean-squared d|splacements

one at the transitions, but have important finite size eﬁects.gi:zijgrz gltlffTerent time scales, and we can see that is
=~ .

Finally, the two peaks of the structure factor are studied in
Fig. 12d). The triangular peak, witk= (7/a,\/3/a) (open

In Fig. 11 we plot the vortex trajectories for four tempera- symbolg, has a maximum iff =0, but this value is not 1as
tures. Figure 1) corresponds to a high temperatur€ ( we expect for a perfect triangular vortex lattidmut 1/3. This
>Tp) and the system is in the liquid phase. In Fig(dlthe is in agreement with the ground state not being triangular
system is in the interstitial phasd;(<T<Tj) and we can [Fig. 4(d)]. The kagomepeak hgs a maximum at=T,, the
distinguish two kinds of vortices: the ones which are pinnedemperature at which the kagomertex lattice is formed on
in the kagomepinning sites and the others that are movingthe pinning sites.

B. Kagome pinning potential
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1.0 : - i T '
: ; 209 =100,000 ‘ T
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E 1 —=—r=100000
=~ 1. 00184 —o—1=50,000
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001 - - terconcndees —o—1=50,000 | () =
E : —a—1=20,000 § 0.02
1 " L " "
0.30- = kagpeak {6015
—o—triang. peak
= 1 0.00 — ' : 7 7
= 0154 0.007 0.00 002 T, 0.04 0.06
| T
| ; (@)
0.00 +————F——7——————— 0.000 FIG. 13. Second MF of 2048 vortices afg=5 in a kagome
00 ¢t T, t TP L5 T 3.0 pinning potential. The following quantities were calculated vs tem-

perature fofT<T, : (a) mean-squared angular displacements of vor-
FIG. 12. Second MF of 2048 vortices aig,=5. Quantities  tex triangles(b) (Ar?) at different time scales, and) (Ar?(v)) of
calculated vs temperaturga) pinned fraction,(b) Ar%(i) of a  rotating kagomevortices (square solid symbolspinned vortices
pinned vortex(solid symbol$ and an interstitial vortexopen sym-  (open symbolsand interstitial vorticestriangular solid symbols
bols); (c) (Ar?) at different time scales, and) the height of two
peaks of the structure factor: one corresponding to the triangular The region of temperature$, <T<T,, for which y
lattice of vortices(solid symbol and the other to the kagonpén- =xp, corresponds to both the interstitial and kagome
ning lattice(open symbols phases. In both phases there are exadfyinned vortices.
We find that forF =1, thenT,=T; (not shown here T,
To separate the contribution to the diffusion of rotatinggrows asF, is mcreased buT; and T, are |ndependent of
vortices in the second MF, we calculate, for temperatdres the p|nn|ng intensity. Therefore the widths of the kagome
<T;, the mean-squared angular displacements of the vortexnd the solid phases are almost constant Wigh but the

triangles, interstitial phase(bounded byT; and T,) is wider for
higherF,,.
(A6%)=(l6:() - 6,(0)[?), (14 _ -
C. Correlated ring elementary excitations
where 6(i) is the average angular coordinate of fttle tri- As we have seen, the second matching field in a kagome
angle. Wher{A %)< /3 the rotation stops and the tempera- [attice is special because it is highly degenerate. Namely,
ture at which the vortex triangles freezeTig. many different configurations have the same energy. While

To study the low-temperature regiof €T;) we calcu- the entropy of most matching field configurations is zero for
lated the same diffusive quantities than before, but we addtandard lattices, it is quite large for the second matching
the calculation of théA #%). We find that the kagomeorti-  field in a kagomédattice.
ces generate a finite angular diffusion for temperatdrgs The second matching field in a kagomagtice exhibits(i)
<T<T,;, becauséA #%)> /3 in this region. Fof<T, the  bistable collective states of three interstitial vorti¢agich
vortex triangles oscillate around their final position but theycan be denoted andd, and correspond to Ising-like states
do not change the orientation of the triangle. There is ndii) collective or cooperative ring elementary excitatio(iis)
linear diffusion becauséAr?), (Ar?(v)), and Ar?(i) are  degenerate ground states and spin-glass behavior without
lower thana? in this range of temperaturghey are moving disorder, also known as geometric frustratiéa) correlated
less than the average distance between thémFig. 13 we  motion inside ap*-type potential, andv) for increasing tem-
show these quantities and the way in which we determingeratures, a type of melting appears that can be described as
Tk “correlated melting” in the sense that the “triangle” or
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“loop” first melts in the angular coordinate, while the radial E¥=?
coordinate does not melt until much higher temperatures fg,
reached. The elementary excitations are the thermal analog
of certain types of squeezed statéshere fluctuations Q“ 3
strongly affect a coordinate and less the other coordinate Bé
They are also analogs of the “rotational isomers” or “com- B4
formations” that are often found in molecules, where three &4
atoms and molecules can cooperatively oscillate back anc
forth between two degenerate ground states. §
At finite temperatures, the three vortices inside the hexa-
gon begin to move and eventually rotate by 60°. This is donef: __ :3
cooperatively by the three vortices, and not by one of themp **
individually. They move similarly to the “cooperative rings
exchange” mechanism proposed by Feynman for elementarn
excitations in helium 4. In the case of the second matching
field for a kagomeattice, the elementary excitation of the  FiG. 14. Vortex trajectories for the third MF with triangular
three interstitial vortices is a 60° rotation, rotating as a cooppinning potential(a) T>T,, liquid phase(b) T,>T>T,, intersti-
erative ring. These type abllective or correlated coopera- tial phase(c) T;>T, solid phase(d) T=0, ground state.
tive ring exchangehas also been studied in the context of
the quantum Hall effect. are trapped in the pinning sites, as we can see in Fig)14
The pinning outside produces a “periodic modulation” of The N—N! interstitial vortices, however, are free to move
the external boundary, a magnetic trap. The interstitial vortiand they describe the trajectories shown in FigbL4At a
ces form a lattice which will slowly melt, through a series of |ower temperaturd’; , the interstitial vortices freeze and the
thermal excitations. The first one would be a “one-stepyortex trajectories are like Fig. 1€). The triangular ground
click” cooperative ring rotation of 607or exchange After-  staté’ can be observed in Fig. (e.
wards, several clicks clockwise and counterclockwise, gen- The behavior of the vortex system in this MF reveals that
erated by thermal activation, produce angular difussion.  there are two relevant temperatufgsandT;, the first one
This type of “controlled melting" of the particles inside a which depends on the pinning intens]ﬁ{) and the second
“magnetic trap” could also be visualized with a colloidal gimost independent of that parameter.
suspension surrounded by six pinnéay laser tweezejs In Fig. 15a) we show the pinned fractiog for F,=5.
charged particles. This type of “vortex-analog” experiment\ye clearly observe that there are two temperatures separated
is easier to visualiz¢optical microscopethan using vorti-  for this F.. .
ces. Still, Lorentz microscopy techniques would easily moni- |, Fig.plE(b) we plot the(Ar2(v)) for pinned and inter-
tor such motions. _ _ stitial vortices. The temperaturé§ and T, are in concor-
Decorations experiments could also identify the “blurred” yance with the ones defined in Fig.(&b
rings or “blurred triangular vertices” due to the thermal ex-  The mean-squared displacements for different time scales
citatior) of the vortices in the second matching field of theg o plotted in Fig. 1&), and they are lower tham?
kagomeperiodic array of pinning sites. below T, . P
The melting in circles would be initiated via a sequence of |, Fi(i:]. 15d) we plot a triangular peak of the structure

stick-slip discrete motions in “small loops” or *closed ¢yqior |t has a similar behavior as in the first MF, with a
strings” formed of concentric 1D Frenkel-Kontorova-type o :mum atT=0

circles. Here the elementary excitations would be “string
like” on “closed-loop like.”

(b)

© . J . ()

B. Kagome pinning potential

Finally, we study the third MF with a kagomginning
potential, and we find a behavior similar to the triangular
In this section we describe the results for a vortex systentase. In Figs. 1@ —16(d) we show vortex positions during
with NU/th=3. For this MF the number of interstitial vor- the cooling down process. In Fig. (8 the system is at a
tices is 2 times the number of triangular pinning sitexé ( high temperature>T,). At T<T,, NE vortices are in the
:2th) and is 3 times the number of the kagomi@ning  pinning sitegFig. 16b)]. Again, theN—N; interstitial vor-
sites (Nik:3N;§)- Therefore, it is useful to study the effect of tices are free to move. The interstitial vortices freeze at a
those vortices on the general behavior of the vortex systendower temperaturel;, and the vortex trajectories are like
Fig. 16c). This behavior is observed also for the fourth MF;
the only difference is the number of interstitial vortices.

We find that for the third MF the vortex lattice @t=0 is

We study the third MF for a triangular pinning potential in always triangular, highly ordered, and the same as obtained
the same way as the previous cases. The trajectories at dior the case with a triangular pinning lattice. The vortices
ferent temperatures are shown in Fig. 14. In Figal4he  occupy every pinning site, no matter how weak the vortex-
system is in the liquid phas@ & T,). At T<T,, N; vortices  pinning interaction is. The vortex lattice is rotated 30° in

VII. THIRD MATCHING FIELD

A. Triangular pinning potential
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FIG. 15. Third MF of 3072 vortices and,=5 for a triangular FIG. 17. Third MF of 3072 vortices anl,=5 for a kagome

pinning potential. The following quantities are shown vs tempera-PiNNing potential. Quantities calculated vsztgmpera_t(m}aPinned
ture: (8 Pinned fractions(b) (Ar%(i)) of pinned (solid symboly ~fraction (we also showy for Fy=1), (b) (Ar*(i)) of pinned(open
and interstitial vorticegopen symbols (c) mean-squared displace- symbolg and interstitial vorticegsolid symbol$, (c) mean-squared

ments at different time scale$Ar?), and (d) the height of the displacements at different time scaléar?), and(d) height of two
triangular peak of the structure factor. peaks of the structure factor. One corresponding to the triangular

lattice of vorticesiopen symbolsand the other to the kagonmn-

. . L . ning lattice(solid symbol$
relation with the pinning arrajsee Fig. 1€d)]. These struc-

tures are stable under small perturbations until the tempera-. . Jbserve thak. is the same in both cases BL is mov-
I

ture T; at which the interstitial vortices start to diffuse. ing to a higher temperature 4, is increased. We clearly

In Fig. .17 we shiow the same quantlt_les as in Fig. 1.5 for %bserve that there are two different temperatureg=fpe 5,
system with the same number of vortices dng. In Fig. whereas they coincide fdf,=1, i.e. T,.=T
p=1,i.e,Ti=T,.

17(a) we show the pinned fractiog for F,=1 and 5 and we In Fig. 17b) we plot the(Ar2(v)) for pinned and inter-

stitial vortices. The temperatufg is again in concordance
with the T; defined in Fig. 17a), and T, coincides with the
one defined iny for F,=5.

The mean-squared displacement for different time scales
is plotted in Fig. 17c), and shows a change of behavior
in Ti .

Finally, in Fig. 11d) we plot the two peaks of the struc-
ture factor. The behavior of the triangular peak is the same as
in the triangular case, with a maximum &t 0. However,
the kagomepeak has a nonzero height B&=0 because the
kagomestructure is present still at this temperature. A pos-
sible cause of this behavior is the high density of interstitial
vortices, which makes possible the contribution of this lattice
until T=0.

VIll. SUMMARY AND CONCLUSIONS
FIG. 16. Vortex trajectories for the third Mka) T>T,, liquid

phase(b) T,>T>T,, interstitial phase(c) T;>T, solid phase(d) We have studied the dynamics of a vortex system inter-
T=0, ground state. acting with a periodic pinning array. We explore the phase-
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diagram temperature-pinning intensity for the first threeis different for the kagomand the triangular pinning geom-
MF’s and for the triangular and kagompinning geometries. etries. The first one is highly degenerated whereas the second
We find several stages of lattice pinning and melting, whichhas twofold degeneracy.
depend on the MF studied, i.e., the fraction of interstitial To reach different ground states after every annealing is
vortices present. standard in glasses, where there is disorder. However, the
For the first MF we find only one relevant temperaturesample studied here has no disor¢eperfect kagomarray
Ty, below which every vortex is pinned. This behavior wasof ping). There is a geometry-induced frustration. Every
found for the two pinning geometries. The high-temperatur&kagome hexagon would have two stateser(tropy
region is a liquid phase whereas the low-temperature regios-k log 2). HereN hexagons would have™2states, and a
is a solid phase. very large entropyof the order ofN klog 2). Thus the sys-
The second MF with triangular pinning has two charac-tem has a very large degeneracy and a Hime-T) entropy,
teristic temperature§, andT; . The first one is the tempera- making it difficult to reach th& =0 ground state.
ture below whch\lt vortices are trapped in the pinning sites,  In conclusion, in most of the cases there are two phase
whereasT; is the freezmg temperature of ti\ interstitial  transitions for strong pinning, in which the vortex system
vortices. Besides the solid and liquid phases, there is an irpins at a temperaturg, higher than the freezing temperature
termediate region of temperatur&s<T<T, called the in- of the interstitial vorticesT;. This is very different of the
terstitial phase. well-known case of the submatching fields in periodic poten-
For the second MF with kagomginning geometry the tials, where the pinning temperature is lower than the melt-
vortex system has three relevant temperatdrgs T;, and ing temp'eraturé?" L _
Tk The first is again the pinning temperatureNJf vortices. More interestingly, the kagompinning potential shows
The second is the freezing temperature of the interstitial vorf€w low-temperature phases for the second MF, with rotat-
tices which are trapped inside the kagotriangles. Finally, ing triangles of vortices and frustration fdr—0.
Ty is the freezing temperature of the vortex triangles trapped
in the kagomenhexagons. The regioh; <T<T, is the inter-
stitial phase, whereas the regi@<T<T, in which the
only vortex motion is the rotation of the vortex triangles  M.F.L. thanks V.I. Marconi, A.B. Kolton, and P.S. Corna-
inside the hexagons is called the kagophase. glia for helpful discussions and also acknowledges support
For the third MF we find two characteristic temperaturesfrom the FOMEC program. We also acknowledge financial
T, andT;, defined as in the second MF with triangular ge-support from CONICET, CNEA, ANPCyT, and Fundatio
ometry. For both geometries the vortex system has an inteAntorchas. F.N. acknowledges the hospitality of the Materi-
stitial phase which has a broader width as higher is the pinals Science Division of Argonne National Laboratory, as well
ning intensity. as partial support under DOE Contract No. W-31-109-
The ground state for the first and third MF'’s is always ENG-38 and from the Center for the Study of Complex Sys-
triangular and highly ordered, and is the same for the twdems at The University of Michigan. This is publication
pinning geometries in all the range studied<{E,<5). MCTP-01-09 of the Michigan Center for Theoretical
The second MF has a partially ordered ground state whiclPhysics.
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