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We study quantum interference effects due to electron motion on a three-dimensional cubic lattice in a
continuously tunable magnetic fieldB of arbitrary orientation and magnitude. These effects arise from the
interference between magnetic phase factors associated with different electron closed paths. The sums of these
phase factors, called lattice path integrals, are many-loop generalizations of the standard one-loop Aharonov-
Bohm-type argument, where the electron wave function picks up a phase factoreiF each time it travels around
a closed loop enclosing a net fluxF. Our lattice path integral calculation enables us to obtain various important
physical quantities through several different methods. The spirit of our approach follows Feynman’s program:
to derive physical quantities in terms of sums over paths. From these lattice path integrals we compute
analytically, for several lengths of the electron path, the half-filled Fermi-sea ground-state energy,ET(B), of
noninteracting spinless electrons in a cubic lattice. Our expressions forET are valid for any strength of the
applied magnetic field in any direction. Moreover, we provide an explicit derivation for the absolute minimum
energy of the flux state. For various field orientations, we also study the quantum interference patterns and
ET(B) by exactly summing over;1029 closed paths in a cubic lattice, each one with its corresponding
magnetic phase factor representing the net flux enclosed by each path. Furthermore, an expression for the total
kinetic energyET(B,n) for any electron fillingn close to one-half is obtained. We also study in detail two
experimentally important quantities: the magnetic momentM (B) and orbital susceptibilityx(B) at half filling,
as well as the zero-field susceptibilityx(m) as a function of the Fermi energym. @S0163-1829~96!03020-2#

I. INTRODUCTION

The quantum behavior of noninteracting tight-binding
electrons on a two-dimensional~2D! lattice immersed in a
perpendicular magnetic field has attracted much attention
due to its important role in diverse areas of physics. For
instance, the problem is intimately related to the quantum
Hall effect. During the past few years, the ground-state en-
ergy of this system has also been intensively investigated1–3

in connection with mean-field studies of thet-J and Hubbard
models of high-Tc superconductors. At half filling, the abso-
lute minimum of the kinetic energy has a half flux quantum
(F0/2) per plaquette—called the flux state. In addition, there
are local minima at flux values equal toF0/2m with m.1.

More recently, several groups have paid attention to the
three-dimensional~3D! case: the kinetic energy of a 3D non-
interacting electron gas under the influence of both a strong
periodic potential and a magnetic field. For instance, for sev-
eral rational values of the magnetic field, Skudlarski and
Vignale4 analyzed the changes in the ground-state properties
induced by the addition of hopping in the direction parallel
to the uniform magnetic field. Hasegawa5 studied the density
of states and the total energy with the external field in the
(0,0,1), (0,1,1), and (1,1,1) directions for certain selected
rational values of the resulting flux. Kunszt and Zee6 showed
that for rational values of the flux the eigenvalue problem
can be reduced to a one-dimensional hopping in momentum
space. They then calculated the energy spectra and the den-
sity of states for various selected rational values of the flux
states. These three works4–6 focused on adiscreteset of~ra-
tional! magnetic field values. Here we are interested in ob-

taining results that arecontinuousfunctions of the applied
field—valid for both commensurate and incommensurate
flux values.

In this work, we focus on the isotropic 3D cubic lattice,
namely, the hopping integrals in thex, y, andz directions
are the same and taken to be equal to 1. The system is de-
scribed by the Hamiltonian

H5(̂
i j &

ci
†cjexp~ iAi j !, ~1!

where ^ i j & refers to nearest-neighbor sites, and the phase
Ai j52p* i

jA•dl is 2p times the line integral of the vector
potential along the bond fromi to j . Throughout this paper,
the flux quantumF05hc/e is set equal to 1. The goal of this
paper is to explore conceptually different viewpoints and ap-
proaches to studying this interesting problem. Focusing on
the hopping motion of electrons on the lattice, we first study
the quantum interference between the phase factors of elec-
tron closed paths. This phenomenon is the source for the
lowering of the total energy in a magnetic field.

In Sec. II, we examine the quantum interference effects
originating from lattice path integrals—defined as sums over
magnetic phase factors on different electron closed paths.
There, the physical meaning of these lattice path integrals
S 2l and the techniques we use to compute them are dis-
cussed in detail. Results forS 2l in an arbitrarily oriented
field of any strength are also presented. Furthermore, we ob-
tain the lattice path integrals for several flux orientations by
exactly summing an enormous number (;1029) of closed
paths, each one weighted by its corresponding acquired
phase factor.
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In Sec. III, we present an analytical calculation of the total
kinetic energyET(B) of the half-filled Fermi sea of tight-
binding electrons. We use two different approaches: one
based on a direct series expansion for the energy2 and the
other on a moment expansion for the density of states.7

These two different methods yield the same results. More-
over, they provide different insights into the problem. For an
arbitrary field orientation, analytic results for the total en-
ergy, in terms of the lattice path integrals, are obtained. It is
found that the lowest-energy state is reached when the fluxes
per plaquette on each one of thexy, yz, andzx planes are
equal toF0/2. We also show the variations of the total en-
ergyET as a function of the flux, for various orientations of
the magnetic field. Furthermore, we obtain an analytic ex-
pression for the total kinetic energyET(B,n) for any filling
n close to one-half.

In Sec. IV, we investigate the magnetic momentM (B)
and orbital susceptibilityx(B) of this quantum system. For
various flux orientations, we also obtain the zero-field sus-
ceptibility x(m) as a function of the Fermi energym. We
show that the magnetic response, in the presence of a strong
periodic potential, is significantly different from the familiar
Landau diamagnetism. The zero-field susceptibilityx(m) as
a function of the Fermi energym exhibits a large diamag-
netic ~i.e., negativex) response at very low electron filling.
For increasingm, x(m) increases and fluctuates around zero.
Paramagnetism prevails for largem. Indeed, the orbital re-
sponse is paramagnetic at and near half filling (m50). We
obtain the field dependence ofM (B)—which can be re-
garded as a generalized current in a multiply connected
geometry—andx(B) at half filling, and both show oscilla-
tions between para- and diamagnetic behaviors as a function
of the flux. The frequencies of these oscillations, as functions
of the flux, tend to decrease for increasing field.

In Sec. V, we summarize our results.

II. QUANTUM INTERFERENCE FROM SUMS OVER
CLOSED PATHS: LATTICE PATH INTEGRALS

A. Physical interpretation

The lattice path integral of order 2l is defined as

S 2l[ (
lattice pathsG
All closed2l-step

eiFG, ~2!

whereFG is the sum over phases of the bonds on the path
G of 2l steps starting and ending at the same site. Letuc i&
denote a localized one-site electron state centered at sitei . It
is not difficult to notice thatS 2l corresponds precisely to the
quantum mechanical expectation value^c i uH2l uc i&, which
summarizes the contribution to the electron kinetic energy of
all closed paths of 2l steps.

The physical meaning ofS 2l (5^c i uH2l uc i&) thus be-
comes clear. The HamiltonianH is applied 2l times to the
initial stateuc i&, resulting in the new stateH2l uc i& located at
the end of the path traversing 2l lattice bonds. Because of the
presence of a magnetic field, a magnetic phase factoreiAi j is
acquired by an electron when hopping through two adjacent
sitesi and j . S 2l is nonzero only when the path ends at the
starting site. In other words,S 2l is the sum of the contribu-

tions from all closed paths of 2l steps starting and ending at
the same site, each one weighted by its corresponding phase
factor eiFG whereFG/2p is the net flux enclosed by the
closed pathG.

It is important to stress thatFG depends crucially on the
traveling route of the path. For instance,FG will be positive
~negative! on traversing a polygon loop counterclockwise
~clockwise!. Therefore quantum interference information
contained inS 2l arises because the phase factors of different
closed paths, including those from all kinds of distinct loops
and separate contributions from the same loop, interfere with
each other. Sometimes, the phases corresponding to subloops
of a main path cancel.

B. Analytical computational formalism

We will now compute the lattice path integralsS 2l . This
is a difficult task sinceS 2l involves an enormous number of
different paths~growing rapidly when the order increases!,
each one given by its corresponding net magnetic phase fac-
tor. We have considerably simplified this calculation by suc-
cessively iterating the recursion relation and analyzing the
symmetries of the problem.

We consider a unit spacing for the cubic lattice. The vec-
tor potential of a general magnetic fieldB5(Bx ,By ,Bz) can
be written as

A5
1

2
~zBy2yBz ,xBz2zBx ,yBx2xBy!.

Let a/2p, b/2p, andc/2p represent the three fluxes through
the respective elementary plaquettes on theyz, zx, andxy
planes. Thus a flux configuration is specified by (a,b,c).

From the definition ofS 2l , it is clear that~i! S 0 obvi-
ously equals 1,~ii ! S 2l11 are always zero because there is no
path with an odd number of steps for returning an electron to
its initial site, ~iii ! theS 2l ’s are gauge invariant, and~iv! in
the absence of the magnetic field,S 2l are just the total num-
ber of 2l -step paths on the cubic lattice starting and ending at
the same site.

First, it is instructive to evaluate the first two lattice path
integrals. This will help clarify their physical meaning. For
the two-step closed paths, and starting from any initial site,
the electron retraces its first step on one of the six bonds
connecting the initial site with its adjacent sites. This process
can be designated symbolically by (–↔), where the dot (–)
indicates the initial site. The flux enclosed, of course, is zero.
From these six closed paths of two steps each, we obtain

S 256 ~–↔!56 ei0565z,

where z stands for the coordination number of the cubic
lattice.

For the four-step closed paths, we need to consider four
different possibilities:~1! the electron retraces twice each
one of the six bonds connecting the initial site with its
nearest-neighboring sites (•↔↔); ~2! after retracing once one
of the six bonds connecting to the initial site, the electron
retraces two steps on one of the other five bonds (↔ •↔);
~3! hopping first to one of the six adjacent sites, the
electron retraces once one of the other five bonds~the one
connecting to the initial site is excluded! and then returns to
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the original site (•→←↔); and ~4! the electron traverses
either counterclockwise or clockwise on one of the
four elementary square cells~connecting to the initial
site! on the yz, zx, and xy planes, respectively

@(–h
←

1–h
→
)yz1(–h

←
1–h
→
)zx1(–h

←
1–h
→
)xy#. Thus

S 456 ~•↔↔ !130 ~↔–↔!130 ~•→←↔ !

14@~–h
←

1–h
→

!yz1~–h
←

1–h
→

zx!1~–h
←

1–h
→

!xy#

5~6130130!ei0

14 @~eia1e2 ia!1~eib1e2 ib!1~eic1e2 ic!#

56618 ~cosa1cosb1cosc!.

To computeS 2l in a systematic manner, we first define
the quantitySp,q,r

(t) , which is the sum over all possible paths

of t steps on which an electron may hop from the origin
(0,0,0) to site (p,q,r ). From the definition ofSp,q,r

(t) , it is
straightforward to construct the following recurrence relation
for Sp,q,r

(t11) :

Sp,q,r
~ t11!5expS 6 i

qc2rb

2 DSp61,q,r
~ t !

1expS 6 i
ra2pc

2 DSp,q61,r
~ t !

1expS 6 i
pb2qa

2 DSp,q,r61
~ t ! . ~3!

This equation states that the site (p,q,r ) can be reached by
taking the (t11)th step from the six nearest-neighboring
sites. The factors in front of theS(t)’s account for the pres-
ence of the magnetic field. By recursively using Eq.~3!, we
obtain the recurrence relation forSp,q,r

(t12) as

Sp,q,r
~ t12!56Sp,q,r

~ t ! 1exp@6 i ~qc2rb !#Sp62,q,r
~ t ! 1exp@6 i ~ra2pc!#Sp,q62,r

~ t ! 1exp@6 i ~pb2qa!#Sp,q,r62
~ t !

12 cosS c2D FexpS 6 i
r ~a2b!2~p2q!c

2 DSp61,q61,r
~ t ! 1expS 7 i

r ~a1b!2~p1q!c

2 DSp61,q71,r
~ t ! G

12 cosS b2D FexpS 6 i
q~c2a!2~r2p!b

2 DSp61,q,r61
~ t ! 1expS 7 i

q~c1a!2~r1p!b

2 DSp61,q,r71
~ t ! G

12 cosS a2D FexpS 6 i
p~b2c!2~q2r !a

2 DSp,q61,r61
~ t ! 1expS 7 i

p~b1c!2~q1r !a

2 DSp,q61,r71
~ t ! G . ~4!

We will now use Eq.~4! as the basic recurrence relation
in our iteration scheme. Without loss of generality and for
convenience, we choose the origin (0,0,0) to be our starting
site. The initial conditions then readS0,0,0

(0) 51 andSp,q,r
(0) 50

for other (p,q,r )’s. It is evident thatS 2l is just equal to
S0,0,0
(2l ) . Puttingt50 in Eq. ~4!, we directly haveS0,0,0

(2) 56,

S1,1,0
~2! 5S1,21,0

~2! 5S21,1,0
~2! 5S21,21,0

~2! 52 cosS c2D ,
S1,0,1

~2! 5S1,0,21
~2! 5S21,0,1

~2! 5S21,0,21
~2! 52 cosS b2D ,

S0,1,1
~2! 5S0,1,21

~2! 5S0,21,1
~2! 5S0,21,21

~2! 52 cosS a2D ,
and

S2,0,0
~2! 5S22,0,0

~2! 5S0,2,0
~2! 5S0,22,0

~2! 5S0,0,2
~2! 5S0,0,22

~2! 51.

Using the above results for theSp,q,r
(2) ’s and puttingt52 in

Eq. ~4!, we then obtain theSp,q,r
(4) ’s. In general, by following

this procedure we can obtainS0,0,0
(2l ) to any desiredl . The

properties discussed below will make the computation of
S0,0,0
(2l ) quite efficient.

For a givenl , a nonzeroSp,q,r
(2l ) exists only on thosep,

q, and r satisfying upu1uqu1ur u50,2, . . . ,2l . This stems
from the fact that only the sites (p,q,r ) satisfying this con-
dition can be reached by an electron after 2l hops from
(0,0,0). The total number of these sites is

NT
~2l !5

16l 3124l 2114l13

3
.

Among theSp,q,r
(2l ) ’s, we find the following symmetries hold

for any l . We omit the superscript (2l ) below.

Sp,q,r~a,b,c!5S2p,2q,2r~a,b,c!,

S2p,q,r~a,b,c!5Sp,2q,2r~a,b,c!,

Sp,2q,r~a,b,c!5S2p,q,2r~a,b,c!,

Sp,q,2r~a,b,c!5S2p,2q,r~a,b,c!,

13 376 53YEONG-LIEH LIN AND FRANCO NORI



Sp,q,r~a,b,c!5S2p,q,r~2a,b,c!5Sp,2q,r~a,2b,c!

5Sp,q,2r~a,b,2c!,

and

Sp,q,r~a,b,c!5Sp,r ,q~a,c,b!5Sr ,p,q~b,c,a!5Sq,p,r~b,a,c!

5Sq,r ,p~c,a,b!5Sr ,q,p~c,b,a!.

We can therefore reduce our calculation to theS(2l )’s at sites
(p,q,r ) in the first octant withp>q>r>0. Thus the total
number of the independentSp,q,r

(2l ) is

NI
~2l !5

l 316l 2112l192n

9

for l53m1n, where m are non-negative integers and
n50,1,2. Thus the number of theS(2l )’s to be computed is
significantly reduced~by about a factor of 48) compared to
that of the wholeSp,q,r

(2l ) .

Finally, it is worthwhile to note that to obtain the lattice
path integrals up toS 2L , it is sufficient to compute the
Sp,q,r
(L) ’s for 0<p1q1r<L when L is even
and theSp,q,r

(L11)’s for 0<p1q1r<L21 whenL is odd. To
be more specific, in doing the iteration ofSp,q,r

(2l ) for
L/2< l<L, we need only concern ourselves with those
Sp,q,r
(2l ) ’s with p1q1r50,2, . . . ,2(L2 l ).

C. Results for lattice path integrals
with general flux orientations

For the general flux orientation (a,b,c), we have ob-
tained S 2l up to 2l520. Here ( (a) denote sums over
a5a,b,c; ( (ab) denote sums over (ab)5(ab),(bc),
(ca); and ( (abg) denote sums over (abg)
5(abc),(bca),(cab). Also, for instance, the term
cos(a6b) means cos(a1b)1cos(a2b). Below we present
the results forS 4 , S 6 , S 8 , andS 10.

S 456618(
~a!

cosa,

S 658761(
~a!

@240 cosa124 cos2a#124(
~ab!

cos~a6b!112 cos~a1b1c!112 (
~abg!

cos~a1b2g!,

S 8512 9781(
~a!

@5632 cosa11000 cos2a196 cos3a116 cos4a#

1 (
~ab!

@ 1120 cos~a6b!1112 cos~2a6b!1112 cos~a62b!132 cos~2a62b!#1576 cos~a1b1c!

1 (
~abg!

@ 576 cos~a1b2g!164 cos~2a1b6g!164 cos~2a2b6g!

116 cos~a12b62g!116 cos~a22b62g!],

S 105208 8361(
~a!

@124 080 cosa130 040 cos2a15040 cos3a11160 cos4a1160 cos5a140 cos6a#

1 (
~ab!

@ 36 680 cos~a6b!16800 cos~2a6b!16800 cos~a62b!12160 cos~2a62b!

1600 cos~3a6b!1600 cos~a63b!1240 cos~3a62b!1240 cos~2a63b!180 cos~4a6b!

180 cos~a64b!160 cos~2a64b!160 cos~2a64b!140 cos~3a63b!]119 860 cos~a1b1c!

1 (
~abg!

@ 19 860 cos~a1b2g!14040 cos~2a1b6g!14040 cos~2a2b6g!

11280 cos~a12b62g!11280 cos~a22b62g!1400 cos~3a1b6g!1400 cos~3a2b6g!

1160 cos~a12b63g!1160 cos~a22b63g!1160 cos~a13b62g!1160 cos~a23b62g!

140 cos~4a1b6g!140 cos~4a2b6g!140 cos~3a12b62g!140 cos~3a22b62g!

140 cos~a14b62g!140 cos~a24b62g!140 cos~a12b64g!140 cos~a22b64g!

120 cos~4a12b62g!120 cos~4a22b62g!120 cos~a13b63g!120 cos~a23b63g!].
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TABLE I. Lattice path integralsS 2l ~with the order 2l54,6,8,10,12) for the 3D cubic lattice in various flux configurations: (0,0,f),
(0,f,f), (f,f,f), (f,f,22f), and the asymmetric case (p,p,f).

2l S 2l in ~0,0,f!

4 8218 cosf

6 14521384 cosf124 cos2f

8 29218113440 cosf11960 cos2f196 cos3f116 cos4f

10 6387561422800 cosf196760 cos2f111760 cos3f12284 cos4f1160 cos5f140 cos6f

12 14865220112737640 cosf13909984 cos2f1764216 cos3f1182328 cos4f

128392 cos5f17680 cos6f1528 cos7f1144 cos8f124 cos9f

2l S 2l in (0,f,f)

4 74116 cosf

6 11881576 cosf196 cos2f

8 22186116736 cosf14976 cos2f1736 cos3f196 cos4f

10 4602361461760 cosf1186360 cos2f149760 cos3f111840 cos4f12080 cos5f1520 cos6f

12 10354220112623616 cosf16211104 cos2f12269840 cos3f1742800 cos4f

1209328 cos5f167008 cos6f114016 cos7f13744 cos8f1480 cos9f

2l S 2l in (f,f,f)

4 66124 cosf

6 9481756 cosf1144 cos2f112 cos3f

8 16626119392 cosf16744 cos2f11584 cos3f1336 cos4f148 cos5f

10 3386161483420 cosf1230340 cos2f182980 cos3f127000 cos4f

17740 cos5f11980 cos6f1420 cos7f160 cos8f

12 7672212112250440 cosf17095780 cos2f13290664 cos3f11370952 cos4f1528120 cos5f1193524 cos6f

165736 cos7f120952 cos8f15952 cos9f11512 cos10f1288 cos11f124 cos12f

2l S 2l in (f,f,22f)

4 66116 cosf18 cos2f

6 9121528 cosf1336 cos2f148 cos3f136 cos4f

8 14930114016 cosf110080 cos2f13040 cos3f11992 cos4f1384 cos5f1240 cos6f132 cos7f116 cos8f

10 2827961356640 cosf1275560 cos2f1122640 cos3f179780 cos4f128160 cos5f117280 cos6f

15280 cos7f13040 cos8f1800 cos9f1440 cos10f180 cos11f160 cos12f

12 604569619120912 cosf17393704 cos2f14172032 cos3f12809680 cos4f11342512 cos5f

1841808 cos6f1367440 cos7f1220836 cos8f190384 cos9f152800 cos10f119680 cos11f

111856 cos12f13696 cos13f12112 cos14f1576 cos15f1360 cos16f148 cos17f124 cos18f

2l S 2l in (p,p,f)

4 5018 cosf

6 4921192 cosf124 cos2f

8 541013456 cosf1808 cos2f196 cos3f116 cos4f

10 64676156720 cosf118680 cos2f14080 cos3f11000 cos4f1160 cos5f140 cos6f

12 8268201900840 cosf1372384 cos2f1113336 cos3f135448 cos4f

19192 cos5f12880 cos6f1528 cos7f1144 cos8f124 cos9f
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We have also worked out a considerable number of lattice
path integrals~up to the 40th order! for various special ori-
entations of the flux. The results forS 4 ,S 6 , . . . ,S 12 are
listed in Table I. The results forS 14,S 16, . . . ,S 40 are not
presented.

III. TOTAL KINETIC ENERGY

We now proceed to calculate the total kinetic energyET
of the half filled Fermi sea. We do this by using a series
expansion of the total energy. We also present an alternative
approach based on a moment expansion of the density of
states. Through these two different approaches, we show that
our goal here—the calculation ofET(B)—is reduced to the
evaluation of the lattice path integralsS 2l .

A. Series expansion for the total energy

Let us work on the$uc i&% basis. At half filling, the total
kinetic energy of noninteracting spinless electrons is the sum
of the lowestN/2 eigenvalues, whereN is the total number
of sites. Since the energy spectrum of the cubic lattice is
symmetric under$E%→$2E%, we can write the total energy
per site as

ET5
1

N (
E,0

E52
z

2N
TrUH0

z U. ~5!

Here Tr denotes the trace andH0 is the corresponding di-
agonalized Hamiltonian ofH. Notice that the absolute value
is typically defined for scalar numbers. In this case,uH0 /zu
refers to an operator obtained by taking the absolute value of
every matrix element of the operatorH0 /z. Noting that
2I<uH0 /zu<I , we expanduH0 /zu into a series in terms of
Chebyshev polynomialsT2k(H0 /z) as

UH0

z U5 2

p
I1

4

p (
n51

`
~21!n11

4n221
T2nSH0

z D , ~6!

where I represents the identity operator. Exploiting the
equality

T2nSH0

z D5~21!nn(
l50

n

V lH0
2l , ~7!

where

V l5S 24

z2 D l ~n1 l21!!

~2l !! ~n2 l !!
,

we obtain from Eqs.~5!–~7!

ET52
z

p F12
2

N (
n51

`
n

4n221 S (
l50

n

V l~TrH
2l !D G , ~8!

where we have replaced Tr(H0
2l) by Tr(H2l), as they are

equal to each other.
Assuming periodic boundary conditions on the lattices,

we have

TrH2l5N^c i uH2l uc i&. ~9!

The total kinetic energy per site is then given by

ET~a,b,c!52
z

p F122(
n51

L
n

4n221 S (
l50

n

V lS 2l~a,b,c!D G ,
~10!

where we have assumed that the highest order of the lattice
path integral obtained is 2L. The above result is exact when
L5`. Truncations at high values ofL provide excellent ap-
proximations to theL5` case, because the terms corre-
sponding toL larger than either 4, 5, or 6~depending on the
orientation of the field! are negligible. Our results for the
general field orientation (a,b,c) of ET include all terms up
to L510. For the special flux configurations (0,0,f),
(0,f,f), (f,f,f), (f,f,22f), and (p,p,f), we obtain
all terms up toL520. Terms up toL510 ~corresponding to
S 20) include contributions originating from;1014 three-
dimensional closed paths, while terms up toL520 ~corre-
sponding toS 40) include contributions coming from;1029

closed paths in a 3D cubic lattice. Each one of these closed
paths is weighted by its corresponding magnetic phase fac-
tor.

Note that, by construction, the lattice path integrals are
local quantities and are valid for any value off. The peri-
odic boundary conditions make the lattice path integrals ho-
mogeneous~i.e., translationally invariant! and are unrelated
to the imposition of a Bloch theorem. In contrast to most
works studying tight-binding electrons in a magnetic field,
here we never invoke ak space or reciprocal space: our sums
are all defined in direct space.

B. Moment expansion for the density of states

Here we analytically apply the method of moment expan-
sion to obtain the total energyET . The starting point now is
the one-particle Green’s functionGii (E)[^c i u(E2H)21

uc i&, which can be expressed as

Gii ~E!5
1

E (
l50

`
^c i uH2l uc i&

E2l 5
1

E (
l50

`
S 2l

E2l . ~11!

The nonzero 2l th momentM2l of the density of states
r(E) is given by

M2l5E
2z

z SEz D
2l

r~E!dE. ~12!

Taking into account the relation betweenr(E) and the
imaginary part of the Green’s function, it can be derived that

M2l5
S 2l

z2l
. ~13!

After the change of variablesv5E/z, Eq. ~12! can be re-
written as

M2l5E
21

1

v2l r̃~v!dv, ~14!

wherer̃(v)5zr(vz).
We now expandr̃(v) in a series of Chebyshev polyno-

mials weighted by 1/A12v2 as
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r̃ ~v!5 (
k50

`

C2k

T2k~v!

A12v2
. ~15!

Substituting Eq.~15! into Eq. ~14! and using forl>k

E
21

1 v2lT2k~v!

A12v2
dv[I 2l ,2k5

~2l !!p

4l~ l2k!! ~ l1k!!
, ~16!

we obtain

M2l5 (
k50

l

C2kI 2l ,2k . ~17!

Given the moments up toM2L , the coefficientsC2k , for
k50,...,L, can then be exactly determined one by one in
terms of the moments. For instance,

C05
M0

I 0,0
5
1

p
,

C25
M22C0I 2,0

I 2,2
52

4

3p
,

and

C45
M42C0I 4,02C2I 4,2

I 4,4

5
4

27p F11
2

3
~cosa1cosb1cosc!G .

In general, everyC2k can be computed from the previous
ones by

C2k5
1

I 2k,2k
SM2k2 (

i50

k21

C2i I 2k,2i D . ~18!

Noting that at half filling the total energyET is

ET5E
2z

0

Er~E!dE, ~19!

and using the result

E
21

0 vT2k~v!

A12v2
dv5

~21!k

~2k21!~2k11!
,

we therefore obtain the following expression for the total
kinetic energy

ET~a,b,c!5z(
k50

L
~21!k

~2k21!~2k11!
C2k~a,b,c!. ~20!

It is interesting to notice that Eqs.~10! and ~20! lead to the
same result for the total energyET , even though we used
quite different approaches. Both results are exact when
L5`. However, terms withk larger than 4, 5, or 6~depend-
ing on the field orientation! provide negligible contributions
to the sum. Our results for the general field orientation
(a,b,c) of ET(a,b,c) include all terms up toL510, while

for the five special flux configurations studied below~Sec.
III C !, we include all terms up toL520.

C. The lowest-energy flux state andET

for various flux orientations

Substituting the expressions for theS 2l(a,b,c)’s into Eq.
~10! or the results for theC2l(a,b,c)’s into Eq.~20!, we find
that the lowest-energy state is reached whena5b5c5p
~namely, a half flux quantum per plaquette on theyz, zx,
andxy planes!. We thus provide anexplicit analytic deriva-
tion for the absolute minimum energy of the flux state. The
result is consistent with a theorem proved by Lieb.3

We also obtain the total energyET(f) as acontinuous
function of the fluxf for the following flux orientations:
(0,0,f), (0,f,f), (f,f,f), (f,f,22f), and the asym-
metric case (p,p,f). Notice that the field direction of
(f,f,f) is perpendicular to that of (f,f,22f). These re-
sults are plotted in Fig. 1. They are calculated through Eq.
~20! by using their respectiveC2k’s for 2k50,2,4, . . . ,40.
Thus we have added the contributions of;1029 electron
closed paths in a 3D cubic lattice, each one weighted by its
magnetic phase factor.

For comparison purposes, we also presentET
(2D)(f) for

the 2D case, obtained by using the correspondingC2k
(2D)’s up

to C76
(2D) . This corresponds to summing over;1044 electron

closed paths in a 2D square lattice, each one with its corre-
sponding phase factor. Note that the absolute minimum of
ET(f) occurs atf5p in all of these flux orientations, ex-
cept for the orientation (0,0,f) in 3D. It becomes clear that
hopping in an extra dimension drastically changes the prop-
erties found in strictly two-dimensional systems.

In Fig. 2, we plot the total kinetic energy of electrons at
half filling, ET , for the 3D cubic lattice for various field
orientations versus the order of the highest-order lattice path
integral used to calculate them. For comparison, we also
show the numerical values ofET obtained in Ref. 5, which
mostly has only three significant figures. TheET reach
steady values which are consistent, within;2%, with nu-
merical ones for lattice path integrals of order 2L equal to
either 4, 6, or 8, depending on the orientation of the field.
Higher-order lattice path integrals provide negligible contri-
butions toET . For instance, for (0,0,0) both approaches give
the same result, within;0.5%, for 2L>4.

D. Total energy for any filling

The approach described in Sec. III B can be directly gen-
eralized to calculate the total energyET(n) for anyelectron
filling n (0<n<1/2) as

ET~n!5E
2z

m

Er~E!dE5zE
21

m/z

vr̃~v!dv, ~21!

where the Fermi energym is determined by

n5E
2z

m

r~E!dE5E
21

m/z

r̃~v!dv. ~22!

Utilizing Eq. ~15! and carrying out the integrals, we obtain
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ET~n!52
z

p
sinu2

z

2(k51

L

C2kFsin@~2k21!u#

2k21

1
sin@~2k11!u#

2k11 G , ~23!

whereu5arccos(m/z) (p>u>p/2), and givenn, u can be
solved from the equation

n512
u

p
2 (

k51

L

C2k

sin~2ku!

2k
. ~24!

Note that 0<n<1/2 corresponds to2z<m<0 and
p>u>p/2. Writing n51/22d and u5p/21h, Eqs. ~23!
and ~24! can then be rewritten as

ETS 122d D52
z

p
cosh1

z

2(k51

L

~21!kC2kFcos@~2k21!h#

2k21

2
cos@~2k11!h#

2k11 G ~25!

and

d5
h

p
1 (

k51

L

~21!kC2k

sin~2kh!

2k
. ~26!

In the small-d limit ~i.e., the electron fillingn is close to
one-half andh is very small! sin(2kh).2kh; we then have

h.
p

11pC ~a,b,c!
d, ~27!

where

C ~a,b,c!5 (
k51

L

~21!kC2k~a,b,c!.

Therefore, using the approximation cos@(2k61)h#
.12(2k61)2h2/2, we obtain the total energyET(1/22d)
close to~and below! half filling:

ETS 122d D.2
z

p
cosS p

11pC
d D

1z(
k51

L
~21!k

~2k21!~2k11!
C2k1

z

2

p2C

~11pC !2
d2

.ETS 12D1
z

p F12cosS p

11pC
d D G

1
z

2

p2C

~11pC !2
d2. ~28!

Finally, by differentiating bothET in Eq. ~23! andn in Eq.
~24! with respect tom, we can establish the identity

dET
dm

5m
dn

dm
. ~29!

FIG. 1. Lower frame: Total kinetic energy of electrons at half
filling, ET(f), for the 3D cubic lattice for various flux orientations
(0,0,f) ~long dash!, (0,f,f) ~short dash!, (f,f,f) ~solid!,
(f,f,22f) ~dot!, and (p,p,f) ~dot-dash!. Upper frame:
ET
(2D)(f) for the 2D square lattice in a perpendicular field. The flux

values where the minima occur are indicated. We obtain these re-
sults by using the lattice path integrals up to the order 40 for the 3D
case and 76 for the 2D lattice—which corresponds to summing
contributions over;1029 electron closed paths in a 3D cubic lattice
and;1044 electron closed paths in a 2D square lattice. Notice that
ET(f) has the absolute minimum atf/2p51/2 for all of these flux
orientations, except for the configuration (0,0,f).
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It is worthwhile to emphasize that the formalism described in
this section is equally applicable to the 2D square lattice
case.

IV. MAGNETIC MOMENT AND ORBITAL
SUSCEPTIBILITY

In this section we investigate two experimentally acces-
sible observables, namely, the magnetic momentM and the
orbital susceptibilityx of this quantum system. It is well
known8 that at absolute zero temperatureM andx are given
by the first- and second-order derivatives of the total energy,

M52
]ET

]B
~30!

and

x52
]2ET

]B2 . ~31!

With our analytical results forET at hand, Eqs.~30! and~31!
provide a straightforward way to study these important quan-
tities for any orientation of the externally applied field. For
illustration purposes, below we will focus on the following

flux orientations: (0,0,f), (0,f,f), (f,f,f), and
(f,f,22f). It will be seen that the magnetic response, in
the presence of a strong periodic potential, is significantly
different from the familiar Landau diamagnetism of a 2D
electron gas, where2x has its largest value atB50 and its
vicinity and decreasesmonotonicallyasB is increased.

A. Zero-field susceptibility x„µ…5x„f50,µ…
versus Fermi energyµ

When we increase the electron filling factorn, the Fermi
energym increases. We therefore first study the zero-field
susceptibilityx(m)5x(f50,m) as a function ofm through

x~m!52
]2ET

]B2 U
B50

. ~32!

From Eq.~23!, we readily obtain

x~m!5
z

2(k52

L S d2C2k~f!

df2 U
f50

D Fsin@~2k21!u#

2k21

1
sin@~2k11!u#

2k11 G , ~33!

FIG. 2. Total kinetic energy of electrons at half filling,ET , for the 3D cubic lattice for various field orientations (1/2,1/2,1/2),
(1/3,1/3,1/3), (1/4,1/4,1/4), (0,1/2,1/2), (0,1/3,1/3), (0,1/4,1/4), (0,0,1/2), (0,0,1/3), and (0,0,0). Here (a,b,c) means that the three fluxes
through the elementary plaquettes on theyz, zx, andxy planes are, respectively,a/2p, b/2p, andc/2p. The horizontal axis (2L) denotes
the order of the highest-order lattice path integral used in computingET . The dashed lines indicate the corresponding values from Ref. 5,
where only the first three significant figures are available, except for the cases (1/2,1/2,1/2) and (0,0,0). TheET reach steady values which
are consistent, within;2%, with numerical ones for lattice path integrals of order 2L equal to either 4, 6, or 8, depending on the field
orientation. Higher-order lattice path integrals provide negligible contributions toET . Notice that the vertical axes here cover a very narrow
range of values (;1022). For (1/2,1/2,1/2), (0,1/2,1/2), and (0,0,1/2), both approaches give the same result within;1% for 2L>8 and
within ;2% for 2l>8, 8, and 4, respectively. For (1/3,1/3,1/3), (0,1/3,1/3), and (0,0,1/3), both approaches provide the same result within
;1% for 2L>12, 10, and 12, and within;2% for 2l>8, 4, and 4, respectively. For (1/4,1/4,1/4), (0,1/4,1/4), and (0,0,0), both
approaches yield the same result within;1% for 2L>16, 4, and 4 and within;2% for 2l>4, 4, and 4, respectively.
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whered2C2k(f)/df2uf50 can be easily computed for each
of the flux orientations under consideration.

In Fig. 3 we plot the negative of the susceptibility2x as
a function of the Fermi energym for various flux configura-
tions. Large diamagnetic~i.e., negative! susceptibilities are
observed at very low electron filling. For increasingm, the
quantity 2x decreases and fluctuates around zero. Form
larger than a certain value (.23.2), paramagnetism pre-
vails. Indeed, the orbital response is weakly paramagnetic at
half filling (m50). These results are in qualitative agree-
ment with the observations of Skudlarski and Vignale4 based
on calculating the current-current correlation function. Fur-
thermore, note that the absolute value ofx for (0,f,f) is
always twice that for (0,0,f); uxu for (f,f,f) is always
three times that for (0,0,f); and uxu for (f,f,22f) is
twice that for (f,f,f). These results clearly reflect the or-
bital origin of the susceptibility.

B. Field-dependentM „f… and x„f… at n5 1
2

We now focus on the system at half filling and examine
the continuousdependence of the magnetic momentM and
susceptibilityx on the magnetic fluxf. Employing Eq.~20!
for ET(f), we can directly obtain

2M ~f!5
dET~f!

df
5z(

k50

L
~21!k

~2k21!~2k11!

dC2k~f!

df
,

~34!

and

2x~f!5
d2ET~f!

df2 5z(
k50

L
~21!k

~2k21!~2k11!

d2C2k~f!

df2 .

~35!

The results for four different flux orientations are shown in
Fig. 4. Let us look at2M (f)52M (f,n51/2) first. Start-
ing from f50, 2M (f) decreases from zero and remains
negative with some fluctuations. There are then some irregu-
lar ‘‘sine-function-shaped’’ oscillations present. These low-
field oscillations in2M (f) are observed for all orientations
shown in Fig. 4. For the (0,0,f) flux orientation,2M has a
positive value forf/2p'0.3–0.5, reaching zero atf5p.
On the other hand, for (0,f,f), (f,f,f), and
(f,f,22f), 2M is mostly negative for low fields
(f/2p'0–0.1), oscillates around zero for intermediate
fields (f/2p'0.1–0.3), is negative for larger fields
(f/2p'0.3–0.5), and reaches zero atf5p. At relatively
large flux values (f/2p'0.4–0.5),2M decreases to zero
~at f5p) from a positive value for (0,0,f), and increases
to zero ~at f5p) from a negative value for (0,f,f),
(f,f,f), and (f,f,22f).

The field-dependent orbital magnetic susceptibility,
2x52x(f,n51/2), fluctuates somewhat evenly around
zero in the low-field regime. However,2x fluctuates less,
and around a small negative value for the flux orientation
(0,0,f), where only one plane (xy plane! is penetrated by
the flux. The fluctuations are more pronounced in the flux
orientations (0,f,f), (f,f,f), and (f,f,22f), where at
least two perpendicular planes are affected by the field. As
the flux is raised,2x tends to fluctuate less and~i! a cross-
over from diamagnetism to paramagnetism is observed in the
configuration (0,0,f); and, on the other hand,~ii ! a cross-
over from paramagnetism to diamagnetism is observed in the
orientations (0,f,f), (f,f,f), and (f,f,22f). In other
words, atf5p, the magnetic response is weakly paramag-
netic in the flux configuration (0,0,f), while the other three
orientations provide a strong diamagnetic response in the
lattice.

Figure 4 suggests that, for bothM andx, the following
four quantities tend to grow larger with the increase of planes
exposed to the field: the number of oscillations, the fre-
quency of the oscillations as a function of the flux, the num-
ber of nodes, and the amplitude of the oscillations. For in-
stance,M (f,f,f) oscillates more rapidly and strongly than
M (0,f,f), which at the same time oscillates more rapidly
and strongly thanM (0,0,f). A similar general trend is ob-
served betweenx(f,f,f), x(0,f,f), andx(0,0,f). These

FIG. 3. The negative of the zero-field susceptibility2x(m) as a
function of the Fermi energym for various flux configurations
(0,0,f), (0,f,f), (f,f,f), and (f,f,22f) corresponding to
curvesa, b, c, andd, respectively. Curvea is always the closest to
the dotted reference linex50, while curved is always the farthest
from it. For all these orientations, the susceptibility exhibits a very
nonmonotonic behavior. For small electron fillingn ~i.e., small
m), diamagnetism (x,0) dominates in spite of small fluctuations
of 2x around zero. With increasingm, on the average,2x de-
creases from a large positive value to a negative one. For
m>23.2 the orbital response is paramagnetic.
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features can be understood intuitively: the more perpendicu-
lar planes are exposed to the flux, the more stronglyM and
x will be affected.

V. SUMMARY

In conclusion, we present an investigation of quantum
interference phenomena of tight-binding electrons on the 3D
cubic lattice in acontinuously tunablemagnetic field with
arbitrary orientation. Previous work on this problem focused
on adiscreteset of~rational! magnetic field values. We study
the total kinetic energy, and subsequently the magnetic mo-
ment and orbital susceptibility. The main results include~1!
an analytic study of electron quantum interference effects
resulting from sums over magnetic phase factors associated
with 3D closed paths,~2! a very efficient computation of
these ‘‘lattice path integrals’’S 2l in closed-form expres-
sions,~3! explicit analytic expressions, in terms of the lattice
path integrals, for the Fermi-sea ground-state energyET as a
function of the fluxes for electron fillingsn at and near one-
half, ~4! the 3D lattice path integrals to very high order and
the total energies in various flux orientations,~5! the inves-
tigation of the zero-field orbital susceptibilityx(m) as a
function of the Fermi energym, and ~6! the magnetic mo-
mentM (f) and susceptibilityx(f) as functions of the flux,
both at half filling.

We find that the absolute minimum ofET(f) at half fill-
ing occurs atf5p in all of the flux orientations under con-
sideration, except for the configuration (0,0,f) in 3D. It be-
comes evident that hopping in an additional direction
drastically changes the properties found in strictly two-
dimensional systems. It is also seen that the magnetic re-
sponse, in the presence of a strong periodic potential, is sig-
nificantly distinct from the familiar Landau diamagnetism—
where in a 2D electron gas2x takes the largest value close
to B50, and decreases monotonically with increasingB. For
the zero-field susceptibilityx(m), diamagnetism dominates
in spite of small fluctuations ofx(m) around zero for small
electron filling n. On the average, with increasingm, the
quantity 2x(m) nonmonotonicallydecreases from a large
positive ~diamagnetic! value to a relatively small negative
~paramagnetic! value. Form>23.2, the orbital response be-
comes paramagnetic. Both the field-dependent2M (f) and
2x(f) exhibit irregular oscillations according to the direc-
tion of the field. For the four flux orientations (0,0,f),
(0,f,f), (f,f,f), and (f,f,22f), the magnetic moment
M (f) is always zero atf50 andp; and paramagnetism
(x.0) exists atf50 for all these flux orientations. How-
ever, whenf/2p51/2, the magnetic response is paramag-
netic for the flux configuration (0,0,f), and diamagnetic for
the other three orientations.

Here, we add a remark on the quantitydET(f)/df. It is
known that at zero temperature the persistent current9 in a
metal ring threaded by a magnetic fluxw is proportional to
the sum over the contributions of]En /]w from all occupied
states, whereEn is the eigenstate energy. We therefore can
regarddET(f)/df as a generalized ‘‘current’’ in this mul-
tiply connected lattice system.

An approach commonly employed in recent years to study
electrons in a magnetic fieldf5p/q ~e.g., Refs. 4–6! uses
the Bloch theorem and maps the problem into aq3q matrix

FIG. 4. The negatives of the magnetic moment2M (f) ~left
column! and the orbital susceptibility2x(f) ~right column! at half
filling as a function of the fluxf for various flux orientations as
indicated. From top to bottom they are (0,0,f), (0,f,f),
(f,f,f), and (f,f,22f). Both 2M and2x exhibit nonperi-
odic oscillations. Notice the change of the amplitude and the fre-
quency of the oscillations as a function of the flux for different
orientations of the field. Atf50 andp, the magnetic moments are
always zero. Moreover, paramagnetism exists atf50 for all these
flux orientations. However, whenf/2p51/2, the magnetic re-
sponse is paramagnetic for flux configuration (0,0,f), and diamag-
netic for the other three orientations.
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problem—related to aq3q cell with periodic boundary con-
ditions ~PBC! in the actual lattice. Thus, forf51/2, the
electron energy levels are determined by considering a
232 cell with PBC in the lattice and diagonalizing a 232
matrix. This approach presents a problem for any irrational
field, sinceq→`, and a periodic cell cannot be realized. We
do not follow this approach; thus we can explicitly consider
a continuumof values off, without treating irrational num-
bers on a special footing.

Our lattice path integrals are local quantities. By construc-
tion, they are valid forany value of the magnetic field. The
PBC we impose@in Eq. ~9!# are only designed to make these
lattice path integrals homogeneous~i.e., translationally in-
variant! and have nothing to do with the imposition of a
Bloch theorem. Indeed, in contrast to most works studying
electrons in a magnetic field, here we never invoke anyk
space or momentum space our sums over closed paths~lat-
tice path integrals! are all explicitly defined in real space.

The lattice path integrals obtained here are many-loop
generalizations of the standard one-loop Aharonov-Bohm-
type argument, where the electron wave function picks up a
phase factoreiF each time it travels around a closed loop
enclosing a net fluxF. The evaluation of these lattice path
integrals enables us to analytically obtain the total energies,
magnetic moments, and orbital susceptibilities of the corre-
sponding flux states. The spirit of our approach follows Fey-

nman’s program: to derive physical quantities in terms of
sums over paths. This method is considerably different from
the standard ones that have been employed so far~e.g., trans-
forming the problem to momentum space and computing
ET numerically!. In particular, it allows the analytic calcula-
tion of physical quantities as explicit functions of a continu-
ously tunable flux, while other approaches need to separately
consider different cases~e.g., matrices! for several discrete
~rational! values of the magnetic field. The lattice path ap-
proach can also be used for a variety of other physical prob-
lems, including the derivation and analysis of the supercon-
ducting transition temperature in wire networks and
Josephson-junction arrays~see, e.g., Refs. 10 and 11!, and
the analytical computation of the magnetoconductance for
strongly localized electrons.12

ACKNOWLEDGMENTS

We thank A. Rojo for conversations and for bringing to
our attention Ref. 7, and G. Vignale for useful comments on
the manuscript. We thank O. Pla, supported by NATO Grant
No. CRG-931417, for his help. We acknowledge partial sup-
port from the University of Michigan Horace H. Rackham
School of Graduate Studies, and the Offices of the Vice
Presidents for Research and Academic Affairs.

*Present address: Department of Physics, West Virginia Univer-
sity, Morgantown, West Virginia 26506-6315.

†Electronic address: nori@umich.edu
1See, e.g., I. Affleck and J. B. Marston, Phys. Rev. B37, 3774

~1988!; Y. Hasegawaet al., Phys. Rev. Lett.63, 1519~1989!; P.
Lederer, D. Poilblanc, and T. M. Rice,ibid. 63, 1519~1989!; D.
Poilblanc, Y. Hasegawa, and T. M. Rice, Phys. Rev. B41, 1949
~1990!; F. Nori, E. Abrahams, and G. T. Zimanyi,ibid. 41, 7277
~1990!; M. Kohmoto and Y. Hatsugai,ibid. 41, 9527~1990!; F.
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