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We study quantum interference effects due to electron motion on a three-dimensional cubic lattice in a
continuously tunable magnetic fiell of arbitrary orientation and magnitude. These effects arise from the
interference between magnetic phase factors associated with different electron closed paths. The sums of these
phase factors, called lattice path integrals, are many-loop generalizations of the standard one-loop Aharonov-
Bohm-type argument, where the electron wave function picks up a phaseddteach time it travels around
a closed loop enclosing a net fldx. Our lattice path integral calculation enables us to obtain various important
physical quantities through several different methods. The spirit of our approach follows Feynman’s program:
to derive physical quantities in terms of sums over paths. From these lattice path integrals we compute
analytically, for several lengths of the electron path, the half-filled Fermi-sea ground-state dngjy, of
noninteracting spinless electrons in a cubic lattice. Our expressiorSfare valid for any strength of the
applied magnetic field in any direction. Moreover, we provide an explicit derivation for the absolute minimum
energy of the flux state. For various field orientations, we also study the quantum interference patterns and
E.(B) by exactly summing over10?° closed paths in a cubic lattice, each one with its corresponding
magnetic phase factor representing the net flux enclosed by each path. Furthermore, an expression for the total
kinetic energyE{(B,v) for any electron fillingv close to one-half is obtained. We also study in detail two
experimentally important quantities: the magnetic monM(B) and orbital susceptibility(B) at half filling,
as well as the zero-field susceptibiligf ) as a function of the Fermi energy. [S0163-182806)03020-3

I. INTRODUCTION taining results that areontinuousfunctions of the applied
field—valid for both commensurate and incommensurate
The quantum behavior of noninteracting tight-binding flux values.
electrons on a two-dimension&D) lattice immersed in a In this work, we focus on the isotropic 3D cubic lattice,
perpendicular magnetic field has attracted much attentiofamely, the hopping integrals in the y, andz directions
due to its important role in diverse areas of physics. Fo@re the same and taken to be equal to 1. The system is de-
instance, the problem is intimately related to the quantun$cribed by the Hamiltonian
Hall effect. During the past few years, the ground-state en-
ergy of this system has also been intensively investidaed H=> clciexpliA;), (1)
in connection with mean-field studies of thd and Hubbard (D) : :

models of high¥t. superconductors. At half filling, the abso- where (ij) refers to nearest-neighbor sites, and the phase

lute minimum of the kinetic energy has a half flux quantumAij —2x[IA-dl is 27 times the line integral of the vector

(Do/2) per plgquette—called the flux state. In gddition, therepotential along the bond fromto j. Throughout this paper,
are local minima at flux values equal da/2m with m>1. e flyx quantumb,=hc/e is set equal to 1. The goal of this
More recently, several groups have paid attention to theyaper is to explore conceptually different viewpoints and ap-
three-dimensiona(3D) case: the kinetic energy of a 3D non- proaches to studying this interesting problem. Focusing on
interacting electron gas under the influence of both a stronghe hopping motion of electrons on the lattice, we first study
periodic potential and a magnetic field. For instance, for sevthe quantum interference between the phase factors of elec-
eral rational values of the magnetic field, Skudlarski andrron closed paths. This phenomenon is the source for the
Vignalé® analyzed the changes in the ground-state propertielswering of the total energy in a magnetic field.
induced by the addition of hopping in the direction parallel In Sec. Il, we examine the quantum interference effects
to the uniform magnetic field. Hasegawsiudied the density originating from lattice path integrals—defined as sums over
of states and the total energy with the external field in thenagnetic phase factors on different electron closed paths.
(0,0,1), (0,1,1), and (1,1,1) directions for certain selectedrhere, the physical meaning of these lattice path integrals
rational values of the resulting flux. Kunszt and Zekowed ./% and the techniques we use to compute them are dis-
that for rational values of the flux the eigenvalue problemcussed in detail. Results for’, in an arbitrarily oriented
can be reduced to a one-dimensional hopping in momenturfield of any strength are also presented. Furthermore, we ob-
space. They then calculated the energy spectra and the demin the lattice path integrals for several flux orientations by
sity of states for various selected rational values of the fluxexactly summing an enormous number 10°°) of closed
states. These three wofk§ focused on aliscreteset of(ra-  paths, each one weighted by its corresponding acquired
tional) magnetic field values. Here we are interested in obphase factor.
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In Sec. lll, we present an analytical calculation of the totaltions from all closed paths ofl Zteps starting and ending at
kinetic energyE+(B) of the half-filled Fermi sea of tight- the same site, each one weighted by its corresponding phase
binding electrons. We use two different approaches: ondactor € *r where ® /27 is the net flux enclosed by the
based on a direct series expansion for the erfeagy the closed pat.
other on a moment expansion for the density of states. It is important to stress thaby depends crucially on the
These two different methods yield the same results. Moretraveling route of the path. For instaneky will be positive
over, they provide different insights into the problem. For an(negativeé on traversing a polygon loop counterclockwise
arbitrary field orientation, analytic results for the total en-(clockwise. Therefore quantum interference information
ergy, in terms of the lattice path integrals, are obtained. It iontained in/>, arises because the phase factors of different
found that the lowest-energy state is reached when the fluxesosed paths, including those from all kinds of distinct loops
per plaquette on each one of tkg, yz, andzx planes are and separate contributions from the same loop, interfere with
equal tod®y/2. We also show the variations of the total en- each other. Sometimes, the phases corresponding to subloops
ergy E as a function of the flux, for various orientations of of a main path cancel.
the magnetic field. Furthermore, we obtain an analytic ex-
pression for the total kinetic enerds4(B, v) for any filling B. Analytical computational formalism
v close to one-half.

In Sec. IV, we investigate the magnetic momén{B)
and orbital susceptibilityy(B) of this quantum system. For

various flux orientations, we also obtain the zero-field sus ) . . .
ceptibility x(x) as a function of the Fermi energy. We each one given by its corresponding net magnetic phase fac-

show that the magnetic response, in the presence of a strofff- W& have considerably simplified this calculation by suc-
periodic potential, is significantly different from the familiar CESSIVely iterating the recursion relation and analyzing the
Landau diamagnetism. The zero-field susceptibifity) as ~ SYmmeuies of the problem. _

a function of the Fermi energy exhibits a large diamag- We c0|j5|der a unit spacing for th'e cubic lattice. The vec-
netic (i.e., negativey) response at very low electron filling. [OF Potential of a general magnetic fiefi= (B, By ,B,) can

For increasingu, x(u) increases and fluctuates around zero.be written as

Paramagnetism prevails for large Indeed, the orbital re- 1

sponse is paramagnetic at and near half fillipg=0). We A== (zB,—yB,,xB,— 2B, ,yB,—xB,).

obtain the field dependence &f(B)—which can be re- 2

garded as a generalized current in a multiply connected ot 4/7,- b/2s, andc/2a represent the three fluxes through

geometry—andy(B) at half filling, and both show oscilla- e respective elementary plaquettes onytaezx, andxy
tions between para- and diamagnetic behaviors as a functigl|,nes Thus a flux configuration is specified layl(,c).
of the flux. The frequencies of these oscillations, as function Frorﬁ the definition of/>, , it is clear that(i) (7/0' obvi-

of the flux, tend to decregse for increasing field. ously equals 1(ji) .%5,, 1 are always zero because there is no
In Sec. V, we summarize our results. path with an odd number of steps for returning an electron to
its initial site, (i) the.”%,'s are gauge invariant, an@v) in
[l. QUANTUM INTERFERENCE FROM SUMS OVER the absence of the magnetic fieldy, are just the total num-
CLOSED PATHS: LATTICE PATH INTEGRALS ber of 2-step paths on the cubic lattice starting and ending at
the same site.
First, it is instructive to evaluate the first two lattice path
The lattice path integral of orderl 2s defined as integrals. This will help clarify their physical meaning. For
the two-step closed paths, and starting from any initial site,
Y= S iy @) the elec_tron retraces _its fi_rst step on one_of the _six bonds
o ' connecting the initial site with its adjacent sites. This process
atiice pathe can be designated symbolically by<¢), where the dot {)

indicates the initial site. The flux enclosed, of course, is zero.

where® is the sum over phases of the bonds on the pat . :
. . ) I ths of two st h t
" of 2I steps starting and ending at the same site.| let 'hom these six closed paths of two steps each, we obtain

denote a localized one-site electron state centered at dite y=6( —)=6€0=6=2

is not difficult to notice that,, corresponds precisely to the ' ’

guantum mechanical expectation val(|H?'|4;), which  where z stands for the coordination number of the cubic

summarizes the contribution to the electron kinetic energy ofattice.

all closed paths of Rsteps. For the four-step closed paths, we need to consider four
The physical meaning af5 (={(;|H?|4,)) thus be- different possibilities:(1) the electron retraces twice each

comes clear. The Hamiltoniad is applied 2 times to the one of the six bonds connecting the initial site with its

initial state|«;), resulting in the new state?'| ;) located at  nearest-neighboring sites«@); (2) after retracing once one

the end of the path traversind attice bonds. Because of the of the six bonds connecting to the initial site, the electron

presence of a magnetic field, a magnetic phase fattoris  retraces two steps on one of the other five bonds-(—);

acquired by an electron when hopping through two adjacent3) hopping first to one of the six adjacent sites, the

sitesi andj. .”% is nonzero only when the path ends at theelectron retraces once one of the other five bofikds one

starting site. In other wordsy?, is the sum of the contribu- connecting to the initial site is excludednd then returns to

We will now compute the lattice path integraks, . This
is a difficult task since’, involves an enormous number of
different paths(growing rapidly when the order increases

A. Physical interpretation
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of t steps on which an electron may hop from the origin
(0,0,0) to site p,q,r). From the definition ofS{, , it is
straightforward to construct the following recurrence relation

the original site (:<—>); and (4) the electron traverses
either counterclockwise or clockwise on one of the
four elementary square cell§connecting to the initial

1
site on the yz, zx, and xy planes, respectively for Shar:
O+.0 O+.0 O+.0 c—rb
[(-O+-0)ypt (-O+-0) et (-0 +-0)yyl. Thus ngg}):ex%iiqT)S&’q’r
S3=6(-3)+30(-)+30(- 5 ) -
ra—pc|
— — — — — — texp =l 2 Spq+1,r
+A4[(-O+-0)y+(-O+-O,0+(-0O+-0)yyl
i _pb—qa
=(6+30+30)e'° +ex;{i|T Sg’)qyrﬂ. ®)
ia —ia ib —ib ic —ic
+af(ef+e )+ (eP+e M)+ (eT+e )] This equation states that the site,¢,r) can be reached by

taking the €+1)th step from the six nearest-neighboring
sites. The factors in front of th8's account for the pres-
To compute”5, in a systematic manner, we first define ence of the magnetic field. By recursively using E8), we

the quantityS{, ., which is the sum over all possible paths obtain the recurrence relation f6f ;2 as

=66+8 (cosaa+codh+cox).

Sye?=65S), +exd xi(qc—rb)IS\L,, +exd £i(ra—pc)1Syy=o, +exd =i(pb—qa)]Syy <2

_+2Co<g)ex%__r(a b)—(p—q) )s;4q+“+-x4 Ir(a+b)2(p+q)c

t
2 Séx)rl,qil,r}

+2 Co{g)exp{iiQ(C—a);(r—p)b>s(t+lqr+1+exr< q(c+a)2(r+p)b <

v }
pxlq,r+1
a\[ b—c)—(g-r)a
+2 co{i)_ex%iip( )2(q )

_.p(b+c)—(g+r)a
S(tq+lr+l+exp<+| 5

s:ﬁqﬂm] 4

We will now use Eq.(4) as the basic recurrence relation  For a givenl, a nonzeroS{%), exists only on those,
in our iteration scheme. Without loss of generality and forq andr satisfying |p|+|q|+|r|=0,2,...,2. This stems
convenience, we choose the origin (0,0,0) to be our startingrom the fact that only the siteg(q,r) Sat|sfy|ng this con-
site. The initial conditions then rea®f} =1 andS{’},=0  dition can be reached by an electron after fops from
for other (p,q,r)’s. It is evident that/zl is just equal to  (0,0,0). The total number of these sites is
SZo- Puttingt=0 in Eq. (4), we directly haveS% =6

C) | 16°+242+14+3

S(Z) _ 710_8(2) T S( ) ,0:2 CO{E 7 Ngl_ZI) 3

b
E ’

SB=S%-1=8%0:=5%0-1=2 COf{ Among theS{?) 's, we find the following symmetries hold

for anyl. We omit the superscript (2 below.
a

2 2 2 2
S S =SS =2 cod 3.

Sp'q’r(a,b,C) = S_p’_q’—r(a!bac)l

and
2) — 200 S0 So 20" S002 =1 S,pyq',(a,b,c)=Spy,q‘,,(a,b,c),

Using the above results for tr@é}2 's and puttingt=2 in

Eq. (4), we then obtain thé;(“c)] 's. In general, by following So,—qr(@,b,0)=S_, 4 ((a,b,c),
this procedure we can obtal&?:O ), to any desired. The

properties discussed below will make the computation of

S quite efficient. Spq—r(ab,c)=S_, _4,(a,b,c),
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Spar(@b,c)=S_,4(—ab,c)=S, _4.(a—b,c) Finally, it is worthwhile to note that to obtain the lattice
path integrals up tov5 , it is sufficient to compute the
=Spq,-r(@,0,—0), st 's for O<p+qg+r<L when L is even
and and theS{*M’s for 0O<p+q+r=<L—1 whenL is odd. To
B be more specific, in doing the iteration &%) for
Spqr(@0,€) =Sy 4(a,C,0) =S 5 4(b.C.aA)=Sqpr(bAC) | o< we need only concern ourselves with those
=Sqrp(C.a,0) =S qp(C,b,a). SZ)’s with p+q+r=0,2,....,2(L—1).
We can therefore reduce our calculation to 8/&)’s at sites
(p,q,r) in the first octant witho=q=r=0. Thus the total C. Results for lattice path integrals
number of the Independeﬁ‘pz" is with general flux orientations
134612+124+9—n For the general flux orientationa(b,c), we have ob-
N2 = 5 tained ./ up to 2=20. Here 3, denote sums over
a=a,b,c; X denote sums over aB)=(ab),(bc),
for 1=3m+n, where m are non-negative integers and (ca); and 2 (apy denote sums over oBy)

n=0,1,2. Thus the number of tH&?"’s to be computed is =(abc),(bca),(cab). Also, for instance, the term
significantly reducedby about a factor of 48) compared to cos@*8) means cos{+8)+cos@—B). Below we present

that of the wholes{%), . the results for,, .7, .“5, and.“1.

/4=66+8, cox,

(a)

o=8T6+ >, [240 cosv+24 cos]+24), coda*p)+12 cosa+b+c) +122 coa+pB—y),
() (ap) (aBy)

g=12 978+ Z [5632 cos+ 1000 cos2+96 cos3yr+ 16 cosdy]
(a)
+ E [ 1120 cosa=* B)+ 112 cos2a* B)+ 112 cosa*+2B)+32 cog2a+2B)]+576 cosa+b+c)
(ap)

+ >, [ 576 cosa+B—y)+64 cog2a+ B+ y)+64 co$2a— B+ y)
(aBy)

+16 coga+2B*+2y)+16 coga—2B*+2y)],

10= 208 836+ E [124 080 coa+ 30 040 cosz + 5040 cosdr+ 1160 cos4+ 160 cosm+ 40 cosay]
(a)

+ > [ 36 680 cosa = B)+ 6800 cos2a+ )+ 6800 cosa+23)+2160 cos2a=+20)
(ap)

+600 co$3a*B)+600 cosa*3B)+240 co$3a+2B)+240 co$2a+3B)+80 cogda=xpB)

+80 coga*+48)+60 cos2a+4B)+60 cog2a*+48)+40 cog3a+38)]+19 860 cosa+b+c)

+ >, [ 19860 cosa+ B— y)+4040 cog2a+ B+ y)+4040 cog2a— B+ y)
(aBy)

+1280 cosa+2B*+2vy)+1280 cosa—2B+2y)+400 cog3a+ B+ y)+400 cog3a— B+ y)
+160 cosa+2B8+3vy)+160 cosa—2B+3vy)+160 cosa+3B*+2y)+160 cosa—3B*+27y)
+40 cogda+ B*y)+40 cogda— B*vy)+40 cos3a+2B+2y)+40 cog3a—2B*+2y)
+40 coga+4B*=2y)+40 coga—4B+=2y)+40 coga+2B*+4y)+40 coga—2B*+4y)

+20 cog4a+2B+2y)+20 cogda—2B+2y)+20 coga+3B+3y)+20 coga—3B+3y)].
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TABLE |I. Lattice path integrals”,, (with the order 2=4,6,8,10,12) for the 3D cubic lattice in various flux configurations: ()0,
(0.9,9), (4.0,9), (¢.¢,—2¢), and the asymmetric caser(m, ¢).

2l 7y in (0,04)

4 82+ 8 cosp
1452+ 384 cogh+24 cosp
8 29218t 13440 cog+ 1960 cosad+96 cos3h+16 cosdd
10 638756-422800 cog+96760 cosp+11760 cosd+2284 cos4+160 cosk+40 cos@
12 14865220- 12737640 cog+3909984 cosg+764216 cosad+182328 coséd
+28392 cosp+7680 cos@+528 costh+144 cos@+24 cosdb

2l 7% in (0,¢,9)

4  74+16 cosh
1188+576 cogh+96 cos2p
8 22186+ 16736 cog+4976 cosdp+736 cosH+96 cossp
10 460236-461760 cog+186360 cosad+49760 cosd+11840 cosé+2080 cosmp+520 cos@
12 10354220-12623616 cog+6211104 cose+2269840 cosad+ 742800 cosd
+209328 cosp+67008 cosgp+14016 cosp+3744 cosd+480 cosP

2l 7 in (¢4, 9)

4 66+ 24 cosp
948+ 756 cogp+144 cosp+12 cosIp

8 16626+ 19392 cog+6744 cosp+1584 cosd+336 cos4p+48 cosH

10 338616-483420 cog+230340 cosad+82980 cosad+27000 coséd
+ 7740 cosp+1980 cos@+420 cosh+60 cosd

12 7672212 12250440 cog+7095780 cosa+ 3290664 cosd+1370952 cosé+528120 cospp+193524 cose
+65736 cosd+20952 cosd+5952 cosP+1512 coslg+ 288 coslp+ 24 cosldp

21 % in (¢, —20)

4 66+ 16 cosp+8 cosap
912+ 528 cogh+336 cosp+48 cos3p+36 cosdh
8 14930+ 14016 cog+10080 cosa+3040 cosd+1992 cosé+384 cosp+240 cos@p+32 cose+16 cos@
10 282796- 356640 cog+275560 cosad+122640 cosd+79780 cosé+28160 cosp+17280 cose
+5280 cos'd+3040 cosgd+800 cos®+440 coslp+80 coslh+ 60 cosldp
12 6045696-9120912 cog+7393704 cos@+4172032 cosd+2809680 cosd+1342512 cosh
+841808 cose+367440 cosg+220836 cos®+90384 cossh+52800 cosla+ 19680 cosld
+11856 cosld+ 3696 cosld+2112 cosléd+576 coslp+ 360 coslg+48 cosle+24 cosldp

20y in ()

4 50+ 8 cosp
492+ 192 cogh+24 cosp
8 5410+ 3456 cog+808 cosp+96 cosIh+16 cos4h
10 64676+56720 cog+18680 cosad+4080 cosd+1000 cos4+160 cosm+40 cos@
12 826820-900840 cog+372384 cosad+113336 cosd+35448 coséd
+9192 cos®+2880 cos@+528 costp+144 cos@+24 cosYp
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We have also worked out a considerable number of lattice

path integraldup to the 40th orderfor various special ori- Eq(a,b,c)
entations of the flux. The results for,, %, . ..., are

—|1- 22 (EQ/Zl(abc)”

listed in Table I. The results fo¥4,. %46, - - . »% 40 are not (10)
presented. where we have assumed that the highest order of the lattice
path integral obtained isl2 The above result is exact when
lIl. TOTAL KINETIC ENERGY L=o. Truncations at high values &f provide excellent ap-

proximations to theL=o case, because the terms corre-

We now proceed to calculate the total kinetic enekgy . ) )
of the half filled Fermi sea. We do this by using a serlesSpondlng toL larger than either 4, 5, or @lepending on the

expansion of the total energy. We also present an alternati %”ﬁgtrg?%g|§fotrr]:mf§.|§nareb réeg(l)lfg:EblemC?u(rj res”u![tsrrl;or the
approach based on a moment expansion of the density tg ab.c) 7 Include ail terms up
h

; L=10. For the special flux configurations (0,
states. Through these two different approaches, we show t k
our goal here—the calculation &+q(B)—is reduced to the $.8), (b.4.4), ($.4.—24), and (@,7,4), we obtain

. - : Il terms up toL=20. Terms up td.= 10 (corresponding to
| f the | h als,, . altert - b 1=
evaluation of the lattice path Integrais, 50 include contributions originating from-10* three-

dimensional closed paths, while terms uplie 20 (corre-
sponding ta¥) include contributions coming from 107°

Let us work on the{|#;)} basis. At half filling, the total closed paths in a 3D cubic lattice. Each one of these closed
kinetic energy of noninteracting spinless electrons is the surpaths is weighted by its corresponding magnetic phase fac-
of the lowestN/2 eigenvalues, wherl is the total number tor.
of sites. Since the energy spectrum of the cubic lattice is Note that, by construction, the lattice path integrals are
symmetric undefE}—{—E}, we can write the total energy local quantities and are valid for any value &f The peri-
per site as odic boundary conditions make the lattice path integrals ho-
mogeneousi.e., translationally invariantand are unrelated
to the imposition of a Bloch theorem. In contrast to most
works studying tight-binding electrons in a magnetic field,

_ _ ~ here we never invoke laspace or reciprocal space: our sums
Here Tr denotes the trace aht} is the corresponding di- are all defined in direct space.

agonalized Hamiltonian dfl. Notice that the absolute value
is typically defined for scalar numbers. In this caldty/z|
refers to an operator obtained by taking the absolute value of

A. Series expansion for the total energy

o (5)

1
ET:N EZO E=-— mTr

B. Moment expansion for the density of states

every matrix element of the operatéty/z. Noting that Here we analytically apply the method of moment expan-
—1<|Hy/z|<I, we expandH,/z| into a series in terms of sion to obtain the total enerdyy . The starting point now is
Chebyshev polynomial$,(Hq/z) as the one-particle Green’s functio;;(E)=(|(E—H) !

| i), which can be expressed as
2 4 @ (_1)n+1

=—l+—=>

Ho
T T & 4n?-1 2n

z

Ho)
f (6) 1 * H2| 1 *
z E ¢|| |‘/’| —E 2: (11)

Gii(E)_E 2,

where | represents the identity operator. Exploiting the

equality The nonzero Rh moment./, of the density of states
p(E) is given by
Ho
T, ( )—( 1)“n2 QHZ @) l
z (E
,/Zz,zf (— p(E)dE. 12
where -2\ Z
—4\" (n+1-1)! Taking into account the relation betweg{E) and the
0= <—> (2|)'(T|)' imaginary part of the Green’s function, it can be derived that
we obtain from Eqs(5)—(7) S
A =T (13
__z 2 2 21
Er=—711"N “an?—1 Q,(TrH") ®  After the change of variablee=E/z, Eq. (12) can be re-
written as

where we have replaced 'Hé') by Tr(H?), as they are

equal to each other. , L
Assuming periodic boundary conditions on the lattices, //42|=f_1w plw)do, (14
we have

20 N/ 2] wherep(w) =2zp(wZ).
THHZ =N R ]). © We now expand(w) in a series of Chebyshev polyno-
The total kinetic energy per site is then given by mials weighted by N1-o? as
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> Tyl @) for the five special flux configurations studied beléSec.
b(w)= 2 CZkﬁ' (15 11 C), we include all terms up th = 20.

Substituting Eq(15) into Eq. (14) and using forl =k C. The lowest-energy flux state ancE
for various flux orientations

2|
Lo TZk(w) | 2= _L (16) Substituting the expressions for th6,(a,b,c)’s into Eq.
11— o? 4=k (1 +k)! (10) or the results for th€,(a,b,c)’s into Eq.(20), we find
that the lowest-energy state is reached whenb=c=m=

(namely, a half flux quantum per plaquette on §he zx,
l andxy planes. We thus provide aexplicit analytic deriva-

M=, Coul 21 2 - (17)  tion for the absolute minimum energy of the flux stdtee

k=0 result is consistent with a theorem proved by Lieb.

Given the moments up to%, , the coefficientsC,, for We also obtain the total enerdyr(¢4) as acontinuous
k= 0 L can then be exact|y determined one by one |nfunct|0n of the flux¢ for the f0||OWIng flux orientations:

terms of the moments. For instance, (0,0,9), (0,¢,9), (¢.0,4), (¢,¢,—2¢), and the asym-
metric case fr,m,¢). Notice that the field direction of

My 1 (¢, b, ) is perpendicular to that off, ,—2¢). These re-
Co=|—: —, sults are plotted in Fig. 1. They are calculated through Eq.
oo T (20) by using their respectiv€,,’s for 2k=0,2,4 . .. ,40
) Thus we have added the contributions ©fL0?° electron
c :"'/%’/2_(:0'2,0: _ i closed paths in a 3D cubic lattice, each one weighted by its
2 PP 37’ magnetic phase factor.
For comparison purposes, we also preééﬁp)(cb) for
the 2D case, obtained by using the corresponmgﬁ)’s up
Ma—Colao—Col s to C{&). This corresponds to summing overl0* electron
I ’ : closed paths in a 2D square lattice, each one with its corre-
44 sponding phase factor. Note that the absolute minimum of
E;(¢) occurs at¢p=1r in all of these flux orientations, ex-
cept for the orientation (0,@) in 3D. It becomes clear that
hopping in an extra dimension drastically changes the prop-
erties found in strictly two-dimensional systems.

In Fig. 2, we plot the total kinetic energy of electrons at
half filling, Et, for the 3D cubic lattice for various field
k-1 orientations versus the order of the highest-order lattice path

integral used to calculate them. For comparison, we also
( P 2, Cala 2') 18 show the numerical values &, obtained in Ref. 5, which
mostly has only three significant figures. TH& reach
steady values which are consistent, withit2%, with nu-
0 merical ones for lattice path integrals of orddr 2qual to
ET:j Ep(E)dE, (19) el_ther 4, 6, or 8{ depend]ng on the or|'entat|on_ qf the f|elq.

Higher-order lattice path integrals provide negligible contri-

butions toE+ . For instance, for (0,0,0) both approaches give
the same result, within-0.5%, for 2.=4.

we obtain

and

4=

4

J’_
271

3 =(coa+codb+cox)]|.

In general, evenC,, can be computed from the previous
ones by

c 1
e | 2 2

Noting that at half filling the total energlg; is

and using the result

0 wTy(w) (1)

do=
11— 2 2k—1)(2k+1)’
tVlme ( g ) The approach described in Sec. Il B can be directly gen-
we therefore obtain the following expression for the totaleralized to calculate the total enerfy(v) for any electron
kinetic energy filling v (0<v<1/2) as

D. Total energy for any filling

-1 k ulz
Eq(a,b,c)= zZ mc%(a,b,c). (20) ET(V)=f Ep(E)dE= le p(w)dw, (21

It is interesting to notice that Eq§10) and (20) lead to the
same result for the total enerdy;, even though we used
quite different approaches. Both results are exact when ; iz

L=, However, terms witlk larger than 4, 5, or &depend- _ _ ~

ing on the field orientationprovide negligible contributions - ffzp(E)dE_ ffl plo)do. 22
to the sum. Our results for the general field orientation

(a,b,c) of Ef(a,b,c) include all terms up td.=10, while  Utilizing Eq. (15) and carrying out the integrals, we obtain

where the Fermi energy is determined by
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L

z . z si(2k—1)6]
L I T T 17T l T T T T l T T T 7T — .
ET( V) 71_Slna 2[(21 CZk —2k—1
sin (2k+1)6]
2k+1 ' (23

_085 where §=arccosfu/z) (7= 6==/2), and givenv, 6 can be
— solved from the equation
= 0 & sin(2k#)
a
&'ETS‘ V—l_;_gl CZKT. (24)

Note that Gsw<1/2 corresponds to—z=u<0 and
7= 0= /2. Writing v=1/2—- 6 and 6= =/2+ 7, Egs. (23

-0.9 and(24) can then be rewritten as

L
1 z z co§(2k—1) 7]
C_sl=_Z z ke | e T
ET<2 5 —cosy+ zkzl (=D Cof — 1
cog (2k+1) 7]
o 2k+1 29
~0.95
. and
7. < sin(2k )
_ 7 _ k
5= W+k21 (=D Co— (26)
In the smallé limit (i.e., the electron filling is close to
-1.05 one-half andy is very small sin(z)=2kz; we then have
—
< il 5 2
& 7T nrabo 2

11 where

L
z(a,b,c)=k§=‘,1 (=1 Cy(ab,c).

Therefore, using the approximation g&k*=1)7]
=1—(2k*=1)?%?/2, we obtain the total enerdy(1/2— )
close to(and below half filling:

-1.15

=5 e P "5
27 0)= " 8 T a7
_1'2||||||||||||;nl|||||;||| -
0 0.1 0.2 0.3 0.4 05 . - (—1)% _— z w7 52
¢/2m e 2k—1)(2k+1) "X 2 T+ mr)?
FIG. 1. Lower frame: Total kinetic energy of electrons at half 1

filling, E1(¢), for the 3D cubic lattice for various flux orientations :ET(_ +£ 1_005( . ; 5”
(0,0,¢) (long dash, (0.¢,¢) (short dash (¢,d,¢) (solid), 2] w 1+7%
(¢,d,—2¢) (dot), and (m,m,¢) (dot-dash. Upper frame: 2
E(?P(¢) for the 2D square lattice in a perpendicular field. The flux z_m7” 52 28)

o L . TV
values where the minima occur are indicated. We obtain these re- 2(1+77)
sults by using the lattice path integrals up to the order 40 for the 3D ) o ) .
case and 76 for the 2D lattice—which corresponds to summind-inally, by differentiating bottE+ in Eq. (23) and v in Eq.
contributions over- 107 electron closed paths in a 3D cubic lattice (24) With respect tou, we can establish the identity
and ~ 10" electron closed paths in a 2D square lattice. Notice that
Er(¢) has the absolute minimum &t27= 1/2 for all of these flux dE; dv

orientations, except for the configuration (G4), de “du (29
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LI B | L L T T rr LI UL T rrT L TT1r 17 —1402 1T UL T T T LR
T T T M 106 2 - T T T EML T T
-1.1+ = T L XX XXX XXXHXX | - x XXX % oo % E
(1/2, 1/2, 1/2) XXX % x x
L {-108 T —104 fgenze e .
X
S 12 [T XK X0 I (178178 1/9 - (1/4, 1/4, 1/4) -
“11f X i y
¢ I | S - ‘ | ] I 111 l |l I¥| -] l 1 1 1 I 1 i 1 I I I | l L I I -y I 11 I
l;l T I LI B l LI B B | I LI B I | ' LI I ] I T | L I LB I _1~06 T I ll AL I L | Ty T I
L - 3 XXX XK 3 x X X X ] -1.02 — x -
104 N SRR - x (0, 1/4, 1/4)
. —-1.08 5 (0' 1/2’ 1/2) — | X N i = xx
=
- 1-1.05 103 | Xgeenemmnnnnn X g e s
x - (0, 1/3, 1/3) | x X e ¢ |
-1.12 =----- XN G R XX KRN R KK x n N
b1 11 I | - ' l 1 I | ' _1.06 _l 11 I 1 11 I 1 11 I 11 11 I—— 1 I | 2 | I 111 I 1 11 l
L I 1T I L | I T F l L I LR L l LB I T T F 1 I L I LR LB | T 1 T I LR ) l
- x -
X - s
""""" O KRR R KX KRR (0, 0, 1/3) x (0, 0, 0)
-1.02 | x 4 4L x ]
102 . o x
L XXX x S X 3 XX XRXKK XXX XX
I VO .
—1.005 - —
_1.04 | | l Lt 1 I | I | l 1111 I _1.03 _I-I--l-l-ivl-l--l-l--I-I--I-I--I-IVI-VI—I--I.I_‘ 1t 1 I 1118 | | ] I | I | I
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
2L 2L 2L

FIG. 2. Total kinetic energy of electrons at half filling;, for the 3D cubic lattice for various field orientations (1/2,1/2,1/2),
(1/3,1/3,1/3), (1/4,1/4,1/4), (0,1/2,1/2), (0,1/3,1/3), (0,1/4,1/4), (0,0,1/2), (0,0,1/3), and (0,0,0) .t (means that the three fluxes
through the elementary plaquettes on ytze zx, andxy planes are, respectivelg/2, b/27, andc/2w. The horizontal axis (R) denotes
the order of the highest-order lattice path integral used in comp&ingThe dashed lines indicate the corresponding values from Ref. 5,
where only the first three significant figures are available, except for the cases (1/2,1/2,1/2) and (0,0D) réduh steady values which
are consistent, within-2%, with numerical ones for lattice path integrals of ordér @qual to either 4, 6, or 8, depending on the field
orientation. Higher-order lattice path integrals provide negligible contributiofs toNotice that the vertical axes here cover a very narrow
range of values10"2). For (1/2,1/2,1/2), (0,1/2,1/2), and (0,0,1/2), both approaches give the same result-witbénfor 2L =8 and
within ~2% for 21=8, 8, and 4, respectively. For (1/3,1/3,1/3), (0,1/3,1/3), and (0,0,1/3), both approaches provide the same result within
~1% for 2L=12, 10, and 12, and within~-2% for 21=8, 4, and 4, respectively. For (1/4,1/4,1/4), (0,1/4,1/4), and (0,0,0), both
approaches yield the same result withirl % for 2L=16, 4, and 4 and withir~2% for 21=4, 4, and 4, respectively.

It is worthwhile to emphasize that the formalism described influx orientations: (0,0p), (0,¢,¢), (¢,d,¢), and
this section is equally applicable to the 2D square latticq ¢, ¢, —2¢). It will be seen that the magnetic response, in

case. the presence of a strong periodic potential, is significantly
different from the familiar Landau diamagnetism of a 2D
IV. MAGNETIC MOMENT AND ORBITAL electron gas, where y has its largest value &=0 and its
SUSCEPTIBILITY vicinity and decreasesonotonicallyasB is increased.

In this section we investigate two experimentally acces-
sible observables, namely, the magnetic momédnand the
orbital susceptibilityy of this quantum system. It is well
knowrf that at absolute zero temperatieand y are given When we increase the electron filling facter the Fermi
by the first- and second-order derivatives of the total energyenergy u increases. We therefore first study the zero-field

susceptibilityx(u) = x(¢=0,u) as a function ofu through

A. Zero-field susceptibility x (1) =x(¢=0,u)
versus Fermi energyp

_ JEg
M==78 30 . FPEt -
X)) == =57
and 9B g0
PEq From Eg.(23), we readily obtain
X=~ g% (31) )
z d*Cou(#) sin (2k—1)6]
With our analytical results foEr at hand, Eqs(30) and(31) x(p)= 522 d? 2k—1
provide a straightforward way to study these important quan- $=0
tities for any orientation of the externally applied field. For sin (2k+1) 6]
illustration purposes, below we will focus on the following T} (33
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B. Field-dependentM (¢) and x(¢) at v=13

L _ We now focus on the system at half filling and examine
the continuousdependence of the magnetic momémtand

i a: (0,0,9) I susceptibilityy on the magnetic fluxs. Employing Eq.(20)
06l b: (0,¢,9) - for E+(¢), we can directly obtain

- e (@84) (¢) L (-1 dCu(e)
A . _ ] Er - 2k

d' (¢’¢’ 2¢) _M(¢)_ 2 Zk 1)(2k+1) d¢ !
I ] (34

and
= FEID) :Zi (D" dCu(9)

0 (2k—1)(2k+1) dg?
(35

The results for four different flux orientations are shown in
Fig. 4. Let us look at- M (¢) = —M(¢,v=1/2) first. Start-
ing from ¢=0, —M(¢) decreases from zero and remains
negative with some fluctuations. There are then some irregu-
lar “sine-function-shaped” oscillations present. These low-
field oscillations in—M(¢) are observed for all orientations
shown in Fig. 4. For the (0,@) flux orientation,—M has a
positive value for¢/2m~0.3-0.5, reaching zero at= .
On the other hand, for (8,¢), (¢,¢,¢), and
(d,0,—2¢), —M is mostly negative for low fields
(¢/2m~0-0.1), oscillates around zero for intermediate
1 1 fields (¢/2m~0.1-0.3), is negative for larger fields
m (¢/27m~0.3-0.5), and reaches zero &t 7. At relatively
large flux values $/27~0.4-0.5),—M decreases to zero

FIG. 3. The negative of the zero-field susceptibility () as a (at ¢=) from a positive value for (0,@), and increases
function of the Fermi energy: for various flux configurations (O Zero (at ¢=m) from a negative value for (@,),
(0,0,8), (0,,8), (b,¢,4), and (b, ¢, —2¢) corresponding to (& ¢, ®), and (@, b, —24¢).
curvesa, b, ¢, andd, respectively. Curva is always the closest to The field-dependent orbital magnetic susceptibility,
the dotted reference ling=0, while curved is always the farthest —x=—x(¢,v=1/2), fluctuates somewhat evenly around
from it. For all these orientations, the susceptibility exhibits a veryzero in the low-field regime. However; x fluctuates less,
nonmonotonic behavior. For small electron filling (i.e., small and around a small negative value for the flux orientation
w), diamagnetism ¥<0) dominates in spite of small fluctuations (0,0,¢), where only one planexfy plane is penetrated by
of —x around zero. With increasing, on the average;-x de-  the flux. The fluctuations are more pronounced in the flux
creases from a large positive value to a negative one. Foprientations (Qp, ), (¢,¢,¢), and (@, ¢, —2¢), where at
w=—3.2 the orbital response is paramagnetic. least two perpendicular planes are affected by the field. As

the flux is raised;- y tends to fluctuate less arf a cross-
WheredZCZk(¢)/d¢2|¢:o can be easily computed for each over from diamagnetism to paramagnetism is observed in the
of the flux orientations under consideration. configuration (0,0¢); and, on the other handii) a cross-

In Fig. 3 we plot the negative of the susceptibilityy as  over from paramagnetism to diamagnetism is observed in the
a function of the Fermi energy for various flux configura- orientations (Qp,¢), (¢,¢,¢), and (b,¢,—2¢). In other
tions. Large diamagneti@i.e., negative susceptibilities are words, at¢ =, the magnetic response is weakly paramag-
observed at very low electron filling. For increasipg the  netic in the flux configuration (0,@), while the other three
guantity — y decreases and fluctuates around zero. fror orientations provide a strong diamagnetic response in the
larger than a certain value(—3.2), paramagnetism pre- lattice.
vails. Indeed, the orbital response is weakly paramagnetic at Figure 4 suggests that, for boM and y, the following
half filling (x=0). These results are in qualitative agree-four quantities tend to grow larger with the increase of planes
ment with the observations of Skudlarski and Vigidlased exposed to the field: the number of oscillations, the fre-
on calculating the current-current correlation function. Fur-quency of the oscillations as a function of the flux, the num-
thermore, note that the absolute valueyofor (0,¢,¢) is  ber of nodes, and the amplitude of the oscillations. For in-
always twice that for (0,@); |x| for (¢,¢,¢) is always stanceM(¢,d, ) oscillates more rapidly and strongly than
three times that for (0,@); and |x| for (¢,¢4,—2¢) is  M(0,4,¢), which at the same time oscillates more rapidly
twice that for (@, ®,¢). These results clearly reflect the or- and strongly tharM (0,0,¢). A similar general trend is ob-
bital origin of the susceptibility. served betweeg (¢, ¢, d), x(0,¢,¢), andx(0,0,¢). These
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S — features can be understood intuitively: the more perpendicu-
0zl (0,0,¢) - lar planes are exposed to the flux, the more stromgland

0.02 x Will be affected.

V. SUMMARY

In conclusion, we present an investigation of quantum
interference phenomena of tight-binding electrons on the 3D
cubic lattice in acontinuously tunablenagnetic field with
arbitrary orientation Previous work on this problem focused
on adiscreteset of(rationa) magnetic field values. We study
the total kinetic energy, and subsequently the magnetic mo-
ment and orbital susceptibility. The main results inclydle
an analytic study of electron quantum interference effects
resulting from sums over magnetic phase factors associated
with 3D closed paths(2) a very efficient computation of
these “lattice path integrals’/5, in closed-form expres-
sions,(3) explicit analytic expressions, in terms of the lattice
path integrals, for the Fermi-sea ground-state enérggs a
function of the fluxes for electron fillings at and near one-
half, (4) the 3D lattice path integrals to very high order and
the total energies in various flux orientationiS) the inves-
tigation of the zero-field orbital susceptibility(x) as a
function of the Fermi energy., and(6) the magnetic mo-
mentM (¢) and susceptibility(¢) as functions of the flux,
both at half filling.

We find that the absolute minimum &(¢) at half fill-
ing occurs atp= 7 in all of the flux orientations under con-
sideration, except for the configuration (Qf9,in 3D. It be-
comes evident that hopping in an additional direction
drastically changes the properties found in strictly two-
dimensional systems. It is also seen that the magnetic re-
sponse, in the presence of a strong periodic potential, is sig-

nificantly distinct from the familiar Landau diamagnetism—
P R TP P R where in a 2D electron gas y takes the largest value close
2l | (dé-24) to B=0, and decreases monotonically with increasadror
the zero-field susceptibility (), diamagnetism dominates
in spite of small fluctuations of(x) around zero for small
electron filling v. On the average, with increasing, the
quantity — x(u) nonmonotonicallydecreases from a large
positive (diamagnetig value to a relatively small negative
(paramagneticvalue. Foru= — 3.2, the orbital response be-
comes paramagnetic. Both the field-dependeM (¢) and
—x(¢) exhibit irregular oscillations according to the direc-
tion of the field. For the four flux orientations (O¢),
ozh U L (0,0,9), (&,0,9), and (p,d,— 2¢), the magnetic moment
0 01 02 03 04 05 0 01 02 03 04 05 M(¢) is always zero ath=0 and 7; and paramagnetism
¢/2m ¢8/2m (x>0) exists at¢p=0 for all these flux orientations. How-
ever, wheng/27=1/2, the magnetic response is paramag-
netic for the flux configuration (0,@), and diamagnetic for
the other three orientations.

-0.02

T PO I NI | ‘|.|.|,|,|,r

T 1 11 T T
L (0,0,9) 1 1 (0.¢.9)

[=]

IC s
| H+—t++t++++++H =
| L(@9.9) !

2

FIG. 4. The negatives of the magnetic momeni () (left

column and the orbital susceptibility- () (right column at half . .
filling as a function of the flux¢ for various flux orientations as Here, we add a remark on the quantitigr(4)/dé, Itis

indicated. From top to bottom they are (X, (0..d) known that at zero temperature the persistent cutrient
(6.5 8), and (b, b,—2¢). Both —M and — y exhibit n;)n,perli- metal ring threaded by_ a magnetic flgxis proportional_ to
odic oscillations. Notice the change of the amplitude and the fre-the sum over th? Contrlputlons 6E,/J¢ from all occupied
quency of the oscillations as a function of the flux for different States, wheré, is the eigenstate energy. Wf therefore can
orientations of the field. Ap=0 and, the magnetic moments are rggardd Er(¢)/d¢ asa generalized “current” in this mul-
always zero. Moreover, paramagnetism existéat0 for all these  tiply connected lattice system. .

flux orientations. However, whewrp/27=1/2, the magnetic re- An approach commonly employed in recent years to study
sponse is paramagnetic for flux configuration (@)3,and diamag-  electrons in a magnetic field=p/q (e.g., Refs. 4—puses
netic for the other three orientations. the Bloch theorem and maps the problem inp>aq matrix
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problem—related to g q cell with periodic boundary con- nman’s program: to derive physical quantities in terms of
ditions (PBQ) in the actual lattice. Thus, fopp)=1/2, the  sums over paths. This method is considerably different from
electron energy levels are determined by considering e standard ones that have been employed s@fay, trans-
2X2 cell with PBC in the lattice and diagonalizing &2  forming the problem to momentum space and computing
matrix. This approach presents a problem for any irrationak; numerically. In particular, it allows the analytic calcula-
field, sinceq— 0, and a periodic cell cannot be realized. We tijon of physical quantities as explicit functions of a continu-
do not follow this approach; thus we can explicitly considergysly tunable flux, while other approaches need to separately
a continuumof values of¢, without treating irrational num-  consider different case@.qg., matricesfor several discrete
bers on a special footing. N (rationa) values of the magnetic field. The lattice path ap-
Our lattice path integrals are local quantities. By construcproach can also be used for a variety of other physical prob-
tion, they are valid formny value of the magnetic field. The |ems, including the derivation and analysis of the supercon-
PBC we impos¢in Eq. (9)] are only designed to make these qgycting transition temperature in wire networks and
lattice path integrals homogeneo(is., translationally in-  josephson-junction arraysee, e.g., Refs. 10 and )1%&and

variany and have nothing to do with the imposition of a the analytical computation of the magnetoconductance for
Bloch theorem. Indeed, in contrast to most works studyingstrongly localized electroné.

electrons in a magnetic field, here we never invoke &ny
space or momentum space our sums over closed flaths
tice path integralsare all explicitly defined in real space.

The lattice path integrals obtained here are many-loop
generalizations of the standard one-loop Aharonov-Bohm- We thank A. Rojo for conversations and for bringing to
type argument, where the electron wave function picks up aur attention Ref. 7, and G. Vignale for useful comments on
phase factoe'® each time it travels around a closed loop the manuscript. We thank O. Pla, supported by NATO Grant
enclosing a net fluxb. The evaluation of these lattice path No. CRG-931417, for his help. We acknowledge partial sup-
integrals enables us to analytically obtain the total energieort from the University of Michigan Horace H. Rackham
magnetic moments, and orbital susceptibilities of the correSchool of Graduate Studies, and the Offices of the Vice
sponding flux states. The spirit of our approach follows Fey-Presidents for Research and Academic Affairs.

ACKNOWLEDGMENTS

*Present address: Department of Physics, West Virginia Univer-2E. H. Lieb, Phys. Rev. LetfZ3, 2158(1994).
sity, Morgantown, West Virginia 26506-6315. 4p. Skudlarski and G. Vignale, Phys. Rev4B, 5764(1991).

Electronic address: nori@umich.edu Y. Hasegawa, J. Phys. Soc. J@9, 4384 (1990).

1see, e.g., |. Affleck and J. B. Marston, Phys. Rev3B 3774 67. Kunszt and A. Zee, Phys. Rev. B!, 6842(199)).
(1988; Y. Hasegawat al, Phys. Rev. Lett63, 1519(1989; P. “W. F. Brinkman and T. M. Rice, Phys. Rev.B 1324(1970.
Lederer, D. Poilblanc, and T. M. Riciaid. 63, 1519(1989; D. 8C. Kittel, Introduction to Solid State Physicsth ed.(John Wiley
Poilblanc, Y. Hasegawa, and T. M. Rice, Phys. Rev1131949 & Sons, New York, 1988 N. W. Ashcroft and N. D. Mermin,
(1990; F. Nori, E. Abrahams, and G. T. Zimanyfid. 41, 7277 Solid State Physic€Saunders College, Philadelphia, 1976
(1990; M. Kohmoto and Y. Hatsugaibid. 41, 9527(1990); F. °R. Landauer and M. Buttiker, Phys. Rev. Leitl, 2049(1985.
Nori, B. Douwmt, and R. Rammalibid. 44, 7637 (1991, and 1OQ. Niu and F. Nori, Phys. Rev. B9, 2134(1989.
references therein. 11y -L. Lin and F. Nori, Phys. Rev. B0, 15 953(1994.

2F. Nori and Y.-L. Lin, Phys. Rev. B9, 4131(1994. 12y -L. Lin and F. Nori (unpublishedl



