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We study flux quantization in periodic arrays with two elementary cells having an irrational ra-
tio of areas. In particular, we calculate the superconducting-normal phase boundary T.(H) and
we analyze the origin of its overall and fine structure as a function of the network size. We dis-
cuss our theoretical results, exploiting the electronic tight-binding analogy to the Ginzburg-
Landau equations, and compare them with the experimental ones.

Micronetworks made of thin superconducting wires,
and Josephson junction arrays,? exhibit interesting forms
of phase diagrams when they are immersed in an external
magnetic field. The diamagnetic properties of such micro-
networks are very sensitive to the connectedness and the
geometry of the multiply connected structure. Fractal,?
disordered, and quasicrystalline*> geometries have recent-
ly been investigated by different groups.

In the present work we study the superconducting-
normal phase boundary of new and more complex types of
periodic arrays.® Since the ratio of the areas of the ele-
mentary plaquettes is an irrational number, the system is
frustrated at any nonzero field. This basic idea, geo-
metry-induced frustration, has recently been studied in
the very interesting work by Behrooz et al.* and, after-
wards, by several other groups.® Clearly, the periodic net-
work of Behrooz et al. (see Fig. 9 of their long paper?) is
related to the geometries studied here. The former will be
discussed at length somewhere else (numerically and
analytically), together with all the geometries studied in
the papers by Behrooz et al.* Our results here only focus
on the IBM samples® and their phase boundaries. In par-
ticular, we study step by step in a progressive way the
effect of adding more and more tiles to the basic cells of
the samples. This approach allows us to gain insight
about the origin of the overall and fine structure present in
T.(H). Furthermore, we exploit the electronic tight-
binding analogy to the linearized Ginzburg-Landau equa-
tions to explain some of the features observed in the phase
boundaries.

In order to compute the upper critical field of a super-
conducting network near the second-order phase bound-
ary, in the context of mean-field theory, we need to solve
the linearized Ginzburg-Landau equation. It has been
shown’ that this approach leads, in general, to an eigen-
value problem expressed in terms of the order-parameter
values at the nodes. If node a is linked to n nodes via
strands of length L,s (=1, ... ,n), the basic equation at
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where Ag (= | Ag| e'%) is the value of the order parameter
at node B, & =&o(Tw/8T)"? is the coherence length,
ST =Te—T, Agp=(27/®o) fEA-dl is the circulation of
the vector potential A along the wire linking a and B, and
@ (=ch/2e) the elementary flux quantum. For a lattice
where L,g=L is the same for all links, Eq. (1) reduces for-
mally to that of a Landau-level structure of a free-
electron gas in the same geometry, with the analog of the
energy being given by Z cos(L/&,), where Z is the coordi-
nation number of every node.

The geometries considered here are two-dimensional
(2D) lattices which correspond to the space groups pdgm
and c2mm (see Fig. 1). The elementary cells are a trian-
gle and a square with a ratio of areas equal to
r-Asq/A"-4/x/§. In our calculations Asq=1; therefore
the characteristic field corresponding to one flux quantum
in the square becomes Hsq=®o/Asq=Po. All the T (H)
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FIG. 1. Two-dimensional networks, with 400 nodes each,
denoted by (a) p4gm and (b) c2mm.
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(c) (d)

FIG. 2. Small networks, which are denoted here by (a)
pagm.9, (b) pdgm.14, (c) c2mm.6, and (d) c2mm.12. The small
networks pdgm.9 and c2mm.6 are unit cells of the pdgm and
c2mm lattices, respectively.

plots presented here have the horizontal axis H measured
in units of Hy=®p. For simple geometries, such as the
square or 2D Fibonacci lattice, the determination of
T.(H) is greatly simplified since in these cases the origi-
nal equations on the 2D structure can be mapped into a
1D equation. This is not the case for the lattices con-
sidered here since the bonds do not belong to two sets
which are perpendicular to each other.

Let us first consider the small networks shown in Fig. 2,
which will be denoted here by sg.m, where sg is a space
group and m is the number of nodes present in the net-
work; p4gm.9 [Fig. 2(a)] and c2mm.6 [Fig. 2(c)] are unit
cells of the pdgm and c2mm lattices, respectively. The
remaining small networks are larger subsets of the lattices
depicted in Fig. 1. Figure 3 shows the transition from a
periodic phase boundary [Fig. 3(a)] corresponding to a
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single triangular cell, to the nonperiodic ones associated
with the pdgm.9 [Fig. 3(b)] and pdgm.14 [Fig. 3(c)]
geometries. The maxima of the T.(H) curve for the tri-
angular cell (a) are parabolic. However, the local maxi-
ma become sharper and sharper when the system size
grows. In the large-system limit, 400 nodes in our calcu-
lation, the local maxima are cusplike. One-cell effects are
responsible for the quadratic maxima, while the cusplike
behavior is due to the collective effect of many cells. Also,
the maxima in (a) split into several local maxima, in (b)
and (c), due to the competition between cells with
different areas. Figure 4 shows the T.(H) curves for the
small networks ¢2mm.6 and c2mm.12.

Let us consider the number of cusps present in the
T.(H) curves depicted in Figs. 3(c) and 4(b). Clearly,
the former has more cusps. It is also clear that their
respective networks have two mirror-symmetry planes in
Fig. 2(b) and no symmetries in Fig. 2(d). The lack of
symmetry in the latter one implies that the eigenenergies
(we are using the electronic tight-binding analogy of the
linearized Ginzburg-Landau equations) tend to avoid
each other.® Therefore, T.(H) will be smooth [Fig. 4(b)].
On the other hand, the presence of two mirror-symmetry
planes in the former implies that level crossings, and
therefore cusps, coming from eigenenergies associated
with different eigensubspaces of the irreducible represen-
tation of the Hamiltonian, are highly probable. In sum-
mary, the higher the degree of symmetry, the more likely
electron levels will cross the largest eigenvalue, T.(H),
creating cusps even in small networks. In small networks,
downward cusps (which look like V) are due to level cross-
ing, and are very sensitive to the detailed geometry. As
the lattice size grows, the originally rounded peaks be-
come sharper and sharper and eventually become upward
(i.e.,, A) cusps. This latter type of cusp comes from the
collective effect of the many cells.

The results shown in Figs. 3 and 4 show that short-
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FIG. 3. T. (in arbitrary units) vs H (in units of Hyq=®0o/Asq=Do) for the small networks (a) one triangular cell, (b) p4gm.9, and

(c) pdgm.14.
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FIG. 4. Phase boundary T. (arbitrary units) vs H (same units
as Fig. 3) for the small networks (a) c2mm.6 and (b) c2mm.12.

range correlations among tiles are responsible for the
main overall features in the T.(H) curve, while longer-
range correlations, a many-tile effect, are responsible for
the finer structure. Let ngq (ny,) be the average number of
flux quanta in each square (triangle). The average mag-
netic field on the array can be expressed as

Hay=Hy(nq+2ny)/(1+~/3/2) =Hyn ,

where Hj, =H/(1++/3/2) and n=nsq+2n,. Therefore,
the arrangements of the flux quanta on the array can be
indexed by (ns,ny). Furthermore, the most prominent
maxima occur at field strengths associated with
(nsq,nee) =(2,1),(5,2),(7,3),(9,4), ..., where the re-
spective ratios n,q/n"-2,2.5,2.33,2.25,... are successive
approximants to 4//3. Some fine structure, in which ngq
is a rational number, has also been indicated.

We have numerically solved the linearized Ginzburg-
Landau equations and obtained the T.(H) curves, see Fig.
S, for the 400-node networks shown in Fig. 1. We sum-
marize some of the most relevant features of the experi-
mental results and our theoretical phase boundaries. (i)
T.(H) is not periodic; however, some local maxima do ex-
hibit one period corresponding to Hj,. (ii) The largest
maxima correspond to the case when successive rational
(approximants to r) numbers of flux quanta are found in
small and large tiles. At these field strengths, ®y/®;, ap-
proximates the ratio of their areas. (iii) The previously
mentioned maxima only approach the zero-field value for
T. since the frustration cannot be relieved for any nonzero
value of the magnetic field. However, the flux lattice can
find favorable arrangements which lower its energy close
to the original unfrustrated configuration. (iv) The large
peaks labeled n=4, 5, 8, and 9 in Fig. 5(a) are due to the
effect of the more numerous triangular cells [see Fig.
3(a)l. (v) There is an approximate mirror symmetry at
certain values of the magnetic field [Fig. 5(b)]l. This
effect comes from the fact that the square and the triangle
both have phase boundaries with exact mirror symmetries
at integer and half-integer values of the reduced magnetic
flux. This property carries over approximately to these
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FIG. 5. T. (arbitrary units) vs H (in units of Hy

=g/ Asq =o) for the (a) p4gm and (b) c2mm lattices shown
in Fig. 1. The locations of the maxima corresponding to various
n values are indicated by arrows.

more complex lattices. (vi) At low-field values we recover
the linear-continuum-limit result (see Fig. 5). This is
analogous to the linear behavior of the electron (and hole)
Landau levels, and the structure of Landau levels for elec-
trons in free space.

These calculations have been performed for a wide
range of magnetic fields. However, to facilitate compar-
ison with the experimental curve by Santhanam et al. ® we
have plotted Fig. 5(a) only for small field values. The
agreement between them is good. For the c2mm lattice
the agreement is not as good. The origins of these
discrepancies can be traced to several factors: (1) imper-
fections of the fabricated structures (e.g., the nonuniform
width of the wires), and (2) the measurement current
through the sample may smooth out some of the unob-
served fine structure. Although mean-field theory cannot
accurately locate the exact value of T, it gives the right
dependence with the magnetic field. Moreover, effects
coming from our finite-size calculations have been found
to be small.

In conclusion, (1) we have studied flux quantization
and obtained accurate calculations, without any adjust-
able parameter, of the superconducting-normal phase
boundary for periodic arrays recently studied experimen-
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tally,® (2) we have found a good agreement between
theory and experiment, and we have listed the possible
causes of the discrepancies between them, and (3) we
have studied the origin of the overall and fine structure of
the T.(H) curve by analyzing, step by step in a progres-
sive way, the effect of adding more and more tiles to the
unit cells of both arrays. Generally speaking, cusps in
small networks are due to level crossing (using the elec-
tronic tight-binding analogy of the linearized Ginzburg-
Landau equations). As soon as the number of cells in the
network starts to grow, interactions between cells remove
these sharp cusps (i.e., the electronic level crossing be-
tween parabolas of noninteracting free electrons is re-
placed by a gap when many cells interact). On the other
hand, smooth (quadratic) maxima in small networks be-
come sharp in larger ones due to the coherent effect com-
ing from many cells. Furthermore, the location and shape
of the maxima tends to change in a moderate way when
the number of cells continues to increase (since the ratio
of areas of the elementary cells tends to dominate its be-
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havior). On the other hand, the location and shape of the
valleys tend to change somewhat more drastically, e.g.,
Figs. 3 and 4, since they are more susceptible to the
specific geometric arrangement of the cells in the array.

One of us (F.N.) is grateful to E. Fradkin for support
and encouragement, to P. Santhanam for his comments
and for sending us his unpublished data, and to S. J.
Chang, M. Salamon, the National Center for Supercom-
puting Applications, and the computing center of the Ma-
terials Research Laboratory, University of Illinois, for
their assistance. This work has been supported in part by
the National Science Foundation through Grants No.
MRL-DMR-86-12860, No. DMR-84-15063 (University
of Illinois), and No. PHY82-17853, supplemented by
funds from the National Aeronautics and Space Adminis-
tration, and by the U.S. Department of Energy through
Grant No. DE84-ER-45108 (University of California,
Santa Barbara).

*Permanent address.

!B. Pannetier et al., Phys. Rev. Lett. 53, 1845 (1984); J. Phys.
(Paris) Lett. 44, L853 (1983).

2R. A. Webb et al., Phys. Rev. Lett. 51, 690 (1983); J. Koster-
litz and E. Granato, Phys. Rev. B 34, 2026 (1986); D. Stroud
and Y. Y. Shih, Mater. Sci. Forum 4, 177 (1985).

3J. M. Gordon et al. Phys. Rev. Lett. 56, 2280 (1986); J. M.
Gordon and A. M. Goldman, Phys. Rev. B 35, 4909 (1987).

4A. Behrooz, M. Burns, H. Deckman, D. Levine, B. Whitehead,
and P. M. Chaikin, Phys. Rev. Lett. 57, 368 (1986); Phys.

Rev. B 35, 8396 (1987).

SK. Springer and D. Van Harlingen, Phys. Rev. B 36, 7273
(1987); F. Nori, Q. Niu, E. Fradkin, and S. J. Chang, ibid.
36, 8338 (1987); Pannetier ef al. (unpublished); J. Chung,
M. Y. Choi, and D. Stroud (unpublished).

6p. Santhanam, C. C. Chi, and W. W. Molzen, preceding paper,
Phys. Rev. B 37, 2360 (1988).

7S. Alexander, Phys. Rev. B 27, 1541 (1983); R. Rammal, T. C.
Lubensky, and G. Toulouse, ibid. 27, 2820 (1983).

8J. von Neumann and E. P. Wigner, Phys. Z. 30, 467 (1929).



